File size: 15,198 Bytes
7319d31 a1c1d9a 7319d31 bd27766 7319d31 a1c1d9a 7319d31 a1c1d9a 7319d31 a1c1d9a 7319d31 a1c1d9a 7319d31 a1c1d9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
# tools/multimodal_tools.py
import requests
import json
import pandas as pd
import os # β
Added for file operations
import io # β
Added for code execution
import contextlib # β
Added for code execution
import ast # β
Added for code validation
import traceback # β
Added for error handling
from typing import Optional, Dict, Any
from .utils import encode_image_to_base64, validate_file_exists, get_env_var, logger
class MultimodalTools:
"""Free multimodal AI tools using OpenRouter and other free services"""
def __init__(self, openrouter_key: Optional[str] = None):
self.openrouter_key = openrouter_key or get_env_var("OPENROUTER_API_KEY", None)
self.openrouter_url = "https://openrouter.ai/api/v1/chat/completions"
self.headers = {
"Authorization": f"Bearer {self.openrouter_key}",
"Content-Type": "application/json",
"HTTP-Referer": "https://your-app.com", # Optional: for analytics
"X-Title": "Multimodal Tools" # Optional: for analytics
}
# Available free multimodal models
self.vision_model = "google/gemini-2.5-flash-preview-05-20"
self.text_model = "google/gemini-2.5-flash-preview-05-20"
def _make_openrouter_request(self, payload: Dict[str, Any]) -> str:
"""Make request to OpenRouter API with error handling"""
try:
response = requests.post(
self.openrouter_url,
headers=self.headers,
json=payload,
timeout=60
)
response.raise_for_status()
result = response.json()
if 'choices' in result and len(result['choices']) > 0:
return result['choices'][0]['message']['content']
else:
logger.error(f"Unexpected response format: {result}")
return "Error: Invalid response format"
except requests.exceptions.RequestException as e:
logger.error(f"OpenRouter API request failed: {str(e)}")
return f"Error making API request: {str(e)}"
except Exception as e:
logger.error(f"Unexpected error: {str(e)}")
return f"Unexpected error: {str(e)}"
def analyze_image(self, image_path: str, question: str = "Describe this image in detail") -> str:
"""
Analyze image content using multimodal AI
Args:
image_path: Path to image file
question: Question about the image
Returns:
AI analysis of the image
"""
if not validate_file_exists(image_path):
return f"Error: Image file not found at {image_path}"
try:
encoded_image = encode_image_to_base64(image_path)
payload = {
"model": self.vision_model,
"messages": [
{
"role": "user",
"content": [
{"type": "text", "text": question},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}
}
]
}
],
"temperature": 0,
"max_tokens": 2048
}
return self._make_openrouter_request(payload)
except Exception as e:
error_msg = f"Error analyzing image: {str(e)}"
logger.error(error_msg)
return error_msg
def extract_text_from_image(self, image_path: str) -> str:
"""
Extract text from image using OCR via multimodal AI
Args:
image_path: Path to image file
Returns:
Extracted text from image
"""
ocr_prompt = """Extract all visible text from this image.
Return only the text content without any additional commentary or formatting.
If no text is visible, return 'No text found'."""
return self.analyze_image(image_path, ocr_prompt)
def analyze_audio_transcript(self, transcript: str, question: str = "Summarize this audio content") -> str:
"""
Analyze audio content via transcript
Args:
transcript: Audio transcript text
question: Question about the audio content
Returns:
AI analysis of the audio content
"""
if not transcript.strip():
return "Error: Empty transcript provided"
try:
payload = {
"model": self.text_model,
"messages": [
{
"role": "user",
"content": f"Audio transcript: {transcript}\n\nQuestion: {question}"
}
],
"temperature": 0,
"max_tokens": 2048
}
return self._make_openrouter_request(payload)
except Exception as e:
error_msg = f"Error analyzing audio transcript: {str(e)}"
logger.error(error_msg)
return error_msg
def analyze_excel_file(self, file_path: str, question: str) -> str:
"""
Analyze Excel or CSV file content using AI
Args:
file_path: Path to Excel (.xlsx) or CSV file
question: Question about the data
Returns:
AI analysis of the spreadsheet data
"""
if not validate_file_exists(file_path):
return f"Error: File not found at {file_path}"
try:
# Try reading as Excel first, then CSV
try:
df = pd.read_excel(file_path)
except Exception:
try:
df = pd.read_csv(file_path)
except Exception as e:
return f"Error reading file: Unable to read as Excel or CSV - {str(e)}"
# Convert dataframe to text representation for AI analysis
data_summary = f"""
Data file analysis:
- Shape: {df.shape[0]} rows, {df.shape[1]} columns
- Columns: {list(df.columns)}
First few rows:
{df.head().to_string()}
Data types:
{df.dtypes.to_string()}
Summary statistics:
{df.describe().to_string()}
"""
payload = {
"model": self.text_model,
"messages": [
{
"role": "user",
"content": f"Analyze this spreadsheet data and answer the question.\n\n{data_summary}\n\nQuestion: {question}"
}
],
"temperature": 0,
"max_tokens": 2048
}
return self._make_openrouter_request(payload)
except Exception as e:
error_msg = f"Error analyzing Excel file: {str(e)}"
logger.error(error_msg)
return error_msg
# β
NEW METHOD - Added Python code processing
def _validate_python_code(self, code: str) -> bool:
"""Validate Python code syntax"""
try:
ast.parse(code)
