File size: 8,550 Bytes
753e275
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

from diffab.modules.common.geometry import global_to_local, local_to_global, normalize_vector, construct_3d_basis, angstrom_to_nm
from diffab.modules.common.layers import mask_zero, LayerNorm
from diffab.utils.protein.constants import BBHeavyAtom


def _alpha_from_logits(logits, mask, inf=1e5):
    """
    Args:
        logits: Logit matrices, (N, L_i, L_j, num_heads).
        mask:   Masks, (N, L).
    Returns:
        alpha:  Attention weights.
    """
    N, L, _, _ = logits.size()
    mask_row = mask.view(N, L, 1, 1).expand_as(logits)  # (N, L, *, *)
    mask_pair = mask_row * mask_row.permute(0, 2, 1, 3)  # (N, L, L, *)

    logits = torch.where(mask_pair, logits, logits - inf)
    alpha = torch.softmax(logits, dim=2)  # (N, L, L, num_heads)
    alpha = torch.where(mask_row, alpha, torch.zeros_like(alpha))
    return alpha


def _heads(x, n_heads, n_ch):
    """
    Args:
        x:  (..., num_heads * num_channels)
    Returns:
        (..., num_heads, num_channels)
    """
    s = list(x.size())[:-1] + [n_heads, n_ch]
    return x.view(*s)


class GABlock(nn.Module):

    def __init__(self, node_feat_dim, pair_feat_dim, value_dim=32, query_key_dim=32, num_query_points=8,
                 num_value_points=8, num_heads=12, bias=False):
        super().__init__()
        self.node_feat_dim = node_feat_dim
        self.pair_feat_dim = pair_feat_dim
        self.value_dim = value_dim
        self.query_key_dim = query_key_dim
        self.num_query_points = num_query_points
        self.num_value_points = num_value_points
        self.num_heads = num_heads

        # Node
        self.proj_query = nn.Linear(node_feat_dim, query_key_dim * num_heads, bias=bias)
        self.proj_key = nn.Linear(node_feat_dim, query_key_dim * num_heads, bias=bias)
        self.proj_value = nn.Linear(node_feat_dim, value_dim * num_heads, bias=bias)

        # Pair
        self.proj_pair_bias = nn.Linear(pair_feat_dim, num_heads, bias=bias)

        # Spatial
        self.spatial_coef = nn.Parameter(torch.full([1, 1, 1, self.num_heads], fill_value=np.log(np.exp(1.) - 1.)),
                                         requires_grad=True)
        self.proj_query_point = nn.Linear(node_feat_dim, num_query_points * num_heads * 3, bias=bias)
        self.proj_key_point = nn.Linear(node_feat_dim, num_query_points * num_heads * 3, bias=bias)
        self.proj_value_point = nn.Linear(node_feat_dim, num_value_points * num_heads * 3, bias=bias)

        # Output
        self.out_transform = nn.Linear(
            in_features=(num_heads * pair_feat_dim) + (num_heads * value_dim) + (
                    num_heads * num_value_points * (3 + 3 + 1)),
            out_features=node_feat_dim,
        )

        self.layer_norm_1 = LayerNorm(node_feat_dim)
        self.mlp_transition = nn.Sequential(nn.Linear(node_feat_dim, node_feat_dim), nn.ReLU(),
                                            nn.Linear(node_feat_dim, node_feat_dim), nn.ReLU(),
                                            nn.Linear(node_feat_dim, node_feat_dim))
        self.layer_norm_2 = LayerNorm(node_feat_dim)

    def _node_logits(self, x):
        query_l = _heads(self.proj_query(x), self.num_heads, self.query_key_dim)  # (N, L, n_heads, qk_ch)
        key_l = _heads(self.proj_key(x), self.num_heads, self.query_key_dim)  # (N, L, n_heads, qk_ch)
        logits_node = (query_l.unsqueeze(2) * key_l.unsqueeze(1) *
                       (1 / np.sqrt(self.query_key_dim))).sum(-1)  # (N, L, L, num_heads)
        return logits_node

    def _pair_logits(self, z):
        logits_pair = self.proj_pair_bias(z)
        return logits_pair

    def _spatial_logits(self, R, t, x):
        N, L, _ = t.size()

        # Query
        query_points = _heads(self.proj_query_point(x), self.num_heads * self.num_query_points,
                              3)  # (N, L, n_heads * n_pnts, 3)
        query_points = local_to_global(R, t, query_points)  # Global query coordinates, (N, L, n_heads * n_pnts, 3)
        query_s = query_points.reshape(N, L, self.num_heads, -1)  # (N, L, n_heads, n_pnts*3)

        # Key
        key_points = _heads(self.proj_key_point(x), self.num_heads * self.num_query_points,
                            3)  # (N, L, 3, n_heads * n_pnts)
        key_points = local_to_global(R, t, key_points)  # Global key coordinates, (N, L, n_heads * n_pnts, 3)
        key_s = key_points.reshape(N, L, self.num_heads, -1)  # (N, L, n_heads, n_pnts*3)

