Spaces:
Runtime error
Runtime error
File size: 15,017 Bytes
753e275 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import torch
import torch.nn.functional as F
from diffab.utils.protein.constants import (
BBHeavyAtom,
backbone_atom_coordinates_tensor,
bb_oxygen_coordinate_tensor,
)
from .topology import get_terminus_flag
def safe_norm(x, dim=-1, keepdim=False, eps=1e-8, sqrt=True):
out = torch.clamp(torch.sum(torch.square(x), dim=dim, keepdim=keepdim), min=eps)
return torch.sqrt(out) if sqrt else out
def pairwise_distances(x, y=None, return_v=False):
"""
Args:
x: (B, N, d)
y: (B, M, d)
"""
if y is None: y = x
v = x.unsqueeze(2) - y.unsqueeze(1) # (B, N, M, d)
d = safe_norm(v, dim=-1)
if return_v:
return d, v
else:
return d
def normalize_vector(v, dim, eps=1e-6):
return v / (torch.linalg.norm(v, ord=2, dim=dim, keepdim=True) + eps)
def project_v2v(v, e, dim):
"""
Description:
Project vector `v` onto vector `e`.
Args:
v: (N, L, 3).
e: (N, L, 3).
"""
return (e * v).sum(dim=dim, keepdim=True) * e
def construct_3d_basis(center, p1, p2):
"""
Args:
center: (N, L, 3), usually the position of C_alpha.
p1: (N, L, 3), usually the position of C.
p2: (N, L, 3), usually the position of N.
Returns
A batch of orthogonal basis matrix, (N, L, 3, 3cols_index).
The matrix is composed of 3 column vectors: [e1, e2, e3].
"""
v1 = p1 - center # (N, L, 3)
e1 = normalize_vector(v1, dim=-1)
v2 = p2 - center # (N, L, 3)
u2 = v2 - project_v2v(v2, e1, dim=-1)
e2 = normalize_vector(u2, dim=-1)
e3 = torch.cross(e1, e2, dim=-1) # (N, L, 3)
mat = torch.cat([
e1.unsqueeze(-1), e2.unsqueeze(-1), e3.unsqueeze(-1)
], dim=-1) # (N, L, 3, 3_index)
return mat
def local_to_global(R, t, p):
"""
Description:
Convert local (internal) coordinates to global (external) coordinates q.
q <- Rp + t
Args:
R: (N, L, 3, 3).
t: (N, L, 3).
p: Local coordinates, (N, L, ..., 3).
Returns:
q: Global coordinates, (N, L, ..., 3).
"""
assert p.size(-1) == 3
p_size = p.size()
N, L = p_size[0], p_size[1]
p = p.view(N, L, -1, 3).transpose(-1, -2) # (N, L, *, 3) -> (N, L, 3, *)
q = torch.matmul(R, p) + t.unsqueeze(-1) # (N, L, 3, *)
q = q.transpose(-1, -2).reshape(p_size) # (N, L, 3, *) -> (N, L, *, 3) -> (N, L, ..., 3)
return q
def global_to_local(R, t, q):
"""
Description:
Convert global (external) coordinates q to local (internal) coordinates p.
p <- R^{T}(q - t)
Args:
R: (N, L, 3, 3).
t: (N, L, 3).
q: Global coordinates, (N, L, ..., 3).
Returns:
p: Local coordinates, (N, L, ..., 3).
"""
assert q.size(-1) == 3
q_size = q.size()
N, L = q_size[0], q_size[1]
q = q.reshape(N, L, -1, 3).transpose(-1, -2) # (N, L, *, 3) -> (N, L, 3, *)
p = torch.matmul(R.transpose(-1, -2), (q - t.unsqueeze(-1))) # (N, L, 3, *)
p = p.transpose(-1, -2).reshape(q_size) # (N, L, 3, *) -> (N, L, *, 3) -> (N, L, ..., 3)
return p
def apply_rotation_to_vector(R, p):
return local_to_global(R, torch.zeros_like(p), p)
def compose_rotation_and_translation(R1, t1, R2, t2):
"""
Args:
R1,t1: Frame basis and coordinate, (N, L, 3, 3), (N, L, 3).
