Spaces:
Sleeping
Sleeping
File size: 34,815 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 |
import math
import mup
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from huggingface_hub import PyTorchModelHubMixin
from tqdm import tqdm
from transformers.utils import ModelOutput
from genie.factorization_utils import FactorizedEmbedding, factorize_labels
from genie.config import GenieConfig
from genie.st_transformer import STTransformerDecoder
from genie.attention import BasicCrossAttention
def modulate(x, shift, scale):
return x * (1 + scale) + shift
class TokenResampler(nn.Module):
"""TokenResampler or Action Stem"""
def __init__(self, token_num, d_model, k_model, num_heads=8):
super().__init__()
""" initialize cross attention module and the learnable tokens """
self.token_num = token_num
self.tokens = nn.Parameter(torch.randn(1, token_num, d_model) * 0.01)
# nn.Parameter(torch.zeros(1, token_num, d_model))
self.cross_attention = BasicCrossAttention(
num_heads=num_heads,
d_model=d_model,
k_model=k_model,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Computes the latent representations of input data by attention.
"""
# Initial reshape to adapt to token dimensions (B, T, D)
# Replicating tokens for each item in the batch and computing cross-attention
B, T, D = x.shape
x = x.view(-1, 1, D)
output_tokens = self.tokens.repeat(len(x), 1, 1) # (32, 16, 128)
output_tokens = self.cross_attention(output_tokens, x, x) # (32, 16, 128)
return rearrange(output_tokens, "(b t) s d -> b t s d", b=B)
class ModulateLayer(nn.Module):
"""
Modified from the final layer adopted from DiT with token-wise modulation.
"""
def __init__(self, model_channels, out_channels):
super().__init__()
self.norm_final = nn.LayerNorm(out_channels, elementwise_affine=False, eps=1e-6)
self.linear_out = nn.Linear(out_channels, out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(
nn.Linear(model_channels, model_channels),
nn.SiLU(),
nn.Linear(model_channels, 2 * out_channels, bias=True)
)
self.apply(self._init_weights)
def forward(self, x, c):
"""
a simple modulation
"""
x_shape = x.shape
x = rearrange(x, "(b s) t d -> b s t d", b=len(c))
c = c[:, None, :x_shape[2]]
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
x = modulate(self.norm_final(x), shift, scale)
x = self.linear_out(x)
return x.view(x_shape)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=0.1)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if m.weight is not None:
nn.init.constant_(m.weight, 1.0)
class BasicMLP(nn.Module):
def __init__(self, d_action, d_model):
super().__init__()
self.model = nn.Sequential(nn.Linear(d_action, d_model, bias=True),
nn.LayerNorm(d_model),
nn.ReLU(),
nn.Linear(d_model, d_model, bias=True))
self.apply(self._init_weights)
def forward(self,x):
return self.model(x)
def _init_weights(self, m): # TODO: muP?
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=0.01)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
if m.bias is not None:
nn.init.constant_(m.bias, 0)
if m.weight is not None:
nn.init.constant_(m.weight, 1.0)
def cosine_schedule(u):
""" u in [0, 1] """
if isinstance(u, torch.Tensor):
cls = torch
elif isinstance(u, float):
cls = math
else:
raise NotImplementedError(f"Unexpected {type(u)=} {u=}")
return cls.cos(u * cls.pi / 2)
class ActionStat(nn.Module):
def __init__(self, input_info):
super().__init__()
self.register_buffer("mean", torch.FloatTensor(input_info[0]))
self.register_buffer("std", torch.FloatTensor(input_info[1]))
def forward(self, x):
# x: (B, T, S * D). T window length, S is the stride in the datasets, D action dimensions
x = rearrange(x, "b t (s d) -> b t s d", d=len(self.mean))
x = (x - self.mean) / (self.std + 1e-10)
return rearrange(x, "b t s d -> b t (s d)", d=len(self.mean))
def extra_repr(self):
return f"mean={self.mean}, std={self.std}"
def unnormalize(self, actions):
""" unnormalize the actions """
actions = rearrange(actions, "b t (s d) -> b t s d", d=len(self.mean))
actions = actions * (self.std + 1e-10) + self.mean
return rearrange(actions, "b t s d -> b t (s d)", d=len(self.mean))
class STMaskGIT(nn.Module, PyTorchModelHubMixin):