        # Q-K Product
        sum_sq_dist = ((query_s.unsqueeze(2) - key_s.unsqueeze(1)) ** 2).sum(-1)  # (N, L, L, n_heads)
        gamma = F.softplus(self.spatial_coef)
        logits_spatial = sum_sq_dist * ((-1 * gamma * np.sqrt(2 / (9 * self.num_query_points)))
                                        / 2)  # (N, L, L, n_heads)
        return logits_spatial

    def _pair_aggregation(self, alpha, z):
        N, L = z.shape[:2]
        feat_p2n = alpha.unsqueeze(-1) * z.unsqueeze(-2)  # (N, L, L, n_heads, C)
        feat_p2n = feat_p2n.sum(dim=2)  # (N, L, n_heads, C)
        return feat_p2n.reshape(N, L, -1)

    def _node_aggregation(self, alpha, x):
        N, L = x.shape[:2]
        value_l = _heads(self.proj_value(x), self.num_heads, self.query_key_dim)  # (N, L, n_heads, v_ch)
        feat_node = alpha.unsqueeze(-1) * value_l.unsqueeze(1)  # (N, L, L, n_heads, *) @ (N, *, L, n_heads, v_ch)
        feat_node = feat_node.sum(dim=2)  # (N, L, n_heads, v_ch)
        return feat_node.reshape(N, L, -1)

    def _spatial_aggregation(self, alpha, R, t, x):
        N, L, _ = t.size()
        value_points = _heads(self.proj_value_point(x), self.num_heads * self.num_value_points,
                              3)  # (N, L, n_heads * n_v_pnts, 3)
        value_points = local_to_global(R, t, value_points.reshape(N, L, self.num_heads, self.num_value_points,
                                                                  3))  # (N, L, n_heads, n_v_pnts, 3)
        aggr_points = alpha.reshape(N, L, L, self.num_heads, 1, 1) * \
                      value_points.unsqueeze(1)  # (N, *, L, n_heads, n_pnts, 3)
        aggr_points = aggr_points.sum(dim=2)  # (N, L, n_heads, n_pnts, 3)

        feat_points = global_to_local(R, t, aggr_points)  # (N, L, n_heads, n_pnts, 3)
        feat_distance = feat_points.norm(dim=-1)  # (N, L, n_heads, n_pnts)
        feat_direction = normalize_vector(feat_points, dim=-1, eps=1e-4)  # (N, L, n_heads, n_pnts, 3)

        feat_spatial = torch.cat([
            feat_points.reshape(N, L, -1),
            feat_distance.reshape(N, L, -1),
            feat_direction.reshape(N, L, -1),
        ], dim=-1)

        return feat_spatial

    def forward(self, R, t, x, z, mask):
        """
        Args:
            R:  Frame basis matrices, (N, L, 3, 3_index).
            t:  Frame external (absolute) coordinates, (N, L, 3).
            x:  Node-wise features, (N, L, F).
            z:  Pair-wise features, (N, L, L, C).
            mask:   Masks, (N, L).
        Returns:
            x': Updated node-wise features, (N, L, F).
        """
        # Attention logits
        logits_node = self._node_logits(x)
        logits_pair = self._pair_logits(z)
        logits_spatial = self._spatial_logits(R, t, x)
        # Summing logits up and apply `softmax`.
        logits_sum = logits_node + logits_pair + logits_spatial
        alpha = _alpha_from_logits(logits_sum * np.sqrt(1 / 3), mask)  # (N, L, L, n_heads)

        # Aggregate features
        feat_p2n = self._pair_aggregation(alpha, z)
        feat_node = self._node_aggregation(alpha, x)
        feat_spatial = self._spatial_aggregation(alpha, R, t, x)

        # Finally
        feat_all = self.out_transform(torch.cat([feat_p2n, feat_node, feat_spatial], dim=-1))  # (N, L, F)
        feat_all = mask_zero(mask.unsqueeze(-1), feat_all)
        x_updated = self.layer_norm_1(x + feat_all)
        x_updated = self.layer_norm_2(x_updated + self.mlp_transition(x_updated))
        return x_updated


class GAEncoder(nn.Module):

    def __init__(self, node_feat_dim, pair_feat_dim, num_layers, ga_block_opt={}):
        super(GAEncoder, self).__init__()
        self.blocks = nn.ModuleList([
            GABlock(node_feat_dim, pair_feat_dim, **ga_block_opt) 
            for _ in range(num_layers)
        ])

    def forward(self, R, t, res_feat, pair_feat, mask):
        for i, block in enumerate(self.blocks):
            res_feat = block(R, t, res_feat, pair_feat, mask)
        return res_feat