R2,t2: Rotation and translation to be applied to (R1, t1), (N, L, 3, 3), (N, L, 3).
Returns
R_new <- R1R2
t_new <- R1t2 + t1
"""
R_new = torch.matmul(R1, R2) # (N, L, 3, 3)
t_new = torch.matmul(R1, t2.unsqueeze(-1)).squeeze(-1) + t1
return R_new, t_new
def compose_chain(Ts):
while len(Ts) >= 2:
R1, t1 = Ts[-2]
R2, t2 = Ts[-1]
T_next = compose_rotation_and_translation(R1, t1, R2, t2)
Ts = Ts[:-2] + [T_next]
return Ts[0]
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
def quaternion_to_rotation_matrix(quaternions):
"""
Convert rotations given as quaternions to rotation matrices.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
quaternions = F.normalize(quaternions, dim=-1)
r, i, j, k = torch.unbind(quaternions, -1)
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
BSD License
For PyTorch3D software
Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name Meta nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
def quaternion_1ijk_to_rotation_matrix(q):
"""
(1 + ai + bj + ck) -> R
Args:
q: (..., 3)
"""
b, c, d = torch.unbind(q, dim=-1)
s = torch.sqrt(1 + b**2 + c**2 + d**2)
a, b, c, d = 1/s, b/s, c/s, d/s
o = torch.stack(
(
a**2 + b**2 - c**2 - d**2, 2*b*c - 2*a*d, 2*b*d + 2*a*c,
2*b*c + 2*a*d, a**2 - b**2 + c**2 - d**2, 2*c*d - 2*a*b,
2*b*d - 2*a*c, 2*c*d + 2*a*b, a**2 - b**2 - c**2 + d**2,
),
-1,
)
return o.reshape(q.shape[:-1] + (3, 3))
def repr_6d_to_rotation_matrix(x):
"""
Args:
x: 6D representations, (..., 6).
Returns:
Rotation matrices, (..., 3, 3_index).
"""
a1, a2 = x[..., 0:3], x[..., 3:6]
b1 = normalize_vector(a1, dim=-1)
b2 = normalize_vector(a2 - project_v2v(a2, b1, dim=-1), dim=-1)
b3 = torch.cross(b1, b2, dim=-1)
mat = torch.cat([
b1.unsqueeze(-1), b2.unsqueeze(-1), b3.unsqueeze(-1)
], dim=-1) # (N, L, 3, 3_index)
return mat
def dihedral_from_four_points(p0, p1, p2, p3):
"""
Args:
p0-3: (*, 3).
Returns:
Dihedral angles in radian, (*, ).
"""
v0 = p2 - p1
v1 = p0 - p1
v2 = p3 - p2
u1 = torch.cross(v0, v1, dim=-1)
n1 = u1 / torch.linalg.norm(u1, dim=-1, keepdim=True)
u2 = torch.cross(v0, v2, dim=-1)
n2 = u2 / torch.linalg.norm(u2, dim=-1, keepdim=True)
sgn = torch.sign( (torch.cross(v1, v2, dim=-1) * v0).sum(-1) )
dihed = sgn*torch.acos( (n1 * n2).sum(-1).clamp(min=-0.999999, max=0.999999) )
dihed = torch.nan_to_num(dihed)
return dihed
def knn_gather(idx, value):
"""
Args:
idx: (B, N, K)
value: (B, M, d)
Returns:
(B, N, K, d)
"""
N, d = idx.size(1), value.size(-1)
idx = idx.unsqueeze(-1).repeat(1, 1, 1, d) # (B, N, K, d)
value = value.unsqueeze(1).repeat(1, N, 1, 1) # (B, N, M, d)
return torch.gather(value, dim=2, index=idx)
def knn_points(q, p, K):
"""
Args:
q: (B, M, d)
p: (B, N, d)
Returns:
(B, M, K), (B, M, K), (B, M, K, d)
"""
_, L, _ = p.size()
d = pairwise_distances(q, p) # (B, N, M)
dist, idx = d.topk(min(L, K), dim=-1, largest=False) # (B, M, K), (B, M, K)
return dist, idx, knn_gather(idx, p)
def angstrom_to_nm(x):
return x / 10
def nm_to_angstrom(x):
return x * 10
def get_backbone_dihedral_angles(pos_atoms, chain_nb, res_nb, mask):
"""
Args:
pos_atoms: (N, L, A, 3).
