Spaces:
Runtime error
Runtime error
File size: 12,689 Bytes
20002df 753e275 20002df 6d34920 20002df 7f79ac0 20002df b4b13f9 20002df 7f79ac0 20002df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import sys
sys.path.append('./diffab-repo')
import os
import shutil
import pandas as pd
import yaml
import subprocess
import streamlit as st
import stmol
import py3Dmol
import tempfile
import re
import abnumber
import gzip
import tarfile
import torch
from tqdm.auto import tqdm
from Bio import PDB
from collections import OrderedDict
from diffab.tools.renumber import renumber as renumber_antibody
from diffab.tools.renumber.run import (
biopython_chain_to_sequence,
assign_number_to_sequence,
)
CDR_OPTIONS = OrderedDict()
CDR_OPTIONS['H_CDR1'] = 'H1'
CDR_OPTIONS['H_CDR2'] = 'H2'
CDR_OPTIONS['H_CDR3'] = 'H3'
CDR_OPTIONS['L_CDR1'] = 'L1'
CDR_OPTIONS['L_CDR2'] = 'L2'
CDR_OPTIONS['L_CDR3'] = 'L3'
DESIGN_MODES = OrderedDict()
DESIGN_MODES['denovo'] = 'De novo design'
DESIGN_MODES['denovo_dock'] = 'De novo design (with HDOCK)'
DESIGN_MODES['opt'] = 'Optimization'
DESIGN_MODES['fixbb'] = 'Fix-backbone'
MODE_CONFIG = {
'denovo': './configs/test/codesign_multicdrs.yml',
'denovo_dock': './configs/test/codesign_multicdrs.yml',
'opt': './configs/test/abopt_singlecdr.yml',
'fixbb': './configs/test/fixbb.yml',
}
GPU_AVAILABLE = torch.cuda.is_available()
DEFAULT_NUM_SAMPLES = 5 if GPU_AVAILABLE else 1
DEFAULT_NUM_DOCKS = 3
def dict_to_func(d):
def f(x):
return d[x]
return f
def get_config(save_dir, mode, cdrs, num_samples=5, optimization_step=4):
tmpl_path = MODE_CONFIG[mode]
with open(tmpl_path, 'r') as f:
cfg = yaml.safe_load(f)
cfg['sampling']['cdrs'] = cdrs
cfg['sampling']['num_samples'] = num_samples
cfg['sampling']['optimize_steps'] = [optimization_step, ]
save_path = os.path.join(save_dir, 'design.yml')
with open(save_path, 'w') as f:
yaml.dump(cfg, f)
return cfg, save_path
def run_design(pdb_path, config_path, output_dir, docking, display_widget, num_docks=DEFAULT_NUM_DOCKS):
if docking:
cmd = f"python design_dock.py --antigen {pdb_path} --config {config_path} --num_docks {num_docks} "
else:
cmd = f"python design_pdb.py {pdb_path} --config {config_path} "
cmd += f"--batch_size 1 --out_root {output_dir} "
if GPU_AVAILABLE:
cmd += "--device cuda"
else:
cmd += "--device cpu"
result_dir = os.path.join(output_dir, 'design')
if os.path.exists(result_dir):
shutil.rmtree(result_dir)
output_buffer = ''
proc = subprocess.Popen(
cmd,
shell=True,
env=os.environ.copy(),
bufsize=1,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
cwd=os.getcwd(),
)
for line in iter(proc.stdout.readline, b''):
output_buffer += line.decode()
display_widget.code(
'\n'.join(output_buffer.splitlines()[-10:]),
)
proc.stdout.close()
proc.wait()
@st.cache