# Next-Token prediction as done in https://arxiv.org/pdf/2402.15391.pdf
def __init__(self, config: GenieConfig):
super().__init__()
self.h = self.w = math.isqrt(config.S)
assert self.h**2 == config.S, "Expected S to be square"
# STTransformerDecoder
self.decoder = STTransformerDecoder(
num_layers=config.num_layers,
num_heads=config.num_heads,
d_model=config.d_model,
qkv_bias=config.qkv_bias,
proj_bias=config.proj_bias,
qk_norm=config.qk_norm,
use_mup=config.use_mup,
attn_drop=config.attn_drop,
mlp_ratio=config.mlp_ratio,
mlp_bias=config.mlp_bias,
mlp_drop=config.mlp_drop,
action_processing=config.action_network,
random_dummy_action=config.random_dummy_action,
jointly_predict_actions=config.jointly_predict_actions,
mask_token_id=config.image_vocab_size
)
# learnable embedding for the maximum image sizes
self.pos_embed_TSC = torch.nn.Parameter(torch.zeros(1, config.T, config.S + config.action_token_size, config.d_model))
print(f"{self.h=} {self.w=} {config.S=} {config.T=} {config.d_model=}")
self.mask_token_id = config.image_vocab_size
self.seq_len = config.S
self.relevant_action_mask = None
self.token_embed = FactorizedEmbedding( # also works for num_factored_vocabs = 1
factored_vocab_size=config.factored_vocab_size,
num_factored_vocabs=config.num_factored_vocabs,
d_model=config.d_model,
mask_token_id=self.mask_token_id,
)
cls = FixedMuReadout if config.use_mup else nn.Linear # (Fixed)MuReadout might slow dow down compiled training?
self.out_x_proj = cls(config.d_model, config.factored_vocab_size * config.num_factored_vocabs)
self.config = config
self.action_mask_tokens = torch.nn.Parameter(torch.zeros(1, config.T, 1, config.d_model))
if (self.config.init_actions or self.config.use_actions) and self.config.action_domains is not None:
self.init_action_projectors(self.config.action_domains, self.config.d_actions,
self.config.action_stats, self.config.action_network)
def init_action_projectors(
self,
domains: list[str],
d_actions: list[int],
action_stats: list[list[list[float]]],
action_network: str = "mlp",
use_diffusion: bool = False,
):
# initialize the action stems. It's called externally for training.
# assert len(domains) == len(d_actions)
self.config.init_actions = True
self.config.action_domains = domains
self.config.d_actions = d_actions
self.config.action_stats = action_stats
self.action_preprocessor = nn.ModuleDict()
self.action_mlp = nn.ModuleDict()
self.action_out_projectors = nn.ModuleDict()
# initialize for every layer
print("use diffusion: ", use_diffusion)
print("init action network:", action_network)
cls = FixedMuReadout if self.config.use_mup else nn.Linear # (Fixed)MuReadout might slow dow down compiled training?
# We currently skip datasets if they fail but `domains` is all specified datasets, so we get misalignment in this case
assert len(domains) == len(d_actions) == len(action_stats), f"{len(domains)=} {len(d_actions)=} {len(action_stats)=}"
for domain, d_action, action_stat in zip(domains, d_actions, action_stats):
# by default, we share these modules across layers
self.action_preprocessor[domain] = ActionStat(action_stat)
self.action_mlp[domain] = BasicMLP(d_action, self.config.d_model)
if not use_diffusion:
self.action_out_projectors[domain] = cls(self.config.d_model, d_action)
# by default, the conditioning are separate for each layer
for layer in self.decoder.layers:
layer.action_projectors = nn.ModuleDict()
for domain, d_action, action_stat in zip(domains, d_actions, action_stats):
if "mlp" in action_network:
layer.action_projectors[domain] = nn.Identity()
elif "cross_attention" in action_network:
layer.action_projectors[domain] = BasicCrossAttention(
num_heads=8,
d_model=self.config.d_model,
k_model=d_action
)
elif "modulate" in action_network:
layer.action_projectors[domain] = ModulateLayer(self.config.d_model, self.config.d_model)
def generate(
self,
input_ids: torch.LongTensor,
attention_mask: torch.LongTensor,
max_new_tokens: int,
min_new_tokens: int = None,
return_logits: bool = False,
return_with_actions: bool = False,
maskgit_steps: int = 1,
temperature: float = 0.0,
action_ids: torch.Tensor = None,
domain: str = "default",
**kwargs
) -> tuple[torch.LongTensor, torch.FloatTensor]:
"""
Args designed to match the format of Llama.