chain_nb: (N, L).
res_nb: (N, L).
mask: (N, L).
Returns:
bb_dihedral: Omega, Phi, and Psi angles in radian, (N, L, 3).
mask_bb_dihed: Masks of dihedral angles, (N, L, 3).
"""
pos_N = pos_atoms[:, :, BBHeavyAtom.N] # (N, L, 3)
pos_CA = pos_atoms[:, :, BBHeavyAtom.CA]
pos_C = pos_atoms[:, :, BBHeavyAtom.C]
N_term_flag, C_term_flag = get_terminus_flag(chain_nb, res_nb, mask) # (N, L)
omega_mask = torch.logical_not(N_term_flag)
phi_mask = torch.logical_not(N_term_flag)
psi_mask = torch.logical_not(C_term_flag)
# N-termini don't have omega and phi
omega = F.pad(
dihedral_from_four_points(pos_CA[:, :-1], pos_C[:, :-1], pos_N[:, 1:], pos_CA[:, 1:]),
pad=(1, 0), value=0,
)
phi = F.pad(
dihedral_from_four_points(pos_C[:, :-1], pos_N[:, 1:], pos_CA[:, 1:], pos_C[:, 1:]),
pad=(1, 0), value=0,
)
# C-termini don't have psi
psi = F.pad(
dihedral_from_four_points(pos_N[:, :-1], pos_CA[:, :-1], pos_C[:, :-1], pos_N[:, 1:]),
pad=(0, 1), value=0,
)
mask_bb_dihed = torch.stack([omega_mask, phi_mask, psi_mask], dim=-1)
bb_dihedral = torch.stack([omega, phi, psi], dim=-1) * mask_bb_dihed
return bb_dihedral, mask_bb_dihed
def pairwise_dihedrals(pos_atoms):
"""
Args:
pos_atoms: (N, L, A, 3).
Returns:
Inter-residue Phi and Psi angles, (N, L, L, 2).
"""
N, L = pos_atoms.shape[:2]
pos_N = pos_atoms[:, :, BBHeavyAtom.N] # (N, L, 3)
pos_CA = pos_atoms[:, :, BBHeavyAtom.CA]
pos_C = pos_atoms[:, :, BBHeavyAtom.C]
ir_phi = dihedral_from_four_points(
pos_C[:,:,None].expand(N, L, L, 3),
pos_N[:,None,:].expand(N, L, L, 3),
pos_CA[:,None,:].expand(N, L, L, 3),
pos_C[:,None,:].expand(N, L, L, 3)
)
ir_psi = dihedral_from_four_points(
pos_N[:,:,None].expand(N, L, L, 3),
pos_CA[:,:,None].expand(N, L, L, 3),
pos_C[:,:,None].expand(N, L, L, 3),
pos_N[:,None,:].expand(N, L, L, 3)
)
ir_dihed = torch.stack([ir_phi, ir_psi], dim=-1)
return ir_dihed
def apply_rotation_matrix_to_rot6d(R, O):
"""
Args:
R: (..., 3, 3)
O: (..., 6)
Returns:
Rotated 6D representation, (..., 6).