def renumber_antibody_cached(in_pdb, out_pdb, file_id):
return renumber_antibody(
in_pdb, out_pdb, return_other_chains=True
)
def gather_results(result_dir):
outputs = []
for root, dirs, files in os.walk(result_dir):
for fname in files:
if not re.match('^\d\d\d\d\.pdb$', fname):
continue
fpath = os.path.join(root, fname)
gname = os.path.basename(root)
outputs.append((gname, fname, fpath))
parser = PDB.PDBParser(QUIET=True)
records = []
fpath_to_name = {}
for gname, fname, fpath in tqdm(outputs):
name = f"{gname}_{fname}"
structure = parser.get_structure(name, fpath)
model = structure[0]
record = {
'name': name,
'H1': None, 'H2': None, 'H3': None,
'L1': None, 'L2': None, 'L3': None,
'gname': gname, 'fname': fname, 'fpath': fpath,
}
for chain in model:
try:
seq, reslist = biopython_chain_to_sequence(chain)
numbers, abchain = assign_number_to_sequence(seq)
if abchain.chain_type == 'H':
record['H1'] = abchain.cdr1_seq
record['H2'] = abchain.cdr2_seq
record['H3'] = abchain.cdr3_seq
elif abchain.chain_type in ('L', 'K'):
record['L1'] = abchain.cdr1_seq
record['L2'] = abchain.cdr2_seq
record['L3'] = abchain.cdr3_seq
except abnumber.ChainParseError as e:
pass
records.append(record)
fpath_to_name[fpath] = name
with tarfile.open(os.path.join(result_dir, 'generated.tar.gz'), 'w:gz') as tar:
for record in records:
info = tar.gettarinfo(record['fpath'])
info.name = record['name']
tar.addfile(
tarinfo = info,
fileobj = open(record['fpath'], 'rb'),
)
records = pd.DataFrame(records)
return records, fpath_to_name
def main():
# Temporary workspace directory
if 'tempdir_path' not in st.session_state:
tempdir_path = tempfile.mkdtemp(prefix='streamlit')
st.session_state.tempdir_path = tempdir_path
else:
tempdir_path = st.session_state.tempdir_path
# Page layout
st.set_page_config(layout="wide")
st.markdown(
"# DiffAb \n\n"
"Antigen-Specific Antibody Design and Optimization with Diffusion-Based Generative Models for Protein Structures (NeurIPS 2022) \n\n"
"[[Paper](https://www.biorxiv.org/content/10.1101/2022.07.10.499510.abstract)] "
"[[Code](https://github.com/luost26/diffab)]"
)
left_col, right_col = st.columns(2)
# Step 1: Upload PDB or choose an example
uploaded_file = None
with left_col:
uploaded_file = st.file_uploader(
'Antigen structure or antibody-antigen complex',
# disabled=True
)
if uploaded_file is None:
with st.expander("Don't know what to upload? Try these examples", expanded=True):
with open('./data/examples/7DK2_AB_C.pdb', 'r') as f:
st.download_button(
'RBD + Antibody Complex',
data = f,
file_name='RBD_AbAg.pdb',
)
with open('./data/examples/Omicron_RBD.pdb', 'r') as f:
st.download_button(
'RBD Antigen Only',
data = f,
file_name = 'RBD_AgOnly.pdb',
)
st.text('Please upload the downloaded PDB file to run the demo.')