We ignore `attention_mask`, and use `max_new_tokens` to determine the number of frames to generate.
Returns: `(sample_THW, factored_logits)` if `return_logits` else `sample_THW`
sample_THW: size (B, num_new_frames * H * W) corresponding to autoregressively generated
unfactorized token ids for future frames.
Optionally, factored_logits: size (B, factored_vocab_size, num_factored_vocabs, num_new_frames, H, W).
"""
assert min_new_tokens in (None, max_new_tokens), \
"Expecting `min_new_tokens`, if specified, to match `max_new_tokens`."
# assert max_new_tokens % self.config.S == 0, "Expecting `max_new_tokens` to be a multiple of `self.config.S`."
h, w = self.h, self.w
if "h" in kwargs:
h = kwargs["h"][0]
if "w" in kwargs:
w = kwargs["w"][0]
S = h * w
num_new_frames = max_new_tokens // S
inputs_THW = rearrange(input_ids.clone(), "b (t h w) -> b t h w", h=h, w=w)
inputs_masked_THW = torch.cat([
inputs_THW,
torch.full((input_ids.size(0), num_new_frames, h, w),
self.mask_token_id, dtype=torch.long, device=input_ids.device)
], dim=1)
all_factored_logits = []
for timestep in range(inputs_THW.size(1), inputs_THW.size(1) + num_new_frames):
# could change sampling hparams
sample_HW, factored_logits, actions = self.maskgit_generate(
inputs_masked_THW,
timestep,
maskgit_steps=maskgit_steps,
temperature=temperature,
action_ids=action_ids,
domain=domain,
**kwargs
)
inputs_masked_THW[:, timestep] = sample_HW
all_factored_logits.append(factored_logits)
predicted_tokens = rearrange(inputs_masked_THW, "B T H W -> B (T H W)")
if return_with_actions:
# unnormalize actions
actions = self.action_preprocessor[domain[0]].unnormalize(actions)
return predicted_tokens, actions
elif return_logits:
return predicted_tokens, torch.stack(all_factored_logits, dim=3)
else:
return predicted_tokens
def init_mask(self, prompt_THW, t=1):
# since we generate 1 image at a time, the mask should be for a single frame, not across all frames.
T, H, W = prompt_THW.size(1), prompt_THW.size(2), prompt_THW.size(3)
# self.seq_len
unmasked = torch.zeros(prompt_THW.size(0), t * self.seq_len, dtype=torch.bool, device=prompt_THW.device)
return unmasked
@torch.no_grad()
def maskgit_generate(
self,
prompt_THW: torch.LongTensor,
out_t: int,
maskgit_steps: int = 1,
temperature: float = 0.0,
unmask_mode: str = "random",
action_ids=None,
domain="default",
**kwargs
) -> tuple[torch.LongTensor, torch.FloatTensor]:
"""
Performs MaskGIT-style inference to predict frame `out_t`.
Args:
prompt_THW: Unfactorized token ids, size (B, T, H, W)
out_t: Will return predicted unfactorized token ids for this frame.
Should be >= 1 as the 0th frame is assumed to be given.
Expects all future frames to be fully masked.
maskgit_steps: The number of MaskGIT-style inference steps to take.
temperature: Sampling temperature.
In the factorized case, sampling is performed for each factorized vocabulary independently.
If temperature is <= 1e-8, will be greedy (i.e. argmax) instead of actual sampling.
unmask_mode: The method to determine tokens to unmask during each step of MaskGIT inference.
Options:
- "greedy" for unmasking the most confident tokens, which is matches the original MaskGIT
- "random" for randomly choosing tokens to unmask
"greedy" tends to copy the previous frame, so we default to "random" instead.
Returns: (sample_HW, factored_logits)
sample_HW: size (B, H, W) corresponding to predicted unfactorized token ids for frame `out_t`.
factored_logits: size (B, factored_vocab_size, num_factored_vocabs, H, W).
