Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,564 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import copy
import os
import random
from operator import itemgetter
from typing import Optional, List
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.distributed as dist
from PIL import Image
from torch.utils.data import Dataset, Sampler
from torch.utils.data import Sampler, DistributedSampler
def chunk_indices(indices: list[int], size: int) -> tuple[torch.Tensor, ...]:
return torch.split(torch.tensor(indices), size)
class CombinedDataLoader:
def __init__(self, dataloaders, reinit=True):
"""
:param dataloaders: list of pytorch dataloaders
"""
self.dataloaders = dataloaders
self.reinit = reinit
self.dataloader_idx = 0
self.loader_iters = [iter(dataloader) for dataloader in self.dataloaders]
def __iter__(self):
return self
def __next__(self):
# Choose a dataloader based on weights
chosen_loader_iter = self.loader_iters[self.dataloader_idx]
try:
data = next(chosen_loader_iter)
return data
except StopIteration:
# Handle case where a dataloader is exhausted. Reinitialize the iterator.
self.dataloader_idx = self.dataloader_idx + 1
if self.dataloader_idx == len(self.loader_iters):
self.dataloader_idx = 0 # reset
raise StopIteration
return self.__next__()
def __len__(self):
return sum([len(dataloader) for dataloader in self.dataloaders])
class CombinedBatchSampler(torch.utils.data.Sampler):
# For validation dataloaders.
def __init__(self, datasets, batch_size, num_processes=1, shuffle=False):
super().__init__() # no-op
prev_idx = 0
all_batches = []
for dataset in datasets:
indices = list(range(prev_idx, prev_idx + len(dataset)))
if shuffle:
random.shuffle(indices)
# exclude remainer, if necessary
remainder = len(indices) % (batch_size * num_processes)
if remainder > 0:
indices = indices[:-remainder] # exclude last
chunk_i = chunk_indices(indices, batch_size) # equally sized
all_batches += chunk_i
# add the new indices without the last batch
prev_idx += len(chunk_i) * batch_size # len(dataset)
if shuffle:
random.shuffle(all_batches)
self.all_batches = all_batches
def __iter__(self):
return iter(self.all_batches)
def __len__(self):
return len(self.all_batches)
# https://github.com/catalyst-team/catalyst/blob/master/catalyst/data/sampler.py
class DatasetFromSampler(Dataset):
"""Dataset to create indexes from `Sampler`.
Args:
sampler: PyTorch sampler
"""
def __init__(self, sampler: Sampler):
"""Initialisation for DatasetFromSampler."""
self.sampler = sampler
self.sampler_list = None
def __getitem__(self, index: int):
"""Gets element of the dataset.
Args:
index: index of the element in the dataset
Returns:
Single element by index
"""
if self.sampler_list is None:
self.sampler_list = list(self.sampler)
return self.sampler_list[index]
def __len__(self) -> int:
"""
Returns:
int: length of the dataset
"""
return len(self.sampler)
class DistributedSamplerWrapper(DistributedSampler):
"""
Wrapper over `Sampler` for distributed training.
Allows you to use any sampler in distributed mode.
It is especially useful in conjunction with
`torch.nn.parallel.DistributedDataParallel`. In such case, each
process can pass a DistributedSamplerWrapper instance as a DataLoader
sampler, and load a subset of subsampled data of the original dataset
that is exclusive to it.
.. note::
Sampler is assumed to be of constant size.
"""
def __init__(
self,
sampler,
num_replicas: Optional[int] = None,
rank: Optional[int] = None,
shuffle: bool = True,
):
"""
Args:
sampler: Sampler used for subsampling
num_replicas (int, optional): Number of processes participating in
distributed training
rank (int, optional): Rank of the current process
within ``num_replicas``
shuffle (bool, optional): If true (default),
sampler will shuffle the indices
"""
super(DistributedSamplerWrapper, self).__init__(
DatasetFromSampler(sampler),
num_replicas=num_replicas,
rank=rank,
shuffle=shuffle,
)
self.sampler = sampler
def __iter__(self):
"""Iterate over sampler.
Returns:
python iterator
"""
self.dataset = DatasetFromSampler(self.sampler)
indexes_of_indexes = super().__iter__()
subsampler_indexes = self.dataset
return iter(itemgetter(*indexes_of_indexes)(subsampler_indexes))
# https://github.com/rabeehk/hyperformer/blob/main/hyperformer/data/multitask_sampler.py
class MultiTaskBatchSampler(Sampler):
"""Defines a sampler to sample multiple datasets with temperature sampling
in a distributed fashion."""
def __init__(
self,
dataset_sizes: List[int],
batch_size: int,
temperature: float,
dataset_groups=[],
num_replicas: Optional[int] = 1,
rank: Optional[int] = 0,
seed: int = 0,
shuffle: bool = True,
shuffle_task: bool = True,
) -> None:
"""Constructor for MultiTaskBatchSampler.
Args:
dataset_sizes: a list of integers, specifies the number of samples in
each dataset.
batch_size: integer, specifies the batch size.
temperature: float, temperature used for temperature sampling. The larger
the value, the datasets are sampled equally, and for value of 0, the datasets
will be sampled according to their number of samples.
num_replicas: integer, specifies the number of processes.
rank: integer, specifies the rank of the current process/
seed: integer, random seed.
shuffle: bool, if set to true, the datasets will be shuffled in each epoch.
