File size: 2,384 Bytes
7c8c2c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import platform
from argparse import ArgumentParser

import huggingface_hub

from .. import __version__ as version
from ..utils import is_torch_available, is_transformers_available
from . import BaseDiffusersCLICommand


def info_command_factory(_):
    return EnvironmentCommand()


class EnvironmentCommand(BaseDiffusersCLICommand):
    @staticmethod
    def register_subcommand(parser: ArgumentParser):
        download_parser = parser.add_parser("env")
        download_parser.set_defaults(func=info_command_factory)

    def run(self):
        hub_version = huggingface_hub.__version__

        pt_version = "not installed"
        pt_cuda_available = "NA"
        if is_torch_available():
            import torch

            pt_version = torch.__version__
            pt_cuda_available = torch.cuda.is_available()

        transformers_version = "not installed"
        if is_transformers_available:
            import transformers

            transformers_version = transformers.__version__

        info = {
            "`diffusers` version": version,
            "Platform": platform.platform(),
            "Python version": platform.python_version(),
            "PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
            "Huggingface_hub version": hub_version,
            "Transformers version": transformers_version,
            "Using GPU in script?": "<fill in>",
            "Using distributed or parallel set-up in script?": "<fill in>",
        }

        print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
        print(self.format_dict(info))

        return info

    @staticmethod
    def format_dict(d):
        return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"