"""
# assume we have pre-masked z{out_t}...zT with all masks
assert out_t, "maskgit_generate requires out_t > 0"
assert torch.all(prompt_THW[:, out_t:] == self.mask_token_id), \
f"when generating z{out_t}, frames {out_t} and later must be masked"
bs, t, h, w = prompt_THW.size(0), prompt_THW.size(1), prompt_THW.size(2), prompt_THW.size(3)
S = h * w
# this will be modified in place on each iteration of this loop
unmasked = self.init_mask(prompt_THW)
logits_CTHW, action_outputs = self.compute_logits(prompt_THW, action_ids=action_ids, domain=domain, **kwargs)
logits_CHW = logits_CTHW[:, :, out_t]
orig_logits_CHW = logits_CHW.clone()
# Return these original logits, not logits after partially sampling.
for step in range(maskgit_steps):
# Perform a single maskgit step (cosine schedule), updating unmasked in-place
if step > 0:
# recompute logits with updated prompt
# action is one step out so this line is doing it again.
logits_CHW, action_outputs = self.compute_logits(prompt_THW, action_ids=action_ids, domain=domain, **kwargs)
logits_CHW = logits_CHW[:, :, out_t]
factored_logits = rearrange(logits_CHW, "b (num_vocabs vocab_size) h w -> b vocab_size num_vocabs h w",
vocab_size=self.config.factored_vocab_size,
num_vocabs=self.config.num_factored_vocabs)
factored_probs = torch.nn.functional.softmax(factored_logits, dim=1)
samples_HW = torch.zeros((bs, h, w), dtype=torch.long, device=prompt_THW.device)
confidences_HW = torch.ones((bs, h, w), dtype=torch.float, device=prompt_THW.device)
for probs in factored_probs.flip(2).unbind(2):
if temperature <= 1e-8: # greedy sampling
sample = probs.argmax(dim=1)
else:
# Categorical expects last dim to be channel dim
dist = torch.distributions.categorical.Categorical(
probs=rearrange(probs, "b vocab_size ... -> b ... vocab_size") / temperature
)
sample = dist.sample()
samples_HW *= self.config.factored_vocab_size
samples_HW += sample
confidences_HW *= torch.gather(probs, 1, sample.unsqueeze(1)).squeeze(1)
prev_unmasked = unmasked.clone()
prev_img_flat = rearrange(prompt_THW[:, out_t], "B H W -> B (H W)")
samples_flat = samples_HW.reshape(bs, S)
if step != maskgit_steps - 1: # skip masking for last maskgit step
# use cosine mask scheduling function, n is how many of frame out_t to mask
n = math.ceil(cosine_schedule((step + 1) / maskgit_steps) * S)
if unmask_mode == "greedy":
# set the n patches with the least confidence to mask_token
confidences_flat = confidences_HW.reshape(bs, S)
elif unmask_mode == "random":
# randomize confidences, so that patches are randomly masked
confidences_flat = torch.rand_like(confidences_HW).reshape(bs, S)
# not probability distribution anymore, but only relative order matters
else:
raise NotImplementedError(f"Expected `unmask_mode` to be one of ['greedy', 'random'], "
f"got {unmask_mode}")
confidences_flat[unmasked] = torch.inf
least_confident_tokens = torch.argsort(confidences_flat, dim=1)
# unmask the (self.config.S - n) most confident tokens
unmasked.scatter_(1, least_confident_tokens[:, n:], True)
samples_flat.scatter_(1, least_confident_tokens[:, :n], self.mask_token_id)
# copy previously unmasked values from prompt input into sample
samples_flat[prev_unmasked] = prev_img_flat[prev_unmasked]
samples_HW = samples_flat.reshape(-1, h, w)
# feed back to iteratively decode
prompt_THW[:, out_t] = samples_HW
# Return the final sample and logits
return samples_HW, rearrange(
orig_logits_CHW, "B (num_vocabs vocab_size) H W -> B vocab_size num_vocabs H W",
vocab_size=self.config.factored_vocab_size, num_vocabs=self.config.num_factored_vocabs, H=h, W=w
), action_outputs
@torch.no_grad()
def maskgit_generate_horizon(
self,
prompt_THW: torch.LongTensor,
out_t_min: int,
out_t_max: int,
maskgit_steps: int = 1,
temperature: float = 0.0,
unmask_mode: str = "random",
action_ids=None,
domain="default",
skip_normalization: bool = False,
**kwargs
) -> tuple[torch.LongTensor, torch.FloatTensor]:
"""
Performs MaskGIT-style inference to predict frame `out_t`.