return True
except SyntaxError:
return False
def _execute_python_code(self, code: str) -> str:
"""
Safely execute Python code and capture output
Based on search results from LlamaIndex SimpleCodeExecutor pattern
"""
# Capture stdout and stderr
stdout = io.StringIO()
stderr = io.StringIO()
output = ""
return_value = None
# Create a safe execution namespace
safe_globals = {
'__builtins__': {
'print': print,
'len': len,
'str': str,
'int': int,
'float': float,
'list': list,
'dict': dict,
'sum': sum,
'max': max,
'min': min,
'abs': abs,
'round': round,
'range': range,
'enumerate': enumerate,
'zip': zip,
}
}
safe_locals = {}
try:
# Execute with captured output
with contextlib.redirect_stdout(stdout), contextlib.redirect_stderr(stderr):
# Try to detect if there's a return value (last expression)
try:
tree = ast.parse(code)
last_node = tree.body[-1] if tree.body else None
# If the last statement is an expression, capture its value
if isinstance(last_node, ast.Expr):
# Split code to add a return value assignment
lines = code.rstrip().split('\n')
last_line = lines[-1]
exec_code = '\n'.join(lines[:-1]) + f'\n__result__ = {last_line}'
# Execute modified code
exec(exec_code, safe_globals, safe_locals)
return_value = safe_locals.get('__result__')
else:
# Normal execution
exec(code, safe_globals, safe_locals)
except:
# If parsing fails, just execute the code as is
exec(code, safe_globals, safe_locals)
# Get output
output = stdout.getvalue()
if stderr.getvalue():
output += "\n" + stderr.getvalue()
# Add return value if it exists
if return_value is not None:
output += f"\n\nFinal result: {return_value}"
return output.strip() if output.strip() else str(return_value) if return_value is not None else "Code executed successfully (no output)"
except Exception as e:
# Capture exception information
error_output = f"Error: {type(e).__name__}: {str(e)}"
logger.error(f"Code execution error: {error_output}")
return error_output
def analyze_python_file(self, file_path: str, question: str = "What is the final output of this code?") -> str:
"""
Read and analyze Python code file
Args:
file_path: Path to Python (.py) file
question: Question about the code
Returns:
Analysis or execution result of the Python code
"""
if not validate_file_exists(file_path):
return f"Error: Python file not found at {file_path}"
try:
# Read the Python file
with open(file_path, 'r', encoding='utf-8') as f:
code_content = f.read()
if not code_content.strip():
return "Error: Python file is empty"
# Validate syntax
if not self._validate_python_code(code_content):
return "Error: Python file contains syntax errors"
# If question asks for output/result, execute the code
if any(keyword in question.lower() for keyword in ['output', 'result', 'execute', 'run', 'final']):
logger.info(f"Executing Python code from {file_path}")
execution_result = self._execute_python_code(code_content)
# Also provide AI analysis if needed
if len(execution_result) < 50: # Short result, add AI analysis
payload = {
"model": self.text_model,
"messages": [
{
"role": "user",
"content": f"Python code:\n``````\n\nExecution result: {execution_result}\n\nQuestion: {question}"
}
],
"temperature": 0,
"max_tokens": 1024
}
ai_analysis = self._make_openrouter_request(payload)
return f"Execution result: {execution_result}\n\nAnalysis: {ai_analysis}"
else:
return execution_result
else:
# Just analyze the code without execution
payload = {
"model": self.text_model,
"messages": [
{
"role": "user",
"content": f"Analyze this Python code and answer the question.\n\nPython code:\n``````\n\nQuestion: {question}"
}
],
"temperature": 0,
"max_tokens": 2048
}
return self._make_openrouter_request(payload)
except Exception as e:
error_msg = f"Error analyzing Python file: {str(e)}"
logger.error(error_msg)
return error_msg
def describe_image(self, image_path: str) -> str:
"""Get a detailed description of an image"""
return self.analyze_image(
image_path,
"Provide a detailed, objective description of this image including objects, people, colors, setting, and any notable details."
)
def answer_visual_question(self, image_path: str, question: str) -> str:
"""Answer a specific question about an image"""
return self.analyze_image(image_path, question)
# Convenience functions for direct use
def analyze_image(image_path: str, question: str = "Describe this image in detail") -> str:
"""Standalone function to analyze an image"""
tools = MultimodalTools()
return tools.analyze_image(image_path, question)
def extract_text(image_path: str) -> str:
"""Standalone function to extract text from an image"""
tools = MultimodalTools()
return tools.extract_text_from_image(image_path)
def analyze_transcript(transcript: str, question: str = "Summarize this content") -> str:
"""Standalone function to analyze audio transcript"""
tools = MultimodalTools()
return tools.analyze_audio_transcript(transcript, question)
def analyze_excel(file_path: str, question: str) -> str:
"""Standalone function to analyze Excel/CSV files"""
tools = MultimodalTools()
return tools.analyze_excel_file(file_path, question)
# β
NEW FUNCTION - Added Python code convenience function
def analyze_python(file_path: str, question: str = "What is the final output of this code?") -> str:
"""Standalone function to analyze Python files"""
tools = MultimodalTools()
return tools.analyze_python_file(file_path, question)
|