"""
u1, u2 = O[..., :3, None], O[..., 3:, None] # (..., 3, 1)
v1 = torch.matmul(R, u1).squeeze(-1) # (..., 3)
v2 = torch.matmul(R, u2).squeeze(-1)
return torch.cat([v1, v2], dim=-1)
def normalize_rot6d(O):
"""
Args:
O: (..., 6)
"""
u1, u2 = O[..., :3], O[..., 3:] # (..., 3)
v1 = F.normalize(u1, p=2, dim=-1) # (..., 3)
v2 = F.normalize(u2 - project_v2v(u2, v1), p=2, dim=-1)
return torch.cat([v1, v2], dim=-1)
def reconstruct_backbone(R, t, aa, chain_nb, res_nb, mask):
"""
Args:
R: (N, L, 3, 3)
t: (N, L, 3)
aa: (N, L)
chain_nb: (N, L)
res_nb: (N, L)
mask: (N, L)
Returns:
Reconstructed backbone atoms, (N, L, 4, 3).
"""
N, L = aa.size()
# atom_coords = restype_heavyatom_rigid_group_positions.clone().to(t) # (21, 14, 3)
bb_coords = backbone_atom_coordinates_tensor.clone().to(t) # (21, 3, 3)
oxygen_coord = bb_oxygen_coordinate_tensor.clone().to(t) # (21, 3)
aa = aa.clamp(min=0, max=20) # 20 for UNK
bb_coords = bb_coords[aa.flatten()].reshape(N, L, -1, 3) # (N, L, 3, 3)
oxygen_coord = oxygen_coord[aa.flatten()].reshape(N, L, -1) # (N, L, 3)
bb_pos = local_to_global(R, t, bb_coords) # Global coordinates of N, CA, C. (N, L, 3, 3).
# Compute PSI angle
bb_dihedral, _ = get_backbone_dihedral_angles(bb_pos, chain_nb, res_nb, mask)
psi = bb_dihedral[..., 2] # (N, L)
# Make rotation matrix for PSI
sin_psi = torch.sin(psi).reshape(N, L, 1, 1)
cos_psi = torch.cos(psi).reshape(N, L, 1, 1)
zero = torch.zeros_like(sin_psi)
one = torch.ones_like(sin_psi)
row1 = torch.cat([one, zero, zero], dim=-1) # (N, L, 1, 3)
row2 = torch.cat([zero, cos_psi, -sin_psi], dim=-1) # (N, L, 1, 3)
row3 = torch.cat([zero, sin_psi, cos_psi], dim=-1) # (N, L, 1, 3)
R_psi = torch.cat([row1, row2, row3], dim=-2) # (N, L, 3, 3)
# Compute rotoation and translation of PSI frame, and position of O.
R_psi, t_psi = compose_chain([
(R, t), # Backbone
(R_psi, torch.zeros_like(t)), # PSI angle
])
O_pos = local_to_global(R_psi, t_psi, oxygen_coord.reshape(N, L, 1, 3))
bb_pos = torch.cat([bb_pos, O_pos], dim=2) # (N, L, 4, 3)
return bb_pos
def reconstruct_backbone_partially(pos_ctx, R_new, t_new, aa, chain_nb, res_nb, mask_atoms, mask_recons):
"""
Args:
pos: (N, L, A, 3).
R_new: (N, L, 3, 3).
t_new: (N, L, 3).
mask_atoms: (N, L, A).
mask_recons:(N, L).
Returns:
pos_new: (N, L, A, 3).
mask_new: (N, L, A).
"""
N, L, A = mask_atoms.size()
mask_res = mask_atoms[:, :, BBHeavyAtom.CA]
pos_recons = reconstruct_backbone(R_new, t_new, aa, chain_nb, res_nb, mask_res) # (N, L, 4, 3)
pos_recons = F.pad(pos_recons, pad=(0, 0, 0, A-4), value=0) # (N, L, A, 3)
pos_new = torch.where(
mask_recons[:, :, None, None].expand_as(pos_ctx),
pos_recons, pos_ctx
) # (N, L, A, 3)
mask_bb_atoms = torch.zeros_like(mask_atoms)
mask_bb_atoms[:, :, :4] = True
mask_new = torch.where(
mask_recons[:, :, None].expand_as(mask_atoms),
mask_bb_atoms, mask_atoms
)
return pos_new, mask_new
|