Args:
prompt_THW: Unfactorized token ids, size (B, T, H, W)
out_t: Will return predicted unfactorized token ids for this frame.
Should be >= 1 as the 0th frame is assumed to be given.
Expects all future frames to be fully masked.
maskgit_steps: The number of MaskGIT-style inference steps to take.
temperature: Sampling temperature.
In the factorized case, sampling is performed for each factorized vocabulary independently.
If temperature is <= 1e-8, will be greedy (i.e. argmax) instead of actual sampling.
unmask_mode: The method to determine tokens to unmask during each step of MaskGIT inference.
Options:
- "greedy" for unmasking the most confident tokens, which is matches the original MaskGIT
- "random" for randomly choosing tokens to unmask
"greedy" tends to copy the previous frame, so we default to "random" instead.
Returns: (sample_HW, factored_logits)
sample_HW: size (B, H, W) corresponding to predicted unfactorized token ids for frame `out_t`.
factored_logits: size (B, factored_vocab_size, num_factored_vocabs, H, W).
"""
# assume we have pre-masked z{out_t}...zT with all masks
assert out_t, "maskgit_generate requires out_t > 0"
assert torch.all(prompt_THW[:, out_t:] == self.mask_token_id), \
f"when generating z{out_t}, frames {out_t} and later must be masked"
bs, t, h, w = prompt_THW.size(0), prompt_THW.size(1), prompt_THW.size(2), prompt_THW.size(3)
S = h * w
# this will be modified in place on each iteration of this loop
unmasked = self.init_mask(prompt_THW)
logits_CTHW, action_outputs = self.compute_logits(prompt_THW, action_ids=action_ids, domain=domain, **kwargs)
logits_CHW = logits_CTHW[:, :, out_t_min:out_t_max]
orig_logits_CHW = logits_CHW.clone()
# Return these original logits, not logits after partially sampling.
for step in tqdm(range(maskgit_steps)):
# Perform a single maskgit step (cosine schedule), updating unmasked in-place
if step > 0:
# recompute logits with updated prompt
# action is one step out so this line is doing it again.
logits_CHW, action_outputs = self.compute_logits(prompt_THW, action_ids=action_ids, domain=domain, **kwargs)
logits_CHW = logits_CHW[:, :, out_t_min:out_t_max]
factored_logits = rearrange(logits_CHW, "b (num_vocabs vocab_size) h w -> b vocab_size num_vocabs h w",
vocab_size=self.config.factored_vocab_size,
num_vocabs=self.config.num_factored_vocabs)
factored_probs = torch.nn.functional.softmax(factored_logits, dim=1)
samples_HW = torch.zeros((bs, h, w), dtype=torch.long, device=prompt_THW.device)
confidences_HW = torch.ones((bs, h, w), dtype=torch.float, device=prompt_THW.device)
for probs in factored_probs.flip(2).unbind(2):
if temperature <= 1e-8: # greedy sampling
sample = probs.argmax(dim=1)
else:
# Categorical expects last dim to be channel dim
dist = torch.distributions.categorical.Categorical(
probs=rearrange(probs, "b vocab_size ... -> b ... vocab_size") / temperature
)
sample = dist.sample()
samples_HW *= self.config.factored_vocab_size
samples_HW += sample
confidences_HW *= torch.gather(probs, 1, sample.unsqueeze(1)).squeeze(1)
prev_unmasked = unmasked.clone()
prev_img_flat = rearrange(prompt_THW[:, out_t_min:out_t_max], "B H W -> B (H W)")
samples_flat = samples_HW.reshape(bs, S)
if step != maskgit_steps - 1: # skip masking for last maskgit step
# use cosine mask scheduling function, n is how many of frame out_t to mask
n = math.ceil(cosine_schedule((step + 1) / maskgit_steps) * S)
if unmask_mode == "greedy":
# set the n patches with the least confidence to mask_token
confidences_flat = confidences_HW.reshape(bs, S)
elif unmask_mode == "random":
# randomize confidences, so that patches are randomly masked
confidences_flat = torch.rand_like(confidences_HW).reshape(bs, S)
# not probability distribution anymore, but only relative order matters
else:
raise NotImplementedError(f"Expected `unmask_mode` to be one of ['greedy', 'random'], "
f"got {unmask_mode}")
confidences_flat[unmasked] = torch.inf
least_confident_tokens = torch.argsort(confidences_flat, dim=1)
# unmask the (self.config.S - n) most confident tokens
unmasked.scatter_(1, least_confident_tokens[:, n:], True)
samples_flat.scatter_(1, least_confident_tokens[:, :n], self.mask_token_id)