if 'submit' not in st.session_state:
st.session_state.submit = False
if 'done' not in st.session_state:
st.session_state.done = False
# Step 1.2: Retrieve uploaded PDB
if uploaded_file is not None:
pdb_path = os.path.join(tempdir_path, 'structure.pdb')
renum_path = os.path.join(tempdir_path, 'structure_renumber.pdb')
with open(pdb_path, 'w') as f:
f.write(uploaded_file.getvalue().decode())
H_chains, L_chains, Ag_chains = renumber_antibody_cached(
in_pdb = pdb_path,
out_pdb = renum_path,
file_id = uploaded_file.id
)
H_chain = H_chains[0] if H_chains else None
L_chain = L_chains[0] if L_chains else None
docking = H_chain is None and L_chain is None
# Step 2: Design options
if uploaded_file is not None:
with left_col:
st.dataframe(pd.DataFrame({
'Heavy': {'Chain': H_chain},
'Light': {'Chain': L_chain},
'Antigen': {'Chain': ','.join(Ag_chains)},
}))
form = st.form('design_form')
with form:
if H_chain is None and L_chain is None:
# Antigen only
cdr_options = ['H_CDR1', 'H_CDR2', 'H_CDR3', 'L_CDR1', 'L_CDR2', 'L_CDR3']
cdr_default = ['H_CDR1', 'H_CDR2', 'H_CDR3']
mode_options = ['denovo_dock']
elif H_chain is not None and L_chain is None:
# Heavy chain + Antigen
cdr_options = ['H_CDR1', 'H_CDR2', 'H_CDR3']
cdr_default = ['H_CDR1', 'H_CDR2', 'H_CDR3']
mode_options = ['denovo', 'opt', 'fixbb']
elif H_chain is None and L_chain is not None:
# Light chain + Antigen
cdr_options = ['L_CDR1', 'L_CDR2', 'L_CDR3']
cdr_default = ['L_CDR1', 'L_CDR2', 'L_CDR3']
mode_options = ['denovo', 'opt', 'fixbb']
else:
# H + L + Ag
cdr_options = ['H_CDR1', 'H_CDR2', 'H_CDR3', 'L_CDR1', 'L_CDR2', 'L_CDR3']
cdr_default = ['H_CDR1', 'H_CDR2', 'H_CDR3']
mode_options = ['denovo', 'opt', 'fixbb']
design_mode = st.radio(
'Mode',
mode_options,
format_func=dict_to_func(DESIGN_MODES),
# disabled=True,
)
cdr_choices = st.multiselect(
'CDRs',
cdr_options,
default = cdr_default,
format_func=dict_to_func(CDR_OPTIONS),
# disabled=True,
)
if docking:
num_docks = st.slider(
'Number of docking poses',
min_value=1, max_value=10, value=DEFAULT_NUM_DOCKS,
)
else:
num_docks = 0
num_designs = st.slider(
'Number of samples',
min_value=1, max_value=10, value=DEFAULT_NUM_SAMPLES,
)
if not GPU_AVAILABLE:
st.warning('No GPU available. Sampling might be very slow.')
submit = st.form_submit_button('Run')
st.session_state.submit = st.session_state.submit or submit
if submit:
st.session_state.done = False
# Step 3: Prepare configuration and run design
if uploaded_file is not None and st.session_state.submit:
config, config_path = get_config(
save_dir = tempdir_path,
mode = design_mode,
cdrs = cdr_choices,
num_samples = num_designs,
)
with right_col:
result_molecule_display = st.empty()
result_select_widget = st.empty()
result_table_display = st.empty()
result_download_btn = st.empty()
output_display = st.empty()
if not st.session_state.done:
run_design(
pdb_path = renum_path,
config_path = config_path,
output_dir = tempdir_path,
docking = docking,
display_widget = output_display,
num_docks = num_docks,
)
st.session_state.done = True
result_dir = os.path.join(tempdir_path, 'design')
df_cols = ['name'] + list(CDR_OPTIONS.values())
df_results, fpath_to_name = gather_results(result_dir)
st.session_state.results = (df_results, fpath_to_name)
# Step 5: Show results:
if st.session_state.submit and st.session_state.done:
result_dir = os.path.join(tempdir_path, 'design')
df_results, fpath_to_name = st.session_state.results
df_cols = ['name'] + list(CDR_OPTIONS.values())
result_table_display.dataframe(df_results[df_cols])
display_pdb_path = result_select_widget.selectbox(
label = "Visualize",
options = df_results['fpath'],
format_func = dict_to_func(fpath_to_name),
)
with open(os.path.join(result_dir, 'generated.tar.gz'), 'rb') as f:
result_download_btn.download_button(
label = "Download PDBs",
data = f,
file_name = "generated.tar.gz",
)
if not os.path.exists(display_pdb_path):
display_pdb_path = df_results['fpath'][0]
with open(display_pdb_path, 'r') as f:
pdb_str = f.read()
xyzview = py3Dmol.view(width=380, height=380)
xyzview.addModelsAsFrames(pdb_str)
xyzview.setStyle({'cartoon':{'color':'spectrum'}})
xyzview.zoomTo()
with result_molecule_display:
stmol.showmol(xyzview, width=380, height=380)
if __name__ == '__main__':
main()
|