lakshyana
commited on
Commit
•
7c8c2c8
1
Parent(s):
6f6356e
updated diffusers
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- diffusers +0 -0
- diffusers/__init__.py +60 -0
- diffusers/__pycache__/__init__.cpython-310.pyc +0 -0
- diffusers/__pycache__/__init__.cpython-37.pyc +0 -0
- diffusers/__pycache__/configuration_utils.cpython-310.pyc +0 -0
- diffusers/__pycache__/configuration_utils.cpython-37.pyc +0 -0
- diffusers/__pycache__/dependency_versions_check.cpython-310.pyc +0 -0
- diffusers/__pycache__/dependency_versions_table.cpython-310.pyc +0 -0
- diffusers/__pycache__/dynamic_modules_utils.cpython-310.pyc +0 -0
- diffusers/__pycache__/hub_utils.cpython-310.pyc +0 -0
- diffusers/__pycache__/modeling_utils.cpython-310.pyc +0 -0
- diffusers/__pycache__/modeling_utils.cpython-37.pyc +0 -0
- diffusers/__pycache__/onnx_utils.cpython-310.pyc +0 -0
- diffusers/__pycache__/onnx_utils.cpython-37.pyc +0 -0
- diffusers/__pycache__/optimization.cpython-310.pyc +0 -0
- diffusers/__pycache__/optimization.cpython-37.pyc +0 -0
- diffusers/__pycache__/pipeline_utils.cpython-310.pyc +0 -0
- diffusers/__pycache__/pipeline_utils.cpython-37.pyc +0 -0
- diffusers/__pycache__/testing_utils.cpython-310.pyc +0 -0
- diffusers/__pycache__/training_utils.cpython-310.pyc +0 -0
- diffusers/__pycache__/training_utils.cpython-37.pyc +0 -0
- diffusers/commands/__init__.py +27 -0
- diffusers/commands/__pycache__/__init__.cpython-310.pyc +0 -0
- diffusers/commands/__pycache__/diffusers_cli.cpython-310.pyc +0 -0
- diffusers/commands/__pycache__/env.cpython-310.pyc +0 -0
- diffusers/commands/diffusers_cli.py +41 -0
- diffusers/commands/env.py +70 -0
- diffusers/configuration_utils.py +403 -0
- diffusers/dependency_versions_check.py +47 -0
- diffusers/dependency_versions_table.py +26 -0
- diffusers/dynamic_modules_utils.py +335 -0
- diffusers/hub_utils.py +197 -0
- diffusers/modeling_utils.py +542 -0
- diffusers/models/__init__.py +17 -0
- diffusers/models/__pycache__/__init__.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/__init__.cpython-37.pyc +0 -0
- diffusers/models/__pycache__/attention.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/attention.cpython-37.pyc +0 -0
- diffusers/models/__pycache__/embeddings.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/embeddings.cpython-37.pyc +0 -0
- diffusers/models/__pycache__/resnet.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/resnet.cpython-37.pyc +0 -0
- diffusers/models/__pycache__/unet_2d.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/unet_2d.cpython-37.pyc +0 -0
- diffusers/models/__pycache__/unet_2d_condition.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/unet_2d_condition.cpython-37.pyc +0 -0
- diffusers/models/__pycache__/unet_blocks.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/unet_blocks.cpython-37.pyc +0 -0
- diffusers/models/__pycache__/vae.cpython-310.pyc +0 -0
- diffusers/models/__pycache__/vae.cpython-37.pyc +0 -0
diffusers
DELETED
File without changes
|
diffusers/__init__.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .utils import (
|
2 |
+
is_inflect_available,
|
3 |
+
is_onnx_available,
|
4 |
+
is_scipy_available,
|
5 |
+
is_transformers_available,
|
6 |
+
is_unidecode_available,
|
7 |
+
)
|
8 |
+
|
9 |
+
|
10 |
+
__version__ = "0.3.0"
|
11 |
+
|
12 |
+
from .configuration_utils import ConfigMixin
|
13 |
+
from .modeling_utils import ModelMixin
|
14 |
+
from .models import AutoencoderKL, UNet2DConditionModel, UNet2DModel, VQModel
|
15 |
+
from .onnx_utils import OnnxRuntimeModel
|
16 |
+
from .optimization import (
|
17 |
+
get_constant_schedule,
|
18 |
+
get_constant_schedule_with_warmup,
|
19 |
+
get_cosine_schedule_with_warmup,
|
20 |
+
get_cosine_with_hard_restarts_schedule_with_warmup,
|
21 |
+
get_linear_schedule_with_warmup,
|
22 |
+
get_polynomial_decay_schedule_with_warmup,
|
23 |
+
get_scheduler,
|
24 |
+
)
|
25 |
+
from .pipeline_utils import DiffusionPipeline
|
26 |
+
from .pipelines import DDIMPipeline, DDPMPipeline, KarrasVePipeline, LDMPipeline, PNDMPipeline, ScoreSdeVePipeline
|
27 |
+
from .schedulers import (
|
28 |
+
DDIMScheduler,
|
29 |
+
DDPMScheduler,
|
30 |
+
KarrasVeScheduler,
|
31 |
+
PNDMScheduler,
|
32 |
+
SchedulerMixin,
|
33 |
+
ScoreSdeVeScheduler,
|
34 |
+
)
|
35 |
+
from .utils import logging
|
36 |
+
|
37 |
+
|
38 |
+
if is_scipy_available():
|
39 |
+
from .schedulers import LMSDiscreteScheduler
|
40 |
+
else:
|
41 |
+
from .utils.dummy_scipy_objects import * # noqa F403
|
42 |
+
|
43 |
+
from .training_utils import EMAModel
|
44 |
+
|
45 |
+
|
46 |
+
if is_transformers_available():
|
47 |
+
from .pipelines import (
|
48 |
+
LDMTextToImagePipeline,
|
49 |
+
StableDiffusionImg2ImgPipeline,
|
50 |
+
StableDiffusionInpaintPipeline,
|
51 |
+
StableDiffusionPipeline,
|
52 |
+
)
|
53 |
+
else:
|
54 |
+
from .utils.dummy_transformers_objects import * # noqa F403
|
55 |
+
|
56 |
+
|
57 |
+
if is_transformers_available() and is_onnx_available():
|
58 |
+
from .pipelines import StableDiffusionOnnxPipeline
|
59 |
+
else:
|
60 |
+
from .utils.dummy_transformers_and_onnx_objects import * # noqa F403
|
diffusers/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.85 kB). View file
|
|
diffusers/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (1.91 kB). View file
|
|
diffusers/__pycache__/configuration_utils.cpython-310.pyc
ADDED
Binary file (15.4 kB). View file
|
|
diffusers/__pycache__/configuration_utils.cpython-37.pyc
ADDED
Binary file (15.6 kB). View file
|
|
diffusers/__pycache__/dependency_versions_check.cpython-310.pyc
ADDED
Binary file (967 Bytes). View file
|
|
diffusers/__pycache__/dependency_versions_table.cpython-310.pyc
ADDED
Binary file (819 Bytes). View file
|
|
diffusers/__pycache__/dynamic_modules_utils.cpython-310.pyc
ADDED
Binary file (11.6 kB). View file
|
|
diffusers/__pycache__/hub_utils.cpython-310.pyc
ADDED
Binary file (5.46 kB). View file
|
|
diffusers/__pycache__/modeling_utils.cpython-310.pyc
ADDED
Binary file (18.7 kB). View file
|
|
diffusers/__pycache__/modeling_utils.cpython-37.pyc
ADDED
Binary file (18.9 kB). View file
|
|
diffusers/__pycache__/onnx_utils.cpython-310.pyc
ADDED
Binary file (6.3 kB). View file
|
|
diffusers/__pycache__/onnx_utils.cpython-37.pyc
ADDED
Binary file (6.26 kB). View file
|
|
diffusers/__pycache__/optimization.cpython-310.pyc
ADDED
Binary file (10.1 kB). View file
|
|
diffusers/__pycache__/optimization.cpython-37.pyc
ADDED
Binary file (10.3 kB). View file
|
|
diffusers/__pycache__/pipeline_utils.cpython-310.pyc
ADDED
Binary file (14 kB). View file
|
|
diffusers/__pycache__/pipeline_utils.cpython-37.pyc
ADDED
Binary file (14 kB). View file
|
|
diffusers/__pycache__/testing_utils.cpython-310.pyc
ADDED
Binary file (1.66 kB). View file
|
|
diffusers/__pycache__/training_utils.cpython-310.pyc
ADDED
Binary file (3.64 kB). View file
|
|
diffusers/__pycache__/training_utils.cpython-37.pyc
ADDED
Binary file (3.67 kB). View file
|
|
diffusers/commands/__init__.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from abc import ABC, abstractmethod
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
|
19 |
+
class BaseDiffusersCLICommand(ABC):
|
20 |
+
@staticmethod
|
21 |
+
@abstractmethod
|
22 |
+
def register_subcommand(parser: ArgumentParser):
|
23 |
+
raise NotImplementedError()
|
24 |
+
|
25 |
+
@abstractmethod
|
26 |
+
def run(self):
|
27 |
+
raise NotImplementedError()
|
diffusers/commands/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (817 Bytes). View file
|
|
diffusers/commands/__pycache__/diffusers_cli.cpython-310.pyc
ADDED
Binary file (778 Bytes). View file
|
|
diffusers/commands/__pycache__/env.cpython-310.pyc
ADDED
Binary file (2.17 kB). View file
|
|
diffusers/commands/diffusers_cli.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
from .env import EnvironmentCommand
|
19 |
+
|
20 |
+
|
21 |
+
def main():
|
22 |
+
parser = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli <command> [<args>]")
|
23 |
+
commands_parser = parser.add_subparsers(help="diffusers-cli command helpers")
|
24 |
+
|
25 |
+
# Register commands
|
26 |
+
EnvironmentCommand.register_subcommand(commands_parser)
|
27 |
+
|
28 |
+
# Let's go
|
29 |
+
args = parser.parse_args()
|
30 |
+
|
31 |
+
if not hasattr(args, "func"):
|
32 |
+
parser.print_help()
|
33 |
+
exit(1)
|
34 |
+
|
35 |
+
# Run
|
36 |
+
service = args.func(args)
|
37 |
+
service.run()
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
main()
|
diffusers/commands/env.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import platform
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
import huggingface_hub
|
19 |
+
|
20 |
+
from .. import __version__ as version
|
21 |
+
from ..utils import is_torch_available, is_transformers_available
|
22 |
+
from . import BaseDiffusersCLICommand
|
23 |
+
|
24 |
+
|
25 |
+
def info_command_factory(_):
|
26 |
+
return EnvironmentCommand()
|
27 |
+
|
28 |
+
|
29 |
+
class EnvironmentCommand(BaseDiffusersCLICommand):
|
30 |
+
@staticmethod
|
31 |
+
def register_subcommand(parser: ArgumentParser):
|
32 |
+
download_parser = parser.add_parser("env")
|
33 |
+
download_parser.set_defaults(func=info_command_factory)
|
34 |
+
|
35 |
+
def run(self):
|
36 |
+
hub_version = huggingface_hub.__version__
|
37 |
+
|
38 |
+
pt_version = "not installed"
|
39 |
+
pt_cuda_available = "NA"
|
40 |
+
if is_torch_available():
|
41 |
+
import torch
|
42 |
+
|
43 |
+
pt_version = torch.__version__
|
44 |
+
pt_cuda_available = torch.cuda.is_available()
|
45 |
+
|
46 |
+
transformers_version = "not installed"
|
47 |
+
if is_transformers_available:
|
48 |
+
import transformers
|
49 |
+
|
50 |
+
transformers_version = transformers.__version__
|
51 |
+
|
52 |
+
info = {
|
53 |
+
"`diffusers` version": version,
|
54 |
+
"Platform": platform.platform(),
|
55 |
+
"Python version": platform.python_version(),
|
56 |
+
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
|
57 |
+
"Huggingface_hub version": hub_version,
|
58 |
+
"Transformers version": transformers_version,
|
59 |
+
"Using GPU in script?": "<fill in>",
|
60 |
+
"Using distributed or parallel set-up in script?": "<fill in>",
|
61 |
+
}
|
62 |
+
|
63 |
+
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
|
64 |
+
print(self.format_dict(info))
|
65 |
+
|
66 |
+
return info
|
67 |
+
|
68 |
+
@staticmethod
|
69 |
+
def format_dict(d):
|
70 |
+
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
|
diffusers/configuration_utils.py
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" ConfigMixinuration base class and utilities."""
