File size: 15,748 Bytes
7c8c2c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import math
from collections import defaultdict
from typing import Optional

import torch
import torch.nn.functional as F
from torch import nn


class AttentionBlock(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted
    to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    Uses three q, k, v linear layers to compute attention.

    Parameters:
        channels (:obj:`int`): The number of channels in the input and output.
        num_head_channels (:obj:`int`, *optional*):
            The number of channels in each head. If None, then `num_heads` = 1.
        num_groups (:obj:`int`, *optional*, defaults to 32): The number of groups to use for group norm.
        rescale_output_factor (:obj:`float`, *optional*, defaults to 1.0): The factor to rescale the output by.
        eps (:obj:`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm.
    """

    def __init__(
        self,
        channels: int,
        num_head_channels: Optional[int] = None,
        num_groups: int = 32,
        rescale_output_factor: float = 1.0,
        eps: float = 1e-5,
    ):
        super().__init__()
        self.channels = channels

        self.num_heads = channels // num_head_channels if num_head_channels is not None else 1
        self.num_head_size = num_head_channels
        self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True)

        # define q,k,v as linear layers
        self.query = nn.Linear(channels, channels)
        self.key = nn.Linear(channels, channels)
        self.value = nn.Linear(channels, channels)

        self.rescale_output_factor = rescale_output_factor
        self.proj_attn = nn.Linear(channels, channels, 1)

    def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor:
        new_projection_shape = projection.size()[:-1] + (self.num_heads, -1)
        # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D)
        new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3)
        return new_projection

    def forward(self, hidden_states):
        residual = hidden_states
        batch, channel, height, width = hidden_states.shape

        # norm
        hidden_states = self.group_norm(hidden_states)

        hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2)

        # proj to q, k, v
        query_proj = self.query(hidden_states)
        key_proj = self.key(hidden_states)
        value_proj = self.value(hidden_states)

        # transpose
        query_states = self.transpose_for_scores(query_proj)
        key_states = self.transpose_for_scores(key_proj)
        value_states = self.transpose_for_scores(value_proj)

        # get scores
        scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads))

        attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale)
        attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype)

        # compute attention output
        hidden_states = torch.matmul(attention_probs, value_states)

        hidden_states = hidden_states.permute(0, 2, 1, 3).contiguous()
        new_hidden_states_shape = hidden_states.size()[:-2] + (self.channels,)
        hidden_states = hidden_states.view(new_hidden_states_shape)

        # compute next hidden_states
        hidden_states = self.proj_attn(hidden_states)
        hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width)

        # res connect and rescale
        hidden_states = (hidden_states + residual) / self.rescale_output_factor
        return hidden_states


class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
    standard transformer action. Finally, reshape to image.

    Parameters:
        in_channels (:obj:`int`): The number of channels in the input and output.
        n_heads (:obj:`int`): The number of heads to use for multi-head attention.
        d_head (:obj:`int`): The number of channels in each head.
        depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
        dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use.
        context_dim (:obj:`int`, *optional*): The number of context dimensions to use.
    """

    def __init__(
        self,
        in_channels: int,
        n_heads: int,
        d_head: int,
        depth: int = 1,
        dropout: float = 0.0,
        context_dim: Optional[int] = None,
    ):
        super().__init__()
        self.n_heads = n_heads
        self.d_head = d_head
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)

        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)
            ]
        )

        self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)

    def _set_attention_slice(self, slice_size):
        for block in self.transformer_blocks:
            block._set_attention_slice(slice_size)

    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        x = self.proj_in(x)
        x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
        for block in self.transformer_blocks:
            x = block(x, context=context)
        x = x.reshape(b, h, w, c).permute(0, 3, 1, 2)
        x = self.proj_out(x)
        return x + x_in


class BasicTransformerBlock(nn.Module):
    r"""
    A basic Transformer block.

    Parameters:
        dim (:obj:`int`): The number of channels in the input and output.
        n_heads (:obj:`int`): The number of heads to use for multi-head attention.
        d_head (:obj:`int`): The number of channels in each head.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
        context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention.
        gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network.
        checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing.
    """

    def __init__(
        self,
        dim: int,
        n_heads: int,
        d_head: int,
        dropout=0.0,
        context_dim: Optional[int] = None,
        gated_ff: bool = True,
        checkpoint: bool = True,
    ):
        super().__init__()
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(
            query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

    def _set_attention_slice(self, slice_size):
        self.attn1._slice_size = slice_size
        self.attn2._slice_size = slice_size

    def forward(self, x, context=None):
        x = x.contiguous() if x.device.type == "mps" else x
        x = self.attn1(self.norm1(x)) + x
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x


heat_maps = defaultdict(list)
all_heat_maps = []


def clear_heat_maps():
    global heat_maps, all_heat_maps
    heat_maps = defaultdict(list)
    all_heat_maps = []


def next_heat_map():
    global heat_maps, all_heat_maps
    all_heat_maps.append(heat_maps)
    heat_maps = defaultdict(list)