# copy previously unmasked values from prompt input into sample
samples_flat[prev_unmasked] = prev_img_flat[prev_unmasked]
samples_HW = samples_flat.reshape(-1, h, w)
# feed back to iteratively decode
prompt_THW[:, out_t_min:out_t_max] = samples_HW
# Return the final sample and logits
return samples_HW, rearrange(
orig_logits_CHW, "B (num_vocabs vocab_size) H W -> B vocab_size num_vocabs H W",
vocab_size=self.config.factored_vocab_size, num_vocabs=self.config.num_factored_vocabs, H=h, W=w
), action_outputs
def compute_video_loss_and_acc(self, logits_CTHW, targets_THW, relevant_mask_THW):
# Video token prediction
T, H, W = self.config.T, self.h, self.w
targets_THW = targets_THW.clone()
targets_THW = rearrange(targets_THW, "B (T H W) -> B T H W", T=T, H=H, W=W)
logits_CTHW, targets_THW = logits_CTHW[:, :, 1:], targets_THW[:, 1:] # first frame always unmasked
factored_logits = rearrange(logits_CTHW,
"b (num_vocabs vocab_size) t h w -> b vocab_size num_vocabs t h w",
vocab_size=self.config.factored_vocab_size,
num_vocabs=self.config.num_factored_vocabs)
factored_targets = factorize_labels(targets_THW)
# adding label_smoothing
loss_THW = F.cross_entropy(factored_logits, factored_targets, reduction="none", label_smoothing=0.01).sum(dim=1)
acc_THW = (factored_logits.argmax(dim=1) == factored_targets).all(dim=1)
# Compute the mean masked error.
# Multiply loss values by mask instead of indexing them, more computationally efficient.
num_masked_tokens = torch.sum(relevant_mask_THW)
relevant_loss = torch.sum(loss_THW * relevant_mask_THW) / num_masked_tokens
relevant_acc = torch.sum(acc_THW * relevant_mask_THW).float() / num_masked_tokens
# only optimize on the masked/noised logits.
return relevant_loss, relevant_acc
def compute_logits(self, x_THW: torch.Tensor, action_ids: torch.Tensor = None, domain = None, **kwargs):
# x_THW is for z0,...,zT while x_targets is z1,...,zT
h, w = self.h, self.w
if "h" in kwargs:
assert "w" in kwargs
h = kwargs["h"][0]
w = kwargs["w"][0]
x_TS = rearrange(x_THW, "B T H W -> B T (H W)")
x_TSC = self.token_embed(x_TS)
T = x_TSC.shape[1]
if action_ids is not None:
# currently, action_preprocessor just normalizes the actions
skip_normalization = kwargs.get("skip_normalization", False)
if not skip_normalization:
action_ids = self.action_preprocessor[domain[0]](action_ids)
action_ids = self.action_mlp[domain[0]](action_ids) # [B, T, D]
if "concat" in self.config.action_network:
# randomly dropped the conditioning
action_condition = action_ids[:, :T, None].repeat(1, 1, self.config.action_token_size, 1) # [B, T, S, D]
if self.relevant_action_mask is not None and self.config.jointly_predict_actions:
action_condition = self.relevant_action_mask[:, :T] * self.action_mask_tokens[:, :T] + \
(1 - self.relevant_action_mask[:, :T]) * action_condition[:, :T]
x_TSC = torch.concat((x_TSC, action_condition), dim=2) # [B, T, S, D]
elif self.config.jointly_predict_actions:
# all masked there is no input actions and try to predict actions as in policy
action_condition = self.action_mask_tokens[:, :T].repeat(1, 1, self.config.action_token_size, 1)
x_TSC = torch.concat((x_TSC, action_condition), dim=2) # [B, T, S, D]
# additive position embeddings, using the same vocab space
domain = domain[0] if domain is not None else None
x_TSC = self.decoder(x_TSC + self.pos_embed_TSC[:, :x_TSC.shape[1], :x_TSC.shape[2]], action_ids=action_ids, domain=domain)
decoded_actions = None
decoded_states = None
if self.config.jointly_predict_actions:
decoded_actions = x_TSC[:, :, -self.config.action_token_size:].mean(dim=2) # pool all tokens
decoded_actions = self.action_out_projectors[domain](decoded_actions)
if self.config.jointly_predict_states:
x_TSC = x_TSC[:, :, :h*w] # remove action tokens
x_next_TSC = self.out_x_proj(x_TSC)
decoded_states = rearrange(x_next_TSC, "B T (H W) C -> B C T H W", H=h, W=w)
# break into actions here
return decoded_states, decoded_actions
def forward(self, input_ids, labels, action_ids=None, domain="default", **kwargs):
"""
input_ids: size (B, T * H * W) represents video sequences
labels: size (B, T * H * W) represents video sequences
action_ids: size (B, T, Da) represents action sequences
"""
