Spaces:
Runtime error
Runtime error
File size: 11,654 Bytes
753e275 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import os
import argparse
import copy
import json
from tqdm.auto import tqdm
from torch.utils.data import DataLoader
from diffab.datasets.custom import preprocess_antibody_structure
from diffab.models import get_model
from diffab.modules.common.geometry import reconstruct_backbone_partially
from diffab.modules.common.so3 import so3vec_to_rotation
from diffab.utils.inference import RemoveNative
from diffab.utils.protein.writers import save_pdb
from diffab.utils.train import recursive_to
from diffab.utils.misc import *
from diffab.utils.data import *
from diffab.utils.transforms import *
from diffab.utils.inference import *
from diffab.tools.renumber import renumber as renumber_antibody
def create_data_variants(config, structure_factory):
structure = structure_factory()
structure_id = structure['id']
data_variants = []
if config.mode == 'single_cdr':
cdrs = sorted(list(set(find_cdrs(structure)).intersection(config.sampling.cdrs)))
for cdr_name in cdrs:
transform = Compose([
MaskSingleCDR(cdr_name, augmentation=False),
MergeChains(),
])
data_var = transform(structure_factory())
residue_first, residue_last = get_residue_first_last(data_var)
data_variants.append({
'data': data_var,
'name': f'{structure_id}-{cdr_name}',
'tag': f'{cdr_name}',
'cdr': cdr_name,
'residue_first': residue_first,
'residue_last': residue_last,
})
elif config.mode == 'multiple_cdrs':
cdrs = sorted(list(set(find_cdrs(structure)).intersection(config.sampling.cdrs)))
transform = Compose([
MaskMultipleCDRs(selection=cdrs, augmentation=False),
MergeChains(),
])
data_var = transform(structure_factory())
data_variants.append({
'data': data_var,
'name': f'{structure_id}-MultipleCDRs',
'tag': 'MultipleCDRs',
'cdrs': cdrs,
'residue_first': None,
'residue_last': None,
})
elif config.mode == 'full':
transform = Compose([
MaskAntibody(),
MergeChains(),
])
data_var = transform(structure_factory())
data_variants.append({
'data': data_var,
'name': f'{structure_id}-Full',
'tag': 'Full',
'residue_first': None,
'residue_last': None,
})
elif config.mode == 'abopt':
cdrs = sorted(list(set(find_cdrs(structure)).intersection(config.sampling.cdrs)))
for cdr_name in cdrs:
transform = Compose([
MaskSingleCDR(cdr_name, augmentation=False),
MergeChains(),
])
data_var = transform(structure_factory())
residue_first, residue_last = get_residue_first_last(data_var)
for opt_step in config.sampling.optimize_steps:
data_variants.append({
'data': data_var,
'name': f'{structure_id}-{cdr_name}-O{opt_step}',
'tag': f'{cdr_name}-O{opt_step}',
'cdr': cdr_name,
'opt_step': opt_step,
'residue_first': residue_first,
'residue_last': residue_last,
})
else:
raise ValueError(f'Unknown mode: {config.mode}.')
return data_variants
def design_for_pdb(args):
# Load configs
config, config_name = load_config(args.config)
seed_all(args.seed if args.seed is not None else config.sampling.seed)
# Structure loading
data_id = os.path.basename(args.pdb_path)
if args.no_renumber:
pdb_path = args.pdb_path
else:
in_pdb_path = args.pdb_path
out_pdb_path = os.path.splitext(in_pdb_path)[0] + '_chothia.pdb'
heavy_chains, light_chains = renumber_antibody(in_pdb_path, out_pdb_path)
pdb_path = out_pdb_path
if args.heavy is None and len(heavy_chains) > 0:
args.heavy = heavy_chains[0]
if args.light is None and len(light_chains) > 0:
args.light = light_chains[0]
if args.heavy is None and args.light is None:
raise ValueError("Neither heavy chain id (--heavy) or light chain id (--light) is specified.")