def get_global_heat_map(last_n: int = None, idx: int = None, factors=None):
    global heat_maps, all_heat_maps

    if idx is not None:
        heat_maps2 = [all_heat_maps[idx]]
    else:
        heat_maps2 = all_heat_maps[-last_n:] if last_n is not None else all_heat_maps

    if factors is None:
        factors = {1, 2, 4, 8, 16, 32}

    all_merges = []

    for heat_map_map in heat_maps2:
        merge_list = []

        for k, v in heat_map_map.items():
            if k in factors:
                merge_list.append(torch.stack(v, 0).mean(0))

        all_merges.append(merge_list)

    maps = torch.stack([torch.stack(x, 0) for x in all_merges], dim=0)
    return maps.sum(0).cuda().sum(2).sum(0)


class CrossAttention(nn.Module):
    r"""
    A cross attention layer.

    Parameters:
        query_dim (:obj:`int`): The number of channels in the query.
        context_dim (:obj:`int`, *optional*):
            The number of channels in the context. If not given, defaults to `query_dim`.
        heads (:obj:`int`,  *optional*, defaults to 8): The number of heads to use for multi-head attention.
        dim_head (:obj:`int`,  *optional*, defaults to 64): The number of channels in each head.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
    """

    def __init__(
        self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0
    ):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = context_dim if context_dim is not None else query_dim

        self.scale = dim_head**-0.5
        self.heads = heads
        # for slice_size > 0 the attention score computation
        # is split across the batch axis to save memory
        # You can set slice_size with `set_attention_slice`
        self._slice_size = None

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def forward(self, x, context=None, mask=None):
        batch_size, sequence_length, dim = x.shape

        use_context = context is not None

        q = self.to_q(x)
        context = context if context is not None else x
        k = self.to_k(context)
        v = self.to_v(context)

        q = self.reshape_heads_to_batch_dim(q)
        k = self.reshape_heads_to_batch_dim(k)
        v = self.reshape_heads_to_batch_dim(v)

        # TODO(PVP) - mask is currently never used. Remember to re-implement when used

        # attention, what we cannot get enough of
        hidden_states = self._attention(q, k, v, sequence_length, dim, use_context=use_context)

        return self.to_out(hidden_states)

    @torch.no_grad()
    def _up_sample_attn(self, x, factor, method: str = 'bicubic'):
        weight = torch.full((factor, factor), 1 / factor**2, device=x.device)
        weight = weight.view(1, 1, factor, factor)

        h = w = int(math.sqrt(x.size(1)))
        maps = []
        x = x.permute(2, 0, 1)

        with torch.cuda.amp.autocast(dtype=torch.float32):
            for map_ in x:
                map_ = map_.unsqueeze(1).view(map_.size(0), 1, h, w)
                if method == 'bicubic':
                    map_ = F.interpolate(map_, size=(55, 55), mode="bicubic", align_corners=False)
                    maps.append(map_.squeeze(1))
                else:
                    maps.append(F.conv_transpose2d(map_, weight, stride=factor).squeeze(1).cpu())

        maps = torch.stack(maps, 0).cpu()
        return maps

    def _attention(self, query, key, value, sequence_length, dim, use_context: bool = True):
        batch_size_attention = query.shape[0]
        hidden_states = torch.zeros(
            (batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
        )
        slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
        for i in range(hidden_states.shape[0] // slice_size):
            start_idx = i * slice_size
            end_idx = (i + 1) * slice_size
            attn_slice = (
                torch.einsum("b i d, b j d -> b i j", query[start_idx:end_idx], key[start_idx:end_idx]) * self.scale
            )
            factor = int(math.sqrt(4096 // attn_slice.shape[1]))
            attn_slice = attn_slice.softmax(-1)

            if use_context:
                if factor >= 1:
                    factor //= 1
                    maps = self._up_sample_attn(attn_slice, factor)
                    global heat_maps
                    heat_maps[factor].append(maps)
                # print(attn_slice.size(), query.size(), key.size(), value.size())

            attn_slice = torch.einsum("b i j, b j d -> b i d", attn_slice, value[start_idx:end_idx])

            hidden_states[start_idx:end_idx] = attn_slice

        # reshape hidden_states
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        return hidden_states


class FeedForward(nn.Module):
    r"""
    A feed-forward layer.

    Parameters:
        dim (:obj:`int`): The number of channels in the input.
        dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
        mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
        glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation.
        dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
    """

    def __init__(
        self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0
    ):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = dim_out if dim_out is not None else dim
        project_in = GEGLU(dim, inner_dim)

        self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))

    def forward(self, x):
        return self.net(x)


# feedforward
class GEGLU(nn.Module):
    r"""
    A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.

    Parameters:
        dim_in (:obj:`int`): The number of channels in the input.
        dim_out (:obj:`int`): The number of channels in the output.
    """

    def __init__(self, dim_in: int, dim_out: int):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)