|
17 |
+
import functools
|
18 |
+
import inspect
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
import re
|
22 |
+
from collections import OrderedDict
|
23 |
+
from typing import Any, Dict, Tuple, Union
|
24 |
+
|
25 |
+
from huggingface_hub import hf_hub_download
|
26 |
+
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
|
27 |
+
from requests import HTTPError
|
28 |
+
|
29 |
+
from . import __version__
|
30 |
+
from .utils import DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, logging
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
_re_configuration_file = re.compile(r"config\.(.*)\.json")
|
36 |
+
|
37 |
+
|
38 |
+
class ConfigMixin:
|
39 |
+
r"""
|
40 |
+
Base class for all configuration classes. Stores all configuration parameters under `self.config` Also handles all
|
41 |
+
methods for loading/downloading/saving classes inheriting from [`ConfigMixin`] with
|
42 |
+
- [`~ConfigMixin.from_config`]
|
43 |
+
- [`~ConfigMixin.save_config`]
|
44 |
+
|
45 |
+
Class attributes:
|
46 |
+
- **config_name** (`str`) -- A filename under which the config should stored when calling
|
47 |
+
[`~ConfigMixin.save_config`] (should be overriden by parent class).
|
48 |
+
- **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
|
49 |
+
overriden by parent class).
|
50 |
+
"""
|
51 |
+
config_name = None
|
52 |
+
ignore_for_config = []
|
53 |
+
|
54 |
+
def register_to_config(self, **kwargs):
|
55 |
+
if self.config_name is None:
|
56 |
+
raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
|
57 |
+
kwargs["_class_name"] = self.__class__.__name__
|
58 |
+
kwargs["_diffusers_version"] = __version__
|
59 |
+
|
60 |
+
for key, value in kwargs.items():
|
61 |
+
try:
|
62 |
+
setattr(self, key, value)
|
63 |
+
except AttributeError as err:
|
64 |
+
logger.error(f"Can't set {key} with value {value} for {self}")
|
65 |
+
raise err
|
66 |
+
|
67 |
+
if not hasattr(self, "_internal_dict"):
|
68 |
+
internal_dict = kwargs
|
69 |
+
else:
|
70 |
+
previous_dict = dict(self._internal_dict)
|
71 |
+
internal_dict = {**self._internal_dict, **kwargs}
|
72 |
+
logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
|
73 |
+
|
74 |
+
self._internal_dict = FrozenDict(internal_dict)
|
75 |
+
|
76 |
+
def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
|
77 |
+
"""
|
78 |
+
Save a configuration object to the directory `save_directory`, so that it can be re-loaded using the
|
79 |
+
[`~ConfigMixin.from_config`] class method.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
save_directory (`str` or `os.PathLike`):
|
83 |
+
Directory where the configuration JSON file will be saved (will be created if it does not exist).
|
84 |
+
"""
|
85 |
+
if os.path.isfile(save_directory):
|
86 |
+
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
87 |
+
|
88 |
+
os.makedirs(save_directory, exist_ok=True)
|
89 |
+
|
90 |
+
# If we save using the predefined names, we can load using `from_config`
|
91 |
+
output_config_file = os.path.join(save_directory, self.config_name)
|
92 |
+
|
93 |
+
self.to_json_file(output_config_file)
|
94 |
+
logger.info(f"ConfigMixinuration saved in {output_config_file}")
|
95 |
+
|
96 |
+
@classmethod
|
97 |
+
def from_config(cls, pretrained_model_name_or_path: Union[str, os.PathLike], return_unused_kwargs=False, **kwargs):
|
98 |
+
r"""
|
99 |
+
Instantiate a Python class from a pre-defined JSON-file.
|
100 |
+
|
101 |
+
Parameters:
|
102 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
103 |
+
Can be either:
|
104 |
+
|
105 |
+
- A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an
|
106 |
+
organization name, like `google/ddpm-celebahq-256`.
|
107 |
+
- A path to a *directory* containing model weights saved using [`~ConfigMixin.save_config`], e.g.,
|
108 |
+
`./my_model_directory/`.
|
109 |
+
|
110 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
111 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
112 |
+
standard cache should not be used.
|
113 |
+
ignore_mismatched_sizes (`bool`, *optional*, defaults to `False`):
|
114 |
+
Whether or not to raise an error if some of the weights from the checkpoint do not have the same size
|
115 |
+
as the weights of the model (if for instance, you are instantiating a model with 10 labels from a
|
116 |
+
checkpoint with 3 labels).
|
117 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
118 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
119 |
+
cached versions if they exist.
|
120 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
121 |
+
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
|
122 |
+
file exists.
|
123 |
+
proxies (`Dict[str, str]`, *optional*):
|
124 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
125 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
126 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
127 |
+
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
128 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
129 |
+
Whether or not to only look at local files (i.e., do not try to download the model).
|
130 |
+
use_auth_token (`str` or *bool*, *optional*):
|
131 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
132 |
+
when running `transformers-cli login` (stored in `~/.huggingface`).
|
133 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
134 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
135 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
136 |
+
identifier allowed by git.
|
137 |
+
mirror (`str`, *optional*):
|
138 |
+
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
|
139 |
+
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
|
140 |
+
Please refer to the mirror site for more information.
|
141 |
+
|
142 |
+
<Tip>
|
143 |
+
|
144 |
+
Passing `use_auth_token=True`` is required when you want to use a private model.
|
145 |
+
|
146 |
+
</Tip>
|
147 |
+
|
148 |
+
<Tip>
|
149 |
+
|
150 |
+
Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
|
151 |
+
use this method in a firewalled environment.
|
152 |
+
|
153 |
+
</Tip>
|
154 |
+
|
155 |
+
"""
|
156 |
+
config_dict = cls.get_config_dict(pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs)
|
157 |
+
|
158 |
+
init_dict, unused_kwargs = cls.extract_init_dict(config_dict, **kwargs)
|
159 |
+
|
160 |
+
model = cls(**init_dict)
|
161 |
+
|
162 |
+
if return_unused_kwargs:
|
163 |
+
return model, unused_kwargs
|
164 |
+
else:
|
165 |
+
return model
|
166 |
+
|
167 |
+
@classmethod
|
168 |
+
def get_config_dict(
|
169 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
170 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
171 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
172 |
+
force_download = kwargs.pop("force_download", False)
|
173 |
+
resume_download = kwargs.pop("resume_download", False)
|
174 |
+
proxies = kwargs.pop("proxies", None)
|
175 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
176 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
177 |
+
revision = kwargs.pop("revision", None)
|
178 |
+
subfolder = kwargs.pop("subfolder", None)
|
179 |
+
|
180 |
+
user_agent = {"file_type": "config"}
|
181 |
+
|
182 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
183 |
+
|
184 |
+
if cls.config_name is None:
|
185 |
+
raise ValueError(
|
186 |
+
"`self.config_name` is not defined. Note that one should not load a config from "
|
187 |
+
"`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
|
188 |
+
)
|
189 |
+
|
190 |
+
if os.path.isfile(pretrained_model_name_or_path):
|
191 |
+
config_file = pretrained_model_name_or_path
|
192 |
+
elif os.path.isdir(pretrained_model_name_or_path):
|
193 |
+
if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
|
194 |
+
# Load from a PyTorch checkpoint
|
195 |
+
config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
|
196 |
+
elif subfolder is not None and os.path.isfile(
|
197 |
+
os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
|
198 |
+
):
|
199 |
+
config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
|
200 |
+
else:
|
201 |
+
raise EnvironmentError(
|
202 |
+
f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
|
203 |
+
)
|
204 |
+
else:
|
205 |
+
try:
|
206 |
+
# Load from URL or cache if already cached
|
207 |
+
config_file = hf_hub_download(
|
208 |
+
pretrained_model_name_or_path,
|
209 |
+
filename=cls.config_name,
|
210 |
+
cache_dir=cache_dir,
|
211 |
+
force_download=force_download,
|
212 |
+
proxies=proxies,
|
213 |
+
resume_download=resume_download,
|
214 |
+
local_files_only=local_files_only,
|
215 |
+
use_auth_token=use_auth_token,
|
216 |
+
user_agent=user_agent,
|
217 |
+
subfolder=subfolder,
|
218 |
+
revision=revision,
|
219 |
+
)
|
220 |
+
|
221 |
+
except RepositoryNotFoundError:
|
222 |
+
raise EnvironmentError(
|
223 |
+
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
|
224 |
+
" listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
|
225 |
+
" token having permission to this repo with `use_auth_token` or log in with `huggingface-cli"
|
226 |
+
" login` and pass `use_auth_token=True`."
