Spaces:
Sleeping
Sleeping
File size: 1,421 Bytes
ebd60e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import streamlit as st
from huggingface_hub import InferenceClient
from langchain_core.output_parsers import StrOutputParser
import os
from dotenv import load_dotenv
load_dotenv()
# Replace 'your_token_here' with your actual Hugging Face token
token = os.getenv('HUGGINGFACEHUB_API_TOKEN')
api = InferenceClient(token=token)
parser = StrOutputParser()
# Streamlit app
st.title("Ayanokoji Kiyokata Chatbot")
# Text input from the user
user_input = st.text_input("What business do you have with me:")
# Generate text when the button is clicked
messages = [
{
"role": "system",
"content": "Imagine you're Ayanokoji Kiyokata, a master of understanding and predicting human behavior. Use your insights to craft a detailed and compelling answer to the user's query.Your response should demonstrate empathy, intellectual depth, and strategic thinking, while gently guiding the user towards the most beneficial and enlightening outcome."
},
{"role": "user", "content": user_input}
]
# Initialize the text generation pipeline with optimizations
if st.button("Generate"):
llm = api.chat.completions.create(
model="Qwen/QwQ-32B-Preview",
max_tokens=500,
messages=messages
)
# Extract only the 'content' field from the response
output = llm.choices[0].message['content']
result = parser.parse(output)
# Display the generated text
st.write(result) |