get_structure = lambda: preprocess_antibody_structure({
'id': data_id,
'pdb_path': pdb_path,
'heavy_id': args.heavy,
# If the input is a nanobody, the light chain will be ignores
'light_id': args.light,
})
# Logging
structure_ = get_structure()
structure_id = structure_['id']
tag_postfix = '_%s' % args.tag if args.tag else ''
log_dir = get_new_log_dir(
os.path.join(args.out_root, config_name + tag_postfix),
prefix=data_id
)
logger = get_logger('sample', log_dir)
logger.info(f'Data ID: {structure_["id"]}')
logger.info(f'Results will be saved to {log_dir}')
data_native = MergeChains()(structure_)
save_pdb(data_native, os.path.join(log_dir, 'reference.pdb'))
# Load checkpoint and model
logger.info('Loading model config and checkpoints: %s' % (config.model.checkpoint))
ckpt = torch.load(config.model.checkpoint, map_location='cpu')
cfg_ckpt = ckpt['config']
model = get_model(cfg_ckpt.model).to(args.device)
lsd = model.load_state_dict(ckpt['model'])
logger.info(str(lsd))
# Make data variants
data_variants = create_data_variants(
config = config,
structure_factory = get_structure,
)
# Save metadata
metadata = {
'identifier': structure_id,
'index': data_id,
'config': args.config,
'items': [{kk: vv for kk, vv in var.items() if kk != 'data'} for var in data_variants],
}
with open(os.path.join(log_dir, 'metadata.json'), 'w') as f:
json.dump(metadata, f, indent=2)
# Start sampling
collate_fn = PaddingCollate(eight=False)
inference_tfm = [ PatchAroundAnchor(), ]
if 'abopt' not in config.mode: # Don't remove native CDR in optimization mode
inference_tfm.append(RemoveNative(
remove_structure = config.sampling.sample_structure,
remove_sequence = config.sampling.sample_sequence,
))
inference_tfm = Compose(inference_tfm)
for variant in data_variants:
os.makedirs(os.path.join(log_dir, variant['tag']), exist_ok=True)
logger.info(f"Start sampling for: {variant['tag']}")
save_pdb(data_native, os.path.join(log_dir, variant['tag'], 'REF1.pdb')) # w/ OpenMM minimization
data_cropped = inference_tfm(
copy.deepcopy(variant['data'])
)
data_list_repeat = [ data_cropped ] * config.sampling.num_samples
loader = DataLoader(data_list_repeat, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn)
count = 0
for batch in tqdm(loader, desc=variant['name'], dynamic_ncols=True):
torch.set_grad_enabled(False)
model.eval()
batch = recursive_to(batch, args.device)
if 'abopt' in config.mode:
# Antibody optimization starting from native
traj_batch = model.optimize(batch, opt_step=variant['opt_step'], optimize_opt={
'pbar': True,
'sample_structure': config.sampling.sample_structure,
'sample_sequence': config.sampling.sample_sequence,
})
else:
# De novo design
traj_batch = model.sample(batch, sample_opt={
'pbar': True,
'sample_structure': config.sampling.sample_structure,
'sample_sequence': config.sampling.sample_sequence,
})
aa_new = traj_batch[0][2] # 0: Last sampling step. 2: Amino acid.
pos_atom_new, mask_atom_new = reconstruct_backbone_partially(
pos_ctx = batch['pos_heavyatom'],
R_new = so3vec_to_rotation(traj_batch[0][0]),
t_new = traj_batch[0][1],
aa = aa_new,
chain_nb = batch['chain_nb'],
res_nb = batch['res_nb'],
mask_atoms = batch['mask_heavyatom'],
mask_recons = batch['generate_flag'],
)
aa_new = aa_new.cpu()
pos_atom_new = pos_atom_new.cpu()
mask_atom_new = mask_atom_new.cpu()
for i in range(aa_new.size(0)):
data_tmpl = variant['data']
aa = apply_patch_to_tensor(data_tmpl['aa'], aa_new[i], data_cropped['patch_idx'])
mask_ha = apply_patch_to_tensor(data_tmpl['mask_heavyatom'], mask_atom_new[i], data_cropped['patch_idx'])
pos_ha = (
apply_patch_to_tensor(
data_tmpl['pos_heavyatom'],
pos_atom_new[i] + batch['origin'][i].view(1, 1, 3).cpu(),
data_cropped['patch_idx']
)
)
save_path = os.path.join(log_dir, variant['tag'], '%04d.pdb' % (count, ))
save_pdb({
'chain_nb': data_tmpl['chain_nb'],
'chain_id': data_tmpl['chain_id'],
'resseq': data_tmpl['resseq'],
'icode': data_tmpl['icode'],
# Generated
'aa': aa,
'mask_heavyatom': mask_ha,
'pos_heavyatom': pos_ha,
}, path=save_path)
# save_pdb({
# 'chain_nb': data_cropped['chain_nb'],
# 'chain_id': data_cropped['chain_id'],
# 'resseq': data_cropped['resseq'],
# 'icode': data_cropped['icode'],
# # Generated
# 'aa': aa_new[i],
# 'mask_heavyatom': mask_atom_new[i],
# 'pos_heavyatom': pos_atom_new[i] + batch['origin'][i].view(1, 1, 3).cpu(),
# }, path=os.path.join(log_dir, variant['tag'], '%04d_patch.pdb' % (count, )))
count += 1
logger.info('Finished.\n')
def args_from_cmdline():
parser = argparse.ArgumentParser()
parser.add_argument('pdb_path', type=str)
parser.add_argument('--heavy', type=str, default=None, help='Chain id of the heavy chain.')
parser.add_argument('--light', type=str, default=None, help='Chain id of the light chain.')
parser.add_argument('--no_renumber', action='store_true', default=False)
parser.add_argument('-c', '--config', type=str, default='./configs/test/codesign_single.yml')
parser.add_argument('-o', '--out_root', type=str, default='./results')
parser.add_argument('-t', '--tag', type=str, default='')
parser.add_argument('-s', '--seed', type=int, default=None)
parser.add_argument('-d', '--device', type=str, default='cuda')
parser.add_argument('-b', '--batch_size', type=int, default=16)
args = parser.parse_args()
return args
def args_factory(**kwargs):
default_args = EasyDict(
heavy = 'H',
light = 'L',
no_renumber = False,
config = './configs/test/codesign_single.yml',
out_root = './results',
tag = '',
seed = None,
device = 'cuda',
batch_size = 16
)
default_args.update(kwargs)
return default_args
if __name__ == '__main__':
design_for_pdb(args_from_cmdline())
|