|
227 |
+
)
|
228 |
+
except RevisionNotFoundError:
|
229 |
+
raise EnvironmentError(
|
230 |
+
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
|
231 |
+
" this model name. Check the model page at"
|
232 |
+
f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
|
233 |
+
)
|
234 |
+
except EntryNotFoundError:
|
235 |
+
raise EnvironmentError(
|
236 |
+
f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
|
237 |
+
)
|
238 |
+
except HTTPError as err:
|
239 |
+
raise EnvironmentError(
|
240 |
+
"There was a specific connection error when trying to load"
|
241 |
+
f" {pretrained_model_name_or_path}:\n{err}"
|
242 |
+
)
|
243 |
+
except ValueError:
|
244 |
+
raise EnvironmentError(
|
245 |
+
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
|
246 |
+
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
|
247 |
+
f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
|
248 |
+
" run the library in offline mode at"
|
249 |
+
" 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
|
250 |
+
)
|
251 |
+
except EnvironmentError:
|
252 |
+
raise EnvironmentError(
|
253 |
+
f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
|
254 |
+
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
|
255 |
+
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
|
256 |
+
f"containing a {cls.config_name} file"
|
257 |
+
)
|
258 |
+
|
259 |
+
try:
|
260 |
+
# Load config dict
|
261 |
+
config_dict = cls._dict_from_json_file(config_file)
|
262 |
+
except (json.JSONDecodeError, UnicodeDecodeError):
|
263 |
+
raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
|
264 |
+
|
265 |
+
return config_dict
|
266 |
+
|
267 |
+
@classmethod
|
268 |
+
def extract_init_dict(cls, config_dict, **kwargs):
|
269 |
+
expected_keys = set(dict(inspect.signature(cls.__init__).parameters).keys())
|
270 |
+
expected_keys.remove("self")
|
271 |
+
# remove general kwargs if present in dict
|
272 |
+
if "kwargs" in expected_keys:
|
273 |
+
expected_keys.remove("kwargs")
|
274 |
+
# remove keys to be ignored
|
275 |
+
if len(cls.ignore_for_config) > 0:
|
276 |
+
expected_keys = expected_keys - set(cls.ignore_for_config)
|
277 |
+
init_dict = {}
|
278 |
+
for key in expected_keys:
|
279 |
+
if key in kwargs:
|
280 |
+
# overwrite key
|
281 |
+
init_dict[key] = kwargs.pop(key)
|
282 |
+
elif key in config_dict:
|
283 |
+
# use value from config dict
|
284 |
+
init_dict[key] = config_dict.pop(key)
|
285 |
+
|
286 |
+
unused_kwargs = config_dict.update(kwargs)
|
287 |
+
|
288 |
+
passed_keys = set(init_dict.keys())
|
289 |
+
if len(expected_keys - passed_keys) > 0:
|
290 |
+
logger.warning(
|
291 |
+
f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
|
292 |
+
)
|
293 |
+
|
294 |
+
return init_dict, unused_kwargs
|
295 |
+
|
296 |
+
@classmethod
|
297 |
+
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
|
298 |
+
with open(json_file, "r", encoding="utf-8") as reader:
|
299 |
+
text = reader.read()
|
300 |
+
return json.loads(text)
|
301 |
+
|
302 |
+
def __repr__(self):
|
303 |
+
return f"{self.__class__.__name__} {self.to_json_string()}"
|
304 |
+
|
305 |
+
@property
|
306 |
+
def config(self) -> Dict[str, Any]:
|
307 |
+
return self._internal_dict
|
308 |
+
|
309 |
+
def to_json_string(self) -> str:
|
310 |
+
"""
|
311 |
+
Serializes this instance to a JSON string.
|
312 |
+
|
313 |
+
Returns:
|
314 |
+
`str`: String containing all the attributes that make up this configuration instance in JSON format.
|
315 |
+
"""
|
316 |
+
config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
|
317 |
+
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
318 |
+
|
319 |
+
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
|
320 |
+
"""
|
321 |
+
Save this instance to a JSON file.
|
322 |
+
|
323 |
+
Args:
|
324 |
+
json_file_path (`str` or `os.PathLike`):
|
325 |
+
Path to the JSON file in which this configuration instance's parameters will be saved.
|
326 |
+
"""
|
327 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
328 |
+
writer.write(self.to_json_string())
|
329 |
+
|
330 |
+
|
331 |
+
class FrozenDict(OrderedDict):
|
332 |
+
def __init__(self, *args, **kwargs):
|
333 |
+
super().__init__(*args, **kwargs)
|
334 |
+
|
335 |
+
for key, value in self.items():
|
336 |
+
setattr(self, key, value)
|
337 |
+
|
338 |
+
self.__frozen = True
|
339 |
+
|
340 |
+
def __delitem__(self, *args, **kwargs):
|
341 |
+
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
|
342 |
+
|
343 |
+
def setdefault(self, *args, **kwargs):
|
344 |
+
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
|
345 |
+
|
346 |
+
def pop(self, *args, **kwargs):
|
347 |
+
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
|
348 |
+
|
349 |
+
def update(self, *args, **kwargs):
|
350 |
+
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
|
351 |
+
|
352 |
+
def __setattr__(self, name, value):
|
353 |
+
if hasattr(self, "__frozen") and self.__frozen:
|
354 |
+
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
|
355 |
+
super().__setattr__(name, value)
|
356 |
+
|
357 |
+
def __setitem__(self, name, value):
|
358 |
+
if hasattr(self, "__frozen") and self.__frozen:
|
359 |
+
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
|
360 |
+
super().__setitem__(name, value)
|
361 |
+
|
362 |
+
|
363 |
+
def register_to_config(init):
|
364 |
+
r"""
|
365 |
+
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
|
366 |
+
automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
|
367 |
+
shouldn't be registered in the config, use the `ignore_for_config` class variable
|
368 |
+
|
369 |
+
Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
|
370 |
+
"""
|
371 |
+
|
372 |
+
@functools.wraps(init)
|
373 |
+
def inner_init(self, *args, **kwargs):
|
374 |
+
# Ignore private kwargs in the init.
|
375 |
+
init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
|
376 |
+
init(self, *args, **init_kwargs)
|
377 |
+
if not isinstance(self, ConfigMixin):
|
378 |
+
raise RuntimeError(
|
379 |
+
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
|
380 |
+
"not inherit from `ConfigMixin`."
|
381 |
+
)
|
382 |
+
|
383 |
+
ignore = getattr(self, "ignore_for_config", [])
|
384 |
+
# Get positional arguments aligned with kwargs
|
385 |
+
new_kwargs = {}
|
386 |
+
signature = inspect.signature(init)
|
387 |
+
parameters = {
|
388 |
+
name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
|
389 |
+
}
|
390 |
+
for arg, name in zip(args, parameters.keys()):
|
391 |
+
new_kwargs[name] = arg
|
392 |
+
|
393 |
+
# Then add all kwargs
|
394 |
+
new_kwargs.update(
|
395 |
+
{
|
396 |
+
k: init_kwargs.get(k, default)
|
397 |
+
for k, default in parameters.items()
|
398 |
+
if k not in ignore and k not in new_kwargs
|
399 |
+
}
|
400 |
+
)
|
401 |
+
getattr(self, "register_to_config")(**new_kwargs)
|
402 |
+
|
403 |
+
return inner_init
|
diffusers/dependency_versions_check.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import sys
|
15 |
+
|
16 |
+
from .dependency_versions_table import deps
|
17 |
+
from .utils.versions import require_version, require_version_core
|
18 |
+
|
19 |
+
|
20 |
+
# define which module versions we always want to check at run time
|
21 |
+
# (usually the ones defined in `install_requires` in setup.py)
|
22 |
+
#
|
23 |
+
# order specific notes:
|
24 |
+
# - tqdm must be checked before tokenizers
|
25 |
+
|
26 |
+
pkgs_to_check_at_runtime = "python tqdm regex requests packaging filelock numpy tokenizers".split()
|
27 |
+
if sys.version_info < (3, 7):
|
28 |
+
pkgs_to_check_at_runtime.append("dataclasses")
|
29 |
+
if sys.version_info < (3, 8):
|
30 |
+
pkgs_to_check_at_runtime.append("importlib_metadata")
|
31 |
+
|
32 |
+
for pkg in pkgs_to_check_at_runtime:
|
33 |
+
if pkg in deps:
|
34 |
+
if pkg == "tokenizers":
|
35 |
+
# must be loaded here, or else tqdm check may fail
|
36 |
+
from .utils import is_tokenizers_available
|
37 |
+
|
38 |
+
if not is_tokenizers_available():
|
39 |
+
continue # not required, check version only if installed
|
40 |
+
|
41 |
+
require_version_core(deps[pkg])
|
42 |
+
else:
|
43 |
+
raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
|
44 |
+
|
45 |
+
|
46 |
+
def dep_version_check(pkg, hint=None):
|
47 |
+
require_version(deps[pkg], hint)
|
diffusers/dependency_versions_table.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# THIS FILE HAS BEEN AUTOGENERATED. To update:
|
2 |
+
# 1. modify the `_deps` dict in setup.py
|
3 |
+
# 2. run `make deps_table_update``
|
4 |
+
deps = {
|
5 |
+
"Pillow": "Pillow",
|
6 |
+
"accelerate": "accelerate>=0.11.0",
|
7 |
+
"black": "black==22.3",
|
8 |
+
"datasets": "datasets",
|
9 |
+
"filelock": "filelock",
|
10 |
+
"flake8": "flake8>=3.8.3",
|
11 |
+
"hf-doc-builder": "hf-doc-builder>=0.3.0",
|
12 |
+
"huggingface-hub": "huggingface-hub>=0.8.1",
|
13 |
+
"importlib_metadata": "importlib_metadata",
|
14 |
+
"isort": "isort>=5.5.4",
|
15 |
+
"modelcards": "modelcards==0.1.4",
|
16 |
+
"numpy": "numpy",
|
17 |
+
"pytest": "pytest",
|
18 |
+
"pytest-timeout": "pytest-timeout",
|
19 |
+
"pytest-xdist": "pytest-xdist",
|
20 |
+
"scipy": "scipy",
|
21 |
+
"regex": "regex!=2019.12.17",
|
22 |
+
"requests": "requests",
|
23 |
+
"tensorboard": "tensorboard",
|
24 |
+
"torch": "torch>=1.4",
|
25 |
+
"transformers": "transformers>=4.21.0",
|
26 |
+
}
|
diffusers/dynamic_modules_utils.py
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Utilities to dynamically load objects from the Hub."""
