File size: 7,605 Bytes
7c8c2c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import shutil
from pathlib import Path
from typing import Optional

from huggingface_hub import HfFolder, Repository, whoami

from .pipeline_utils import DiffusionPipeline
from .utils import is_modelcards_available, logging


if is_modelcards_available():
    from modelcards import CardData, ModelCard


logger = logging.get_logger(__name__)


MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "utils" / "model_card_template.md"


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


def init_git_repo(args, at_init: bool = False):
    """
    Args:
    Initializes a git repo in `args.hub_model_id`.
        at_init (`bool`, *optional*, defaults to `False`):
            Whether this function is called before any training or not. If `self.args.overwrite_output_dir` is `True`
            and `at_init` is `True`, the path to the repo (which is `self.args.output_dir`) might be wiped out.
    """
    if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]:
        return
    hub_token = args.hub_token if hasattr(args, "hub_token") else None
    use_auth_token = True if hub_token is None else hub_token
    if not hasattr(args, "hub_model_id") or args.hub_model_id is None:
        repo_name = Path(args.output_dir).absolute().name
    else:
        repo_name = args.hub_model_id
    if "/" not in repo_name:
        repo_name = get_full_repo_name(repo_name, token=hub_token)

    try:
        repo = Repository(
            args.output_dir,
            clone_from=repo_name,
            use_auth_token=use_auth_token,
            private=args.hub_private_repo,
        )
    except EnvironmentError:
        if args.overwrite_output_dir and at_init:
            # Try again after wiping output_dir
            shutil.rmtree(args.output_dir)
            repo = Repository(
                args.output_dir,
                clone_from=repo_name,
                use_auth_token=use_auth_token,
            )
        else:
            raise

    repo.git_pull()

    # By default, ignore the checkpoint folders
    if not os.path.exists(os.path.join(args.output_dir, ".gitignore")):
        with open(os.path.join(args.output_dir, ".gitignore"), "w", encoding="utf-8") as writer:
            writer.writelines(["checkpoint-*/"])

    return repo


def push_to_hub(
    args,
    pipeline: DiffusionPipeline,
    repo: Repository,
    commit_message: Optional[str] = "End of training",
    blocking: bool = True,
    **kwargs,
) -> str:
    """
    Parameters:
    Upload *self.model* and *self.tokenizer* to the 🤗 model hub on the repo *self.args.hub_model_id*.
        commit_message (`str`, *optional*, defaults to `"End of training"`):
            Message to commit while pushing.
        blocking (`bool`, *optional*, defaults to `True`):
            Whether the function should return only when the `git push` has finished.
        kwargs:
            Additional keyword arguments passed along to [`create_model_card`].
    Returns:
        The url of the commit of your model in the given repository if `blocking=False`, a tuple with the url of the
        commit and an object to track the progress of the commit if `blocking=True`
    """

    if not hasattr(args, "hub_model_id") or args.hub_model_id is None:
        model_name = Path(args.output_dir).name
    else:
        model_name = args.hub_model_id.split("/")[-1]

    output_dir = args.output_dir
    os.makedirs(output_dir, exist_ok=True)
    logger.info(f"Saving pipeline checkpoint to {output_dir}")
    pipeline.save_pretrained(output_dir)

    # Only push from one node.
    if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]:
        return

    # Cancel any async push in progress if blocking=True. The commits will all be pushed together.
    if (
        blocking
        and len(repo.command_queue) > 0
        and repo.command_queue[-1] is not None
        and not repo.command_queue[-1].is_done
    ):
        repo.command_queue[-1]._process.kill()

    git_head_commit_url = repo.push_to_hub(commit_message=commit_message, blocking=blocking, auto_lfs_prune=True)
    # push separately the model card to be independent from the rest of the model
    create_model_card(args, model_name=model_name)
    try:
        repo.push_to_hub(commit_message="update model card README.md", blocking=blocking, auto_lfs_prune=True)
    except EnvironmentError as exc:
        logger.error(f"Error pushing update to the model card. Please read logs and retry.\n${exc}")

    return git_head_commit_url


def create_model_card(args, model_name):
    if not is_modelcards_available:
        raise ValueError(
            "Please make sure to have `modelcards` installed when using the `create_model_card` function. You can"
            " install the package with `pip install modelcards`."
        )

    if hasattr(args, "local_rank") and args.local_rank not in [-1, 0]:
        return

    hub_token = args.hub_token if hasattr(args, "hub_token") else None
    repo_name = get_full_repo_name(model_name, token=hub_token)

    model_card = ModelCard.from_template(
        card_data=CardData(  # Card metadata object that will be converted to YAML block
            language="en",
            license="apache-2.0",
            library_name="diffusers",
            tags=[],
            datasets=args.dataset_name,
            metrics=[],
        ),
        template_path=MODEL_CARD_TEMPLATE_PATH,
        model_name=model_name,
        repo_name=repo_name,
        dataset_name=args.dataset_name if hasattr(args, "dataset_name") else None,
        learning_rate=args.learning_rate,
        train_batch_size=args.train_batch_size,
        eval_batch_size=args.eval_batch_size,
        gradient_accumulation_steps=args.gradient_accumulation_steps
        if hasattr(args, "gradient_accumulation_steps")
        else None,
        adam_beta1=args.adam_beta1 if hasattr(args, "adam_beta1") else None,
        adam_beta2=args.adam_beta2 if hasattr(args, "adam_beta2") else None,
        adam_weight_decay=args.adam_weight_decay if hasattr(args, "adam_weight_decay") else None,
        adam_epsilon=args.adam_epsilon if hasattr(args, "adam_epsilon") else None,
        lr_scheduler=args.lr_scheduler if hasattr(args, "lr_scheduler") else None,
        lr_warmup_steps=args.lr_warmup_steps if hasattr(args, "lr_warmup_steps") else None,
        ema_inv_gamma=args.ema_inv_gamma if hasattr(args, "ema_inv_gamma") else None,
        ema_power=args.ema_power if hasattr(args, "ema_power") else None,
        ema_max_decay=args.ema_max_decay if hasattr(args, "ema_max_decay") else None,
        mixed_precision=args.mixed_precision,
    )

    card_path = os.path.join(args.output_dir, "README.md")
    model_card.save(card_path)