"""
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
print("data sampler rank:", rank)
if rank >= num_replicas or rank < 0:
raise ValueError(
"Invalid rank {}, rank should be in the interval" " [0, {}]".format(rank, num_replicas - 1)
)
self.dataset_groups = dataset_groups
print("dataset groups:", self.dataset_groups)
self.num_replicas = num_replicas
self.shuffle_task = shuffle_task
self.rank = rank
self.batch_size = batch_size
self.dataset_sizes = dataset_sizes
# By default we drop the last elements if dataset is not divisible by the number of ranks.
self.rank_dataset_sizes = [dataset_size // self.num_replicas for dataset_size in self.dataset_sizes]
self.dataset_offsets = torch.cumsum(torch.LongTensor([0] + dataset_sizes), 0)
self.total_sizes = [
(dataset_size // self.num_replicas) * self.num_replicas for dataset_size in self.dataset_sizes
]
self.temperature = temperature
self.seed = seed
self.epoch = 0
self.num_batches_per_epoch = (
(np.sum(dataset_sizes) + self.batch_size - 1) // self.batch_size // self.num_replicas
)
self.shuffle = shuffle
print(f"{num_replicas=} {rank=} {self.num_batches_per_epoch=} {self.total_sizes=} self.weights={self.generate_tasks_distribution()}")
def generate_tasks_distribution(self):
"""Given the dataset sizes computes the weights to sample each dataset
according to the temperature sampling."""
if len(self.dataset_groups) > 0:
# normalize across groups first
weights = []
num_groups = len(self.dataset_groups)
for group in self.dataset_groups:
lo, hi = group
dataset_sizes = [self.dataset_sizes[idx] for idx in range(lo, hi)]
total_size = sum(dataset_sizes)
group_weights = np.array([(size / total_size) ** (1.0 / self.temperature) for size in dataset_sizes])
group_weights = group_weights / np.sum(group_weights) / num_groups
weights = np.concatenate((weights, group_weights))
else:
total_size = sum(self.dataset_sizes)
weights = np.array([(size / total_size) ** (1.0 / self.temperature) for size in self.dataset_sizes])
weights = weights / np.sum(weights)
return torch.as_tensor(weights, dtype=torch.double)
def __iter__(self):
# Defines torch generator, to make random choices consistent across cores in
# different epochs, the seed needs to be set based on seed and epoch.
generator = torch.Generator()
generator.manual_seed(self.seed + self.epoch)
# Shuffles the datasets if shuffle is set to true.
indices = []
for dataset_size in self.dataset_sizes:
if self.shuffle:
indices.append(torch.randperm(dataset_size, generator=generator).tolist())
else:
indices.append(list(range(dataset_size)))
# Shards the datasets across the all processes.
self.rank_indices = []
for i in range(len(self.dataset_sizes)):
self.rank_indices.append(indices[i][self.rank : self.total_sizes[i] : self.num_replicas])
# To make the model consistent across different processes, since the
# model is based on tasks, we need to make sure the same task is selected
# across different processes.
tasks_distribution: torch.Tensor = self.generate_tasks_distribution()
# Chooses the tasks which will be used in each batch in one epoch.
# With passing generator, we make sure this choice is consistent across
# different processes.
# want them to be different.
if self.shuffle_task:
generator.manual_seed(self.seed + self.epoch + self.rank)
batch_task_assignments = torch.multinomial(
tasks_distribution, self.num_batches_per_epoch, replacement=True, generator=generator
)
for batch_task in batch_task_assignments:
# Gets the number of samples of the selected datasets available for the current rank.
num_task_samples = self.rank_dataset_sizes[batch_task]
# Computes the random samples from the chosen dataset.
indices = torch.randint(low=0, high=num_task_samples, size=(self.batch_size,), generator=generator).tolist()
# Converts the selected indices to the global indices on the given dataset.
results = (self.dataset_offsets[batch_task] + torch.tensor(self.rank_indices[batch_task])[indices]).tolist()
yield results
def __len__(self):
return self.num_batches_per_epoch
def set_epoch(self, epoch):
self.epoch = epoch
def make_dataset_pie_plot(domains, traj_nums):
"""draw the dataset mixture as a pie plot"""
new_domains = []
for idx, domain in enumerate(domains):
new_domains.append(domain)
plt.cla()
fig1, ax1 = plt.subplots(figsize=(40, 40))
traj_prob = np.array(traj_nums) / np.sum(traj_nums)
tab20 = plt.get_cmap("tab20").colors
tab20b = plt.get_cmap("tab20b").colors
tab20c = plt.get_cmap("tab20c").colors
# Combine them to get 60 distinct colors
colors = tab20 + tab20b + tab20c
patches, _ = ax1.pie(traj_prob, startangle=90, colors=colors[: len(traj_prob)])
ax1.axis("equal")
ax1.legend(patches, new_domains, loc="center left", bbox_to_anchor=(0.8, 0.5), prop={"size": 32})
fig1.canvas.draw()
return Image.frombytes("RGB", fig1.canvas.get_width_height(), fig1.canvas.tostring_rgb())
|