|
16 |
+
|
17 |
+
import importlib
|
18 |
+
import os
|
19 |
+
import re
|
20 |
+
import shutil
|
21 |
+
import sys
|
22 |
+
from pathlib import Path
|
23 |
+
from typing import Dict, Optional, Union
|
24 |
+
|
25 |
+
from huggingface_hub import cached_download
|
26 |
+
|
27 |
+
from .utils import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
|
28 |
+
|
29 |
+
|
30 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
31 |
+
|
32 |
+
|
33 |
+
def init_hf_modules():
|
34 |
+
"""
|
35 |
+
Creates the cache directory for modules with an init, and adds it to the Python path.
|
36 |
+
"""
|
37 |
+
# This function has already been executed if HF_MODULES_CACHE already is in the Python path.
|
38 |
+
if HF_MODULES_CACHE in sys.path:
|
39 |
+
return
|
40 |
+
|
41 |
+
sys.path.append(HF_MODULES_CACHE)
|
42 |
+
os.makedirs(HF_MODULES_CACHE, exist_ok=True)
|
43 |
+
init_path = Path(HF_MODULES_CACHE) / "__init__.py"
|
44 |
+
if not init_path.exists():
|
45 |
+
init_path.touch()
|
46 |
+
|
47 |
+
|
48 |
+
def create_dynamic_module(name: Union[str, os.PathLike]):
|
49 |
+
"""
|
50 |
+
Creates a dynamic module in the cache directory for modules.
|
51 |
+
"""
|
52 |
+
init_hf_modules()
|
53 |
+
dynamic_module_path = Path(HF_MODULES_CACHE) / name
|
54 |
+
# If the parent module does not exist yet, recursively create it.
|
55 |
+
if not dynamic_module_path.parent.exists():
|
56 |
+
create_dynamic_module(dynamic_module_path.parent)
|
57 |
+
os.makedirs(dynamic_module_path, exist_ok=True)
|
58 |
+
init_path = dynamic_module_path / "__init__.py"
|
59 |
+
if not init_path.exists():
|
60 |
+
init_path.touch()
|
61 |
+
|
62 |
+
|
63 |
+
def get_relative_imports(module_file):
|
64 |
+
"""
|
65 |
+
Get the list of modules that are relatively imported in a module file.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
module_file (`str` or `os.PathLike`): The module file to inspect.
|
69 |
+
"""
|
70 |
+
with open(module_file, "r", encoding="utf-8") as f:
|
71 |
+
content = f.read()
|
72 |
+
|
73 |
+
# Imports of the form `import .xxx`
|
74 |
+
relative_imports = re.findall("^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE)
|
75 |
+
# Imports of the form `from .xxx import yyy`
|
76 |
+
relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE)
|
77 |
+
# Unique-ify
|
78 |
+
return list(set(relative_imports))
|
79 |
+
|
80 |
+
|
81 |
+
def get_relative_import_files(module_file):
|
82 |
+
"""
|
83 |
+
Get the list of all files that are needed for a given module. Note that this function recurses through the relative
|
84 |
+
imports (if a imports b and b imports c, it will return module files for b and c).
|
85 |
+
|
86 |
+
Args:
|
87 |
+
module_file (`str` or `os.PathLike`): The module file to inspect.
|
88 |
+
"""
|
89 |
+
no_change = False
|
90 |
+
files_to_check = [module_file]
|
91 |
+
all_relative_imports = []
|
92 |
+
|
93 |
+
# Let's recurse through all relative imports
|
94 |
+
while not no_change:
|
95 |
+
new_imports = []
|
96 |
+
for f in files_to_check:
|
97 |
+
new_imports.extend(get_relative_imports(f))
|
98 |
+
|
99 |
+
module_path = Path(module_file).parent
|
100 |
+
new_import_files = [str(module_path / m) for m in new_imports]
|
101 |
+
new_import_files = [f for f in new_import_files if f not in all_relative_imports]
|
102 |
+
files_to_check = [f"{f}.py" for f in new_import_files]
|
103 |
+
|
104 |
+
no_change = len(new_import_files) == 0
|
105 |
+
all_relative_imports.extend(files_to_check)
|
106 |
+
|
107 |
+
return all_relative_imports
|
108 |
+
|
109 |
+
|
110 |
+
def check_imports(filename):
|
111 |
+
"""
|
112 |
+
Check if the current Python environment contains all the libraries that are imported in a file.
|
113 |
+
"""
|
114 |
+
with open(filename, "r", encoding="utf-8") as f:
|
115 |
+
content = f.read()
|
116 |
+
|
117 |
+
# Imports of the form `import xxx`
|
118 |
+
imports = re.findall("^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE)
|
119 |
+
# Imports of the form `from xxx import yyy`
|
120 |
+
imports += re.findall("^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE)
|
121 |
+
# Only keep the top-level module
|
122 |
+
imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")]
|
123 |
+
|
124 |
+
# Unique-ify and test we got them all
|
125 |
+
imports = list(set(imports))
|
126 |
+
missing_packages = []
|
127 |
+
for imp in imports:
|
128 |
+
try:
|
129 |
+
importlib.import_module(imp)
|
130 |
+
except ImportError:
|
131 |
+
missing_packages.append(imp)
|
132 |
+
|
133 |
+
if len(missing_packages) > 0:
|
134 |
+
raise ImportError(
|
135 |
+
"This modeling file requires the following packages that were not found in your environment: "
|
136 |
+
f"{', '.join(missing_packages)}. Run `pip install {' '.join(missing_packages)}`"
|
137 |
+
)
|
138 |
+
|
139 |
+
return get_relative_imports(filename)
|
140 |
+
|
141 |
+
|
142 |
+
def get_class_in_module(class_name, module_path):
|
143 |
+
"""
|
144 |
+
Import a module on the cache directory for modules and extract a class from it.
|
145 |
+
"""
|
146 |
+
module_path = module_path.replace(os.path.sep, ".")
|
147 |
+
module = importlib.import_module(module_path)
|
148 |
+
return getattr(module, class_name)
|
149 |
+
|
150 |
+
|
151 |
+
def get_cached_module_file(
|
152 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
153 |
+
module_file: str,
|
154 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
155 |
+
force_download: bool = False,
|
156 |
+
resume_download: bool = False,
|
157 |
+
proxies: Optional[Dict[str, str]] = None,
|
158 |
+
use_auth_token: Optional[Union[bool, str]] = None,
|
159 |
+
revision: Optional[str] = None,
|
160 |
+
local_files_only: bool = False,
|
161 |
+
):
|
162 |
+
"""
|
163 |
+
Prepares Downloads a module from a local folder or a distant repo and returns its path inside the cached
|
164 |
+
Transformers module.
|
165 |
+
|
166 |
+
Args:
|
167 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
168 |
+
This can be either:
|
169 |
+
|
170 |
+
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
171 |
+
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
|
172 |
+
under a user or organization name, like `dbmdz/bert-base-german-cased`.
|
173 |
+
- a path to a *directory* containing a configuration file saved using the
|
174 |
+
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
|
175 |
+
|
176 |
+
module_file (`str`):
|
177 |
+
The name of the module file containing the class to look for.
|
178 |
+
cache_dir (`str` or `os.PathLike`, *optional*):
|
179 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
|
180 |
+
cache should not be used.
|
181 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
182 |
+
Whether or not to force to (re-)download the configuration files and override the cached versions if they
|
183 |
+
exist.
|
184 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
185 |
+
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
|
186 |
+
proxies (`Dict[str, str]`, *optional*):
|
187 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
188 |
+
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
189 |
+
use_auth_token (`str` or *bool*, *optional*):
|
190 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
191 |
+
when running `transformers-cli login` (stored in `~/.huggingface`).
|
192 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
193 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
194 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
195 |
+
identifier allowed by git.
|
196 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
197 |
+
If `True`, will only try to load the tokenizer configuration from local files.
|
198 |
+
|
199 |
+
<Tip>
|
200 |
+
|
201 |
+
Passing `use_auth_token=True` is required when you want to use a private model.
|
202 |
+
|
203 |
+
</Tip>
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`str`: The path to the module inside the cache.
|
207 |
+
"""
|
208 |
+
# Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file.
