Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,212 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
"""
Lookup Free Quantization
Proposed in https://arxiv.org/abs/2310.05737
In the simplest setup, each dimension is quantized into {-1, 1}.
An entropy penalty is used to encourage utilization.
Refer to
https://github.com/lucidrains/vector-quantize-pytorch/blob/master/vector_quantize_pytorch/lookup_free_quantization.py
https://github.com/theAdamColton/ijepa-enhanced/blob/7edef5f7288ae8f537f0db8a10044a2a487f70c9/ijepa_enhanced/lfq.py
"""
"""
Modified Open-MAGVIT2 code to use VQConfig.
"""
from math import log2, ceil
from collections import namedtuple
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch.nn import Module
from einops import rearrange, reduce, pack, unpack
from magvit2.config import VQConfig
# constants
LossBreakdown = namedtuple('LossBreakdown', ['per_sample_entropy', 'codebook_entropy', 'commitment', 'avg_probs'])
# helper functions
def exists(v):
return v is not None
def default(*args):
for arg in args:
if exists(arg):
return arg() if callable(arg) else arg
return None
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
# entropy
def entropy(prob):
return (-prob * torch.log(prob + 1e-5)).sum(dim=-1)
# class
def mult_along_first_dims(x, y):
"""
returns x * y elementwise along the leading dimensions