# if h and w in kwargs, update them. support varying resolutions.
T, H, W = self.config.T, self.h, self.w
if "h" in kwargs:
H = kwargs["h"][0]
if "w" in kwargs:
W = kwargs["w"][0]
x_THW = rearrange(input_ids, "B (T H W) -> B T H W", T=T, H=H, W=W)
if action_ids is not None:
action_labels = action_ids.clone()
# in training we add masked tokens between 0 (fully unmasked as in video pred) and 1 (fully masked as in policies) for training losses
action_mask = torch.zeros_like(action_ids)
# while action_mask.sum() == 0 or action_mask.sum() == action_mask.numel():
drop_ratio = torch.rand(len(action_ids), 1, 1)
action_mask = torch.rand(len(action_ids), T, 1) < drop_ratio
self.relevant_action_mask = action_mask.unsqueeze(-1).cuda().to(x_THW.dtype)
# Record the loss over masked tokens only to make it more comparable to LLM baselines
logits_CTHW, action_outputs = self.compute_logits(x_THW, action_ids=action_ids, domain=domain, **kwargs)
relevant_mask = x_THW[:, 1:] == self.mask_token_id # could also get mask of corrupted tokens by uncommenting line in `get_maskgit_collator`
relevant_loss = torch.zeros(1).to(x_THW.device)
relevant_acc = torch.zeros(1).to(x_THW.device)
if logits_CTHW is not None:
relevant_loss, relevant_acc = self.compute_video_loss_and_acc(logits_CTHW, labels, relevant_mask)
if action_outputs is not None:
action_loss = torch.nn.functional.mse_loss(action_labels, action_outputs, reduce="none")
action_loss = (action_loss * self.relevant_action_mask[...,0]).mean()
return ModelOutput( loss=relevant_loss,
acc=relevant_acc,
logits=logits_CTHW,
action_loss=action_loss,
actions=action_outputs)
return ModelOutput(loss=relevant_loss, acc=relevant_acc, logits=logits_CTHW)
def init_weights(self):
""" Works with and without muP. """
std = 0.02
for module in self.modules():
if isinstance(module, nn.Linear):
if hasattr(module.weight, "infshape"): # muP
mup.normal_(module.weight, mean=0.0, std=std)
else:
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def set_mup_shapes(self, rescale_params=False):
base_config = self.config.shallow_copy()
base_config.num_heads = 8
base_config.d_model = 256 # currently hardcoding to this shape
base_model = STMaskGIT(base_config)
mup.set_base_shapes(self, base_model, rescale_params=rescale_params)
@classmethod
def from_pretrained(cls, *args, **kwargs):
""" Extra logic for muP. """
model = super().from_pretrained(*args, **kwargs)
if model.config.use_mup:
model.set_mup_shapes(rescale_params=False)
return model
class FixedMuReadout(mup.MuReadout):
# add init_weights for FixedMuReadout
def __init__(self, d_input, d_output):
super().__init__(d_input, d_output)
self.apply(self._init_weights)
def _init_weights(self, m): # TODO: muP?
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight, gain=0.01)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
"""
Using `return super(mup.MuReadout, self).forward(self.output_mult * x / self.width_mult())` with `torch.compile`
results in two divisions by `self.width_mult()` for some reason
"""
# return F.linear(self.output_mult * x / self.width_mult(), self.weight, self.bias) # equivalent
return nn.Linear.forward(self, self.output_mult * x / self.width_mult())
|