|
209 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
210 |
+
module_file_or_url = os.path.join(pretrained_model_name_or_path, module_file)
|
211 |
+
submodule = "local"
|
212 |
+
|
213 |
+
if os.path.isfile(module_file_or_url):
|
214 |
+
resolved_module_file = module_file_or_url
|
215 |
+
else:
|
216 |
+
try:
|
217 |
+
# Load from URL or cache if already cached
|
218 |
+
resolved_module_file = cached_download(
|
219 |
+
module_file_or_url,
|
220 |
+
cache_dir=cache_dir,
|
221 |
+
force_download=force_download,
|
222 |
+
proxies=proxies,
|
223 |
+
resume_download=resume_download,
|
224 |
+
local_files_only=local_files_only,
|
225 |
+
use_auth_token=use_auth_token,
|
226 |
+
)
|
227 |
+
|
228 |
+
except EnvironmentError:
|
229 |
+
logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
|
230 |
+
raise
|
231 |
+
|
232 |
+
# Check we have all the requirements in our environment
|
233 |
+
modules_needed = check_imports(resolved_module_file)
|
234 |
+
|
235 |
+
# Now we move the module inside our cached dynamic modules.
|
236 |
+
full_submodule = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
|
237 |
+
create_dynamic_module(full_submodule)
|
238 |
+
submodule_path = Path(HF_MODULES_CACHE) / full_submodule
|
239 |
+
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
|
240 |
+
# that hash, to only copy when there is a modification but it seems overkill for now).
|
241 |
+
# The only reason we do the copy is to avoid putting too many folders in sys.path.
|
242 |
+
shutil.copy(resolved_module_file, submodule_path / module_file)
|
243 |
+
for module_needed in modules_needed:
|
244 |
+
module_needed = f"{module_needed}.py"
|
245 |
+
shutil.copy(os.path.join(pretrained_model_name_or_path, module_needed), submodule_path / module_needed)
|
246 |
+
return os.path.join(full_submodule, module_file)
|
247 |
+
|
248 |
+
|
249 |
+
def get_class_from_dynamic_module(
|
250 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
251 |
+
module_file: str,
|
252 |
+
class_name: str,
|
253 |
+
cache_dir: Optional[Union[str, os.PathLike]] = None,
|
254 |
+
force_download: bool = False,
|
255 |
+
resume_download: bool = False,
|
256 |
+
proxies: Optional[Dict[str, str]] = None,
|
257 |
+
use_auth_token: Optional[Union[bool, str]] = None,
|
258 |
+
revision: Optional[str] = None,
|
259 |
+
local_files_only: bool = False,
|
260 |
+
**kwargs,
|
261 |
+
):
|
262 |
+
"""
|
263 |
+
Extracts a class from a module file, present in the local folder or repository of a model.
|
264 |
+
|
265 |
+
<Tip warning={true}>
|
266 |
+
|
267 |
+
Calling this function will execute the code in the module file found locally or downloaded from the Hub. It should
|
268 |
+
therefore only be called on trusted repos.
|
269 |
+
|
270 |
+
</Tip>
|
271 |
+
|
272 |
+
Args:
|
273 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`):
|
274 |
+
This can be either:
|
275 |
+
|
276 |
+
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
|
277 |
+
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced
|
278 |
+
under a user or organization name, like `dbmdz/bert-base-german-cased`.
|
279 |
+
- a path to a *directory* containing a configuration file saved using the
|
280 |
+
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
|
281 |
+
|
282 |
+
module_file (`str`):
|
283 |
+
The name of the module file containing the class to look for.
|
284 |
+
class_name (`str`):
|
285 |
+
The name of the class to import in the module.
|
286 |
+
cache_dir (`str` or `os.PathLike`, *optional*):
|
287 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
|
288 |
+
cache should not be used.
|
289 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
290 |
+
Whether or not to force to (re-)download the configuration files and override the cached versions if they
|
291 |
+
exist.
|
292 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
293 |
+
Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
|
294 |
+
proxies (`Dict[str, str]`, *optional*):
|
295 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
296 |
+
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
|
297 |
+
use_auth_token (`str` or `bool`, *optional*):
|
298 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
299 |
+
when running `transformers-cli login` (stored in `~/.huggingface`).
|
300 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
301 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
302 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
303 |
+
identifier allowed by git.
|
304 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
305 |
+
If `True`, will only try to load the tokenizer configuration from local files.
|
306 |
+
|
307 |
+
<Tip>
|
308 |
+
|
309 |
+
Passing `use_auth_token=True` is required when you want to use a private model.
|
310 |
+
|
311 |
+
</Tip>
|
312 |
+
|
313 |
+
Returns:
|
314 |
+
`type`: The class, dynamically imported from the module.
|
315 |
+
|
316 |
+
Examples:
|
317 |
+
|
318 |
+
```python
|
319 |
+
# Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this
|
320 |
+
# module.
|
321 |
+
cls = get_class_from_dynamic_module("sgugger/my-bert-model", "modeling.py", "MyBertModel")
|
322 |
+
```"""
|
323 |
+
# And lastly we get the class inside our newly created module
|
324 |
+
final_module = get_cached_module_file(
|
325 |
+
pretrained_model_name_or_path,
|
326 |
+
module_file,
|
327 |
+
cache_dir=cache_dir,
|
328 |
+
force_download=force_download,
|
329 |
+
resume_download=resume_download,
|
330 |
+
proxies=proxies,
|
331 |
+
use_auth_token=use_auth_token,
|
332 |
+
revision=revision,
|
333 |
+
local_files_only=local_files_only,
|
334 |
+
)
|
335 |
+
return get_class_in_module(class_name, final_module.replace(".py", ""))
|
diffusers/hub_utils.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
|
17 |
+
import os
|
18 |
+
import shutil
|
19 |
+
from pathlib import Path
|
20 |
+
from typing import Optional
|
21 |
+
|
22 |
+
from huggingface_hub import HfFolder, Repository, whoami
|
23 |
+
|
24 |
+
from .pipeline_utils import DiffusionPipeline
|
25 |
+
from .utils import is_modelcards_available, logging
|
26 |
+
|
27 |
+
|
28 |
+
if is_modelcards_available():
|
29 |
+
from modelcards import CardData, ModelCard
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "utils" / "model_card_template.md"
|
36 |
+
|
37 |
+
|
38 |
+
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
|
39 |
+
if token is None:
|
40 |
+
token = HfFolder.get_token()
|
41 |
+
if organization is None:
|
42 |
+
username = whoami(token)["name"]
|
43 |
+
return f"{username}/{model_id}"
|
44 |
+
else:
|
45 |
+
return f"{organization}/{model_id}"
|
46 |
+
|
47 |
+
|
48 |
+
def init_git_repo(args, at_init: bool = False):
|
49 |
+
"""
|
50 |
+
Args:
|
51 |
+
Initializes a git repo in `args.hub_model_id`.
|
52 |
+
at_init (`bool`, *optional*, defaults to `False`):
|
53 |
+
Whether this function is called before any training or not. If `self.args.overwrite_output_dir` is `True`
|
54 |
+
and `at_init` is `True`, the path to the repo (which is `self.args.output_dir`) might be wiped out.
|
55 |
+
"""
|
56 |
+
if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]:
|
57 |
+
return
|
58 |
+
hub_token = args.hub_token if hasattr(args, "hub_token") else None
|
59 |
+
use_auth_token = True if hub_token is None else hub_token
|
60 |
+
if not hasattr(args, "hub_model_id") or args.hub_model_id is None:
|
61 |
+
repo_name = Path(args.output_dir).absolute().name
|
62 |
+
else:
|
63 |
+
repo_name = args.hub_model_id
|
64 |
+
if "/" not in repo_name:
|
65 |
+
repo_name = get_full_repo_name(repo_name, token=hub_token)
|
66 |
+
|
67 |
+
try:
|
68 |
+
repo = Repository(
|
69 |
+
args.output_dir,
|
70 |
+
clone_from=repo_name,
|
71 |
+
use_auth_token=use_auth_token,
|
72 |
+
private=args.hub_private_repo,
|
73 |
+
)
|
74 |
+
except EnvironmentError:
|
75 |
+
if args.overwrite_output_dir and at_init:
|
76 |
+
# Try again after wiping output_dir
|
77 |
+
shutil.rmtree(args.output_dir)
|
78 |
+
repo = Repository(
|
79 |
+
args.output_dir,
|
80 |
+
clone_from=repo_name,
|
81 |
+
use_auth_token=use_auth_token,
|
82 |
+
)
|
83 |
+
else:
|
84 |
+
raise
|
85 |
+
|
86 |
+
repo.git_pull()
|
87 |
+
|
88 |
+
# By default, ignore the checkpoint folders
|
89 |
+
if not os.path.exists(os.path.join(args.output_dir, ".gitignore")):
|
90 |
+
with open(os.path.join(args.output_dir, ".gitignore"), "w", encoding="utf-8") as writer:
|
91 |
+
writer.writelines(["checkpoint-*/"])
|
92 |
+
|
93 |
+
return repo
|
94 |
+
|
95 |
+
|
96 |
+
def push_to_hub(
|
97 |
+
args,
|
98 |
+
pipeline: DiffusionPipeline,
|
99 |
+
repo: Repository,
|
100 |
+
commit_message: Optional[str] = "End of training",
|
101 |
+
blocking: bool = True,
|
102 |
+
**kwargs,
|
103 |
+
) -> str:
|
104 |
+
"""
|
105 |
+
Parameters:
|
106 |
+
Upload *self.model* and *self.tokenizer* to the 🤗 model hub on the repo *self.args.hub_model_id*.
|
107 |
+
commit_message (`str`, *optional*, defaults to `"End of training"`):
|
108 |
+
Message to commit while pushing.
|
109 |
+
blocking (`bool`, *optional*, defaults to `True`):
|
110 |
+
Whether the function should return only when the `git push` has finished.
|
111 |
+
kwargs:
|
112 |
+
Additional keyword arguments passed along to [`create_model_card`].
|
113 |
+
Returns:
|
114 |
+
The url of the commit of your model in the given repository if `blocking=False`, a tuple with the url of the
|
115 |
+
commit and an object to track the progress of the commit if `blocking=True`
|
116 |
+
"""
|
117 |
+
|
118 |
+
if not hasattr(args, "hub_model_id") or args.hub_model_id is None:
|
119 |
+
model_name = Path(args.output_dir).name
|
120 |
+
else:
|
121 |
+
model_name = args.hub_model_id.split("/")[-1]
|
122 |
+
|
123 |
+
output_dir = args.output_dir
|
124 |
+
os.makedirs(output_dir, exist_ok=True)
|
125 |
+
logger.info(f"Saving pipeline checkpoint to {output_dir}")
|
126 |
+
pipeline.save_pretrained(output_dir)
|
127 |
+
|
128 |
+
# Only push from one node.
|
129 |
+
if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]:
|
130 |
+
return
|
131 |
+
|
132 |
+
# Cancel any async push in progress if blocking=True. The commits will all be pushed together.
|
133 |
+
if (
|
134 |
+
blocking
|
135 |
+
and len(repo.command_queue) > 0
|
136 |
+
and repo.command_queue[-1] is not None
|
137 |
+
and not repo.command_queue[-1].is_done
|
138 |
+
):
|
139 |
+
repo.command_queue[-1]._process.kill()
|
140 |
+
|
141 |
+
git_head_commit_url = repo.push_to_hub(commit_message=commit_message, blocking=blocking, auto_lfs_prune=True)
|
142 |
+
# push separately the model card to be independent from the rest of the model
|
143 |
+
create_model_card(args, model_name=model_name)
|
144 |
+
try:
|
145 |
+
repo.push_to_hub(commit_message="update model card README.md", blocking=blocking, auto_lfs_prune=True)
|
146 |
+
except EnvironmentError as exc:
|
147 |
+
logger.error(f"Error pushing update to the model card. Please read logs and retry.\n${exc}")
|
148 |
+
|
149 |
+
return git_head_commit_url
|
150 |
+
|
151 |
+
|
152 |
+
def create_model_card(args, model_name):
|
153 |
+
if not is_modelcards_available:
|
154 |
+
raise ValueError(
|
155 |
+
"Please make sure to have `modelcards` installed when using the `create_model_card` function. You can"
|
156 |
+
" install the package with `pip install modelcards`."
|
157 |
+
)
|
158 |
+
|
159 |
+
if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]:
|
160 |
+
return
|
161 |
+
|
162 |
+
hub_token = args.hub_token if hasattr(args, "hub_token") else None
|
163 |
+
repo_name = get_full_repo_name(model_name, token=hub_token)
|
164 |
+
|
165 |
+
model_card = ModelCard.from_template(
|
166 |
+
card_data=CardData( # Card metadata object that will be converted to YAML block
|
167 |
+
language="en",
|
168 |
+
license="apache-2.0",
|
169 |
+
library_name="diffusers",
|
170 |
+
tags=[],
|
171 |
+
datasets=args.dataset_name,
|
172 |
+
metrics=[],
|
173 |
+
),
|
174 |
+
template_path=MODEL_CARD_TEMPLATE_PATH,
|
175 |
+
model_name=model_name,
|
176 |
+
repo_name=repo_name,
|
177 |
+
dataset_name=args.dataset_name if hasattr(args, "dataset_name") else None,
|
178 |
+
learning_rate=args.learning_rate,
|
179 |
+
train_batch_size=args.train_batch_size,
|
180 |
+
eval_batch_size=args.eval_batch_size,
|
181 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps
|
182 |
+
if hasattr(args, "gradient_accumulation_steps")
|
183 |
+
else None,
|
184 |
+
adam_beta1=args.adam_beta1 if hasattr(args, "adam_beta1") else None,
|
185 |
+
adam_beta2=args.adam_beta2 if hasattr(args, "adam_beta2") else None,
|
186 |
+
adam_weight_decay=args.adam_weight_decay if hasattr(args, "adam_weight_decay") else None,
|
187 |
+
adam_epsilon=args.adam_epsilon if hasattr(args, "adam_epsilon") else None,
|
188 |
+
lr_scheduler=args.lr_scheduler if hasattr(args, "lr_scheduler") else None,
|
189 |
+
lr_warmup_steps=args.lr_warmup_steps if hasattr(args, "lr_warmup_steps") else None,
|
190 |
+
ema_inv_gamma=args.ema_inv_gamma if hasattr(args, "ema_inv_gamma") else None,
|
191 |
+
ema_power=args.ema_power if hasattr(args, "ema_power") else None,
|
192 |
+
ema_max_decay=args.ema_max_decay if hasattr(args, "ema_max_decay") else None,
|
193 |
+
mixed_precision=args.mixed_precision,
|
194 |
+
)
|
195 |
+
|
196 |
+
card_path = os.path.join(args.output_dir, "README.md")
|
197 |
+
model_card.save(card_path)
|
diffusers/modeling_utils.py
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import os
|
18 |
+
from typing import Callable, List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from torch import Tensor, device
|
22 |
+
|
23 |
+
from huggingface_hub import hf_hub_download
|
24 |
+
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError
|
25 |
+
from requests import HTTPError
|
26 |
+
|
27 |
+
from .utils import CONFIG_NAME, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, logging
|
28 |
+
|
29 |
+
|
30 |
+
WEIGHTS_NAME = "diffusion_pytorch_model.bin"
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
def get_parameter_device(parameter: torch.nn.Module):
|
37 |
+
try:
|
38 |
+
return next(parameter.parameters()).device
|
39 |
+
except StopIteration:
|
40 |
+
# For torch.nn.DataParallel compatibility in PyTorch 1.5
|
41 |
+
|
42 |
+
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
|
43 |
+
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
|
44 |
+
return tuples
|
45 |
+
|
46 |
+
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
|
47 |
+
first_tuple = next(gen)
|
48 |
+
return first_tuple[1].device
|
49 |
+
|
50 |
+
|
51 |
+
def get_parameter_dtype(parameter: torch.nn.Module):
|
52 |
+
try:
|
53 |
+
return next(parameter.parameters()).dtype
|
54 |
+
except StopIteration:
|
55 |
+
# For torch.nn.DataParallel compatibility in PyTorch 1.5
|
56 |
+
|
57 |
+
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, Tensor]]:
|
58 |
+
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
|
59 |
+
return tuples
|
60 |
+
|
61 |
+
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
|
62 |
+
first_tuple = next(gen)
|
63 |
+
return first_tuple[1].dtype
|
64 |
+
|
65 |
+
|
66 |
+
def load_state_dict(checkpoint_file: Union[str, os.PathLike]):
|
67 |
+
"""
|
68 |
+
Reads a PyTorch checkpoint file, returning properly formatted errors if they arise.
|
69 |
+
"""
|
70 |
+
try:
|
71 |
+
return torch.load(checkpoint_file, map_location="cpu")
|
72 |
+
except Exception as e:
|
73 |
+
try:
|
74 |
+
with open(checkpoint_file) as f:
|
75 |
+
if f.read().startswith("version"):
|
76 |
+
raise OSError(
|
77 |
+
"You seem to have cloned a repository without having git-lfs installed. Please install "
|
78 |
+
"git-lfs and run `git lfs install` followed by `git lfs pull` in the folder "
|
79 |
+
"you cloned."
|
80 |
+
)
|
81 |
+
else:
|
82 |
+
raise ValueError(
|
83 |
+
f"Unable to locate the file {checkpoint_file} which is necessary to load this pretrained "
|
84 |
+
"model. Make sure you have saved the model properly."
|
85 |
+
) from e
|
86 |
+
except (UnicodeDecodeError, ValueError):
|
87 |
+
raise OSError(
|
88 |
+
f"Unable to load weights from pytorch checkpoint file for '{checkpoint_file}' "
|
89 |
+
f"at '{checkpoint_file}'. "
|
90 |
+
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True."
|
91 |
+
)
|
92 |
+
|
93 |
+
|
94 |
+
def _load_state_dict_into_model(model_to_load, state_dict):
|
95 |
+
# Convert old format to new format if needed from a PyTorch state_dict
|
96 |
+
# copy state_dict so _load_from_state_dict can modify it
|
97 |
+
state_dict = state_dict.copy()
|
98 |
+
error_msgs = []
|
99 |
+
|
100 |
+
# PyTorch's `_load_from_state_dict` does not copy parameters in a module's descendants
|
101 |
+
# so we need to apply the function recursively.
|
102 |
+
def load(module: torch.nn.Module, prefix=""):
|
103 |
+
args = (state_dict, prefix, {}, True, [], [], error_msgs)
|
104 |
+
module._load_from_state_dict(*args)
|
105 |
+
|
106 |
+
for name, child in module._modules.items():
|
107 |
+
if child is not None:
|
108 |
+
load(child, prefix + name + ".")
|
109 |
+
|
110 |
+
load(model_to_load)
|
111 |
+
|
112 |
+
return error_msgs
|
113 |
+
|
114 |
+
|
115 |
+
class ModelMixin(torch.nn.Module):
|
116 |
+
r"""
|
117 |
+
Base class for all models.
|
118 |
+
|
119 |
+
[`ModelMixin`] takes care of storing the configuration of the models and handles methods for loading, downloading
|
120 |
+
and saving models.
|
121 |
+
|
122 |
+
- **config_name** ([`str`]) -- A filename under which the model should be stored when calling
|
123 |
+
[`~modeling_utils.ModelMixin.save_pretrained`].
|
124 |
+
"""
|
125 |
+
config_name = CONFIG_NAME
|
126 |
+
_automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
|
127 |
+
|
128 |
+
def __init__(self):
|
129 |
+
super().__init__()
|
130 |
+
|
131 |
+
def save_pretrained(
|
132 |
+
self,
|
133 |
+
save_directory: Union[str, os.PathLike],
|
134 |
+
is_main_process: bool = True,
|
135 |
+
save_function: Callable = torch.save,
|
136 |
+
):
|
137 |
+
"""
|
138 |
+
Save a model and its configuration file to a directory, so that it can be re-loaded using the
|
139 |
+
`[`~modeling_utils.ModelMixin.from_pretrained`]` class method.
|
140 |
+
|
141 |
+
Arguments:
|
142 |
+
save_directory (`str` or `os.PathLike`):
|
143 |
+
Directory to which to save. Will be created if it doesn't exist.
|
144 |
+
is_main_process (`bool`, *optional*, defaults to `True`):
|
145 |
+
Whether the process calling this is the main process or not. Useful when in distributed training like
|
146 |
+
TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
|
147 |
+
the main process to avoid race conditions.
|
148 |
+
save_function (`Callable`):
|
149 |
+
The function to use to save the state dictionary. Useful on distributed training like TPUs when one
|
150 |
+
need to replace `torch.save` by another method.
|
151 |
+
"""
|
152 |
+
if os.path.isfile(save_directory):
|
153 |
+
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
154 |
+
return
|
155 |
+
|
156 |
+
os.makedirs(save_directory, exist_ok=True)
|
157 |
+
|
158 |
+
model_to_save = self
|
159 |
+
|
160 |
+
# Attach architecture to the config
|
161 |
+
# Save the config
|
162 |
+
if is_main_process:
|
163 |
+
model_to_save.save_config(save_directory)
|
164 |
+
|
165 |
+
# Save the model
|
166 |
+
state_dict = model_to_save.state_dict()
|
167 |
+
|
168 |
+
# Clean the folder from a previous save
|
169 |
+
for filename in os.listdir(save_directory):
|
170 |
+
full_filename = os.path.join(save_directory, filename)
|
171 |
+
# If we have a shard file that is not going to be replaced, we delete it, but only from the main process
|
172 |
+
# in distributed settings to avoid race conditions.
|
173 |
+
if filename.startswith(WEIGHTS_NAME[:-4]) and os.path.isfile(full_filename) and is_main_process:
|
174 |
+
os.remove(full_filename)
|
175 |
+
|
176 |
+
# Save the model
|
177 |
+
save_function(state_dict, os.path.join(save_directory, WEIGHTS_NAME))
|
178 |
+
|
179 |
+
logger.info(f"Model weights saved in {os.path.join(save_directory, WEIGHTS_NAME)}")
|
180 |
+
|
181 |
+
@classmethod
|
182 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
|
183 |
+
r"""
|
184 |
+
Instantiate a pretrained pytorch model from a pre-trained model configuration.
|
185 |
+
|
186 |
+
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
|
187 |
+
the model, you should first set it back in training mode with `model.train()`.
|
188 |
+
|
189 |
+
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
|
190 |
+
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
|
191 |
+
task.
|
192 |
+
|
193 |
+
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
|
194 |
+
weights are discarded.
|
195 |
+
|
196 |
+
Parameters:
|
197 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
198 |
+
Can be either:
|
199 |
+
|
200 |
+
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
|
201 |
+
Valid model ids should have an organization name, like `google/ddpm-celebahq-256`.
|
202 |
+
- A path to a *directory* containing model weights saved using [`~ModelMixin.save_config`], e.g.,
|
203 |
+
`./my_model_directory/`.
|
204 |
+
|
205 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
206 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
207 |
+
standard cache should not be used.
|
208 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
209 |
+
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
|
210 |
+
will be automatically derived from the model's weights.
|
211 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
212 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
213 |
+
cached versions if they exist.
|
214 |
+
resume_download (`bool`, *optional*, defaults to `False`):
|
215 |
+
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
|
216 |
+
file exists.
|
217 |
+
proxies (`Dict[str, str]`, *optional*):
|
218 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
219 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
220 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
221 |
+
Whether ot not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
222 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
223 |
+
Whether or not to only look at local files (i.e., do not try to download the model).
|
224 |
+
use_auth_token (`str` or *bool*, *optional*):
|
225 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
|
226 |
+
when running `diffusers-cli login` (stored in `~/.huggingface`).
|
227 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
228 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
229 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
230 |
+
identifier allowed by git.
|
231 |
+
mirror (`str`, *optional*):
|
232 |
+
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
|
233 |
+
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
|
234 |
+
Please refer to the mirror site for more information.
|
235 |
+
|
236 |
+
<Tip>
|
237 |
+
|
238 |
+
Passing `use_auth_token=True`` is required when you want to use a private model.
|
239 |
+
|
240 |
+
</Tip>
|
241 |
+
|
242 |
+
<Tip>
|
243 |
+
|
244 |
+
Activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use
|
245 |
+
this method in a firewalled environment.
|
246 |
+
|
247 |
+
</Tip>
|
248 |
+
|
249 |
+
"""
|
250 |
+
cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
|
251 |
+
ignore_mismatched_sizes = kwargs.pop("ignore_mismatched_sizes", False)
|
252 |
+
force_download = kwargs.pop("force_download", False)
|
253 |
+
resume_download = kwargs.pop("resume_download", False)
|
254 |
+
proxies = kwargs.pop("proxies", None)
|
255 |
+
output_loading_info = kwargs.pop("output_loading_info", False)
|
256 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
257 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
258 |
+
revision = kwargs.pop("revision", None)
|
259 |
+
from_auto_class = kwargs.pop("_from_auto", False)
|
260 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
261 |
+
subfolder = kwargs.pop("subfolder", None)
|
262 |
+
|
263 |
+
user_agent = {"file_type": "model", "framework": "pytorch", "from_auto_class": from_auto_class}
|
264 |
+
|
265 |
+
# Load config if we don't provide a configuration
|
266 |
+
config_path = pretrained_model_name_or_path
|
267 |
+
model, unused_kwargs = cls.from_config(
|
268 |
+
config_path,
|
269 |
+
cache_dir=cache_dir,
|
270 |
+
return_unused_kwargs=True,
|
271 |
+
force_download=force_download,
|
272 |
+
resume_download=resume_download,
|
273 |
+
proxies=proxies,
|
274 |
+
local_files_only=local_files_only,
|
275 |
+
use_auth_token=use_auth_token,
|
276 |
+
revision=revision,
|
277 |
+
subfolder=subfolder,
|
278 |
+
**kwargs,
|
279 |
+
)
|
280 |
+
|
281 |
+
if torch_dtype is not None and not isinstance(torch_dtype, torch.dtype):
|
282 |
+
raise ValueError(
|
283 |
+
f"{torch_dtype} needs to be of type `torch.dtype`, e.g. `torch.float16`, but is {type(torch_dtype)}."
|
284 |
+
)
|
285 |
+
elif torch_dtype is not None:
|
286 |
+
model = model.to(torch_dtype)
|
287 |
+
|
288 |
+
model.register_to_config(_name_or_path=pretrained_model_name_or_path)
|
289 |
+
# This variable will flag if we're loading a sharded checkpoint. In this case the archive file is just the
|
290 |
+
# Load model
|
291 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
292 |
+
if os.path.isdir(pretrained_model_name_or_path):
|
293 |
+
if os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)):
|
294 |
+
# Load from a PyTorch checkpoint
|
295 |
+
model_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
|
296 |
+
elif subfolder is not None and os.path.isfile(
|
297 |
+
os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME)
|
298 |
+
):
|
299 |
+
model_file = os.path.join(pretrained_model_name_or_path, subfolder, WEIGHTS_NAME)
|
300 |
+
else:
|
301 |
+
raise EnvironmentError(
|
302 |
+
f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_model_name_or_path}."
|
303 |
+
)
|
304 |
+
else:
|
305 |
+
try:
|
306 |
+
# Load from URL or cache if already cached
|
307 |
+
model_file = hf_hub_download(
|
308 |
+
pretrained_model_name_or_path,
|
309 |
+
filename=WEIGHTS_NAME,
|
310 |
+
cache_dir=cache_dir,
|
311 |
+
force_download=force_download,
|
312 |
+
proxies=proxies,
|
313 |
+
resume_download=resume_download,
|
314 |
+
local_files_only=local_files_only,
|
315 |
+
use_auth_token=use_auth_token,
|
316 |
+
user_agent=user_agent,
|
317 |
+
subfolder=subfolder,
|
318 |
+
revision=revision,
|
319 |
+
)
|
320 |
+
|
321 |
+
except RepositoryNotFoundError:
|
322 |
+
raise EnvironmentError(
|
323 |
+
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
|
324 |
+
"listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
|
325 |
+
"token having permission to this repo with `use_auth_token` or log in with `huggingface-cli "
|
326 |
+
"login` and pass `use_auth_token=True`."
|
327 |
+
)
|
328 |
+
except RevisionNotFoundError:
|
329 |
+
raise EnvironmentError(
|
330 |
+
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
|
331 |
+
"this model name. Check the model page at "
|
332 |
+
f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
|
333 |
+
)
|
334 |
+
except EntryNotFoundError:
|
335 |
+
raise EnvironmentError(
|
336 |
+
f"{pretrained_model_name_or_path} does not appear to have a file named {WEIGHTS_NAME}."
|
337 |
+
)
|
338 |
+
except HTTPError as err:
|
339 |
+
raise EnvironmentError(
|
340 |
+
"There was a specific connection error when trying to load"
|
341 |
+
f" {pretrained_model_name_or_path}:\n{err}"
|
342 |
+
)
|
343 |
+
except ValueError:
|
344 |
+
raise EnvironmentError(
|
345 |
+
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
|
346 |
+
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
|
347 |
+
f" directory containing a file named {WEIGHTS_NAME} or"
|
348 |
+
" \nCheckout your internet connection or see how to run the library in"
|
349 |
+
" offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
|
350 |
+
)
|
351 |
+
except EnvironmentError:
|
352 |
+
raise EnvironmentError(
|
353 |
+
f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
|
354 |
+
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
|
355 |
+
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
|
356 |
+
f"containing a file named {WEIGHTS_NAME}"
|
357 |
+
)
|
358 |
+
|
359 |
+
# restore default dtype
|
360 |
+
state_dict = load_state_dict(model_file)
|
361 |
+
model, missing_keys, unexpected_keys, mismatched_keys, error_msgs = cls._load_pretrained_model(
|
362 |
+
model,
|
363 |
+
state_dict,
|
364 |
+
model_file,
|
365 |
+
pretrained_model_name_or_path,
|
366 |
+
ignore_mismatched_sizes=ignore_mismatched_sizes,
|
367 |
+
)
|
368 |
+
|
369 |
+
# Set model in evaluation mode to deactivate DropOut modules by default
|
370 |
+
model.eval()
|
371 |
+
|
372 |
+
if output_loading_info:
|
373 |
+
loading_info = {
|
374 |
+
"missing_keys": missing_keys,
|
375 |
+
"unexpected_keys": unexpected_keys,
|
376 |
+
"mismatched_keys": mismatched_keys,
|
377 |
+
"error_msgs": error_msgs,
|
378 |
+
}
|
379 |
+
return model, loading_info
|
380 |
+
|
381 |
+
return model
|
382 |
+
|
383 |
+
@classmethod
|
384 |
+
def _load_pretrained_model(
|
385 |
+
cls,
|
386 |
+
model,
|
387 |
+
state_dict,
|
388 |
+
resolved_archive_file,
|
389 |
+
pretrained_model_name_or_path,
|
390 |
+
ignore_mismatched_sizes=False,
|
391 |
+
):
|
392 |
+
# Retrieve missing & unexpected_keys
|
393 |
+
model_state_dict = model.state_dict()
|
394 |
+
loaded_keys = [k for k in state_dict.keys()]
|
395 |
+
|
396 |
+
expected_keys = list(model_state_dict.keys())
|
397 |
+
|
398 |
+
original_loaded_keys = loaded_keys
|
399 |
+
|
400 |
+
missing_keys = list(set(expected_keys) - set(loaded_keys))
|
401 |
+
unexpected_keys = list(set(loaded_keys) - set(expected_keys))
|
402 |
+
|
403 |
+
# Make sure we are able to load base models as well as derived models (with heads)
|
404 |
+
model_to_load = model
|
405 |
+
|
406 |
+
def _find_mismatched_keys(
|
407 |
+
state_dict,
|
408 |
+
model_state_dict,
|
409 |
+
loaded_keys,
|
410 |
+
ignore_mismatched_sizes,
|
411 |
+
):
|
412 |
+
mismatched_keys = []
|
413 |
+
if ignore_mismatched_sizes:
|
414 |
+
for checkpoint_key in loaded_keys:
|
415 |
+
model_key = checkpoint_key
|
416 |
+
|
417 |
+
if (
|
418 |
+
model_key in model_state_dict
|
419 |
+
and state_dict[checkpoint_key].shape != model_state_dict[model_key].shape
|
420 |
+
):
|
421 |
+
mismatched_keys.append(
|
422 |
+
(checkpoint_key, state_dict[checkpoint_key].shape, model_state_dict[model_key].shape)
|
423 |
+
)
|
424 |
+
del state_dict[checkpoint_key]
|
425 |
+
return mismatched_keys
|
426 |
+
|
427 |
+
if state_dict is not None:
|
428 |
+
# Whole checkpoint
|
429 |
+
mismatched_keys = _find_mismatched_keys(
|
430 |
+
state_dict,
|
431 |
+
model_state_dict,
|
432 |
+
original_loaded_keys,
|
433 |
+
ignore_mismatched_sizes,
|
434 |
+
)
|
435 |
+
error_msgs = _load_state_dict_into_model(model_to_load, state_dict)
|
436 |
+
|
437 |
+
if len(error_msgs) > 0:
|
438 |
+
error_msg = "\n\t".join(error_msgs)
|
439 |
+
if "size mismatch" in error_msg:
|
440 |
+
error_msg += (
|
441 |
+
"\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method."
|
442 |
+
)
|
443 |
+
raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}")
|
444 |
+
|
445 |
+
if len(unexpected_keys) > 0:
|
446 |
+
logger.warning(
|
447 |
+
f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
|
448 |
+
f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
|
449 |
+
f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task"
|
450 |
+
" or with another architecture (e.g. initializing a BertForSequenceClassification model from a"
|
451 |
+
" BertForPreTraining model).\n- This IS NOT expected if you are initializing"
|
452 |
+
f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly"
|
453 |
+
" identical (initializing a BertForSequenceClassification model from a"
|
454 |
+
" BertForSequenceClassification model)."
|
455 |
+
)
|
456 |
+
else:
|
457 |
+
logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
|
458 |
+
if len(missing_keys) > 0:
|
459 |
+
logger.warning(
|
460 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
461 |
+
f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
|
462 |
+
" TRAIN this model on a down-stream task to be able to use it for predictions and inference."
|
463 |
+
)
|
464 |
+
elif len(mismatched_keys) == 0:
|
465 |
+
logger.info(
|
466 |
+
f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
|
467 |
+
f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the"
|
468 |
+
f" checkpoint was trained on, you can already use {model.__class__.__name__} for predictions"
|
469 |
+
" without further training."
|
470 |
+
)
|
471 |
+
if len(mismatched_keys) > 0:
|
472 |
+
mismatched_warning = "\n".join(
|
473 |
+
[
|
474 |
+
f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated"
|
475 |
+
for key, shape1, shape2 in mismatched_keys
|
476 |
+
]
|
477 |
+
)
|
478 |
+
logger.warning(
|
479 |
+
f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
|
480 |
+
f" {pretrained_model_name_or_path} and are newly initialized because the shapes did not"
|
481 |
+
f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be"
|
482 |
+
" able to use it for predictions and inference."
|
483 |
+
)
|
484 |
+
|
485 |
+
return model, missing_keys, unexpected_keys, mismatched_keys, error_msgs
|
486 |
+
|
487 |
+
@property
|
488 |
+
def device(self) -> device:
|
489 |
+
"""
|
490 |
+
`torch.device`: The device on which the module is (assuming that all the module parameters are on the same
|
491 |
+
device).
|
492 |
+
"""
|
493 |
+
return get_parameter_device(self)
|
494 |
+
|
495 |
+
@property
|
496 |
+
def dtype(self) -> torch.dtype:
|
497 |
+
"""
|
498 |
+
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype).
|
499 |
+
"""
|
500 |
+
return get_parameter_dtype(self)
|
501 |
+
|
502 |
+
def num_parameters(self, only_trainable: bool = False, exclude_embeddings: bool = False) -> int:
|
503 |
+
"""
|
504 |
+
Get number of (optionally, trainable or non-embeddings) parameters in the module.
|
505 |
+
|
506 |
+
Args:
|
507 |
+
only_trainable (`bool`, *optional*, defaults to `False`):
|
508 |
+
Whether or not to return only the number of trainable parameters
|
509 |
+
|
510 |
+
exclude_embeddings (`bool`, *optional*, defaults to `False`):
|
511 |
+
Whether or not to return only the number of non-embeddings parameters
|
512 |
+
|
513 |
+
Returns:
|
514 |
+
`int`: The number of parameters.
|
515 |
+
"""
|
516 |
+
|
517 |
+
if exclude_embeddings:
|
518 |
+
embedding_param_names = [
|
519 |
+
f"{name}.weight"
|
520 |
+
for name, module_type in self.named_modules()
|
521 |
+
if isinstance(module_type, torch.nn.Embedding)
|
522 |
+
]
|
523 |
+
non_embedding_parameters = [
|
524 |
+
parameter for name, parameter in self.named_parameters() if name not in embedding_param_names
|
525 |
+
]
|
526 |
+
return sum(p.numel() for p in non_embedding_parameters if p.requires_grad or not only_trainable)
|
527 |
+
else:
|
528 |
+
return sum(p.numel() for p in self.parameters() if p.requires_grad or not only_trainable)
|
529 |
+
|
530 |
+
|
531 |
+
def unwrap_model(model: torch.nn.Module) -> torch.nn.Module:
|
532 |
+
"""
|
533 |
+
Recursively unwraps a model from potential containers (as used in distributed training).
|
534 |
+
|
535 |
+
Args:
|
536 |
+
model (`torch.nn.Module`): The model to unwrap.
|
537 |
+
"""
|
538 |
+
# since there could be multiple levels of wrapping, unwrap recursively
|
539 |
+
if hasattr(model, "module"):
|
540 |
+
return unwrap_model(model.module)
|
541 |
+
else:
|
542 |
+
return model
|
diffusers/models/__init__.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .unet_2d import UNet2DModel
|
16 |
+
from .unet_2d_condition import UNet2DConditionModel
|
17 |
+
from .vae import AutoencoderKL, VQModel
|
diffusers/models/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (313 Bytes). View file
|
|
diffusers/models/__pycache__/__init__.cpython-37.pyc
ADDED
Binary file (372 Bytes). View file
|
|
diffusers/models/__pycache__/attention.cpython-310.pyc
ADDED
Binary file (14.3 kB). View file
|
|
diffusers/models/__pycache__/attention.cpython-37.pyc
ADDED
Binary file (14.2 kB). View file
|
|
diffusers/models/__pycache__/embeddings.cpython-310.pyc
ADDED
Binary file (3.72 kB). View file
|
|
diffusers/models/__pycache__/embeddings.cpython-37.pyc
ADDED
Binary file (3.71 kB). View file
|
|
diffusers/models/__pycache__/resnet.cpython-310.pyc
ADDED
Binary file (14.5 kB). View file
|
|
diffusers/models/__pycache__/resnet.cpython-37.pyc
ADDED
Binary file (14.9 kB). View file
|
|
diffusers/models/__pycache__/unet_2d.cpython-310.pyc
ADDED
Binary file (7.94 kB). View file
|
|
diffusers/models/__pycache__/unet_2d.cpython-37.pyc
ADDED
Binary file (7.84 kB). View file
|
|
diffusers/models/__pycache__/unet_2d_condition.cpython-310.pyc
ADDED
Binary file (8.73 kB). View file
|
|
diffusers/models/__pycache__/unet_2d_condition.cpython-37.pyc
ADDED
Binary file (8.63 kB). View file
|
|
diffusers/models/__pycache__/unet_blocks.cpython-310.pyc
ADDED
Binary file (23.7 kB). View file
|
|
diffusers/models/__pycache__/unet_blocks.cpython-37.pyc
ADDED
Binary file (25.5 kB). View file
|
|
diffusers/models/__pycache__/vae.cpython-310.pyc
ADDED
Binary file (16.5 kB). View file
|
|
diffusers/models/__pycache__/vae.cpython-37.pyc
ADDED
Binary file (16.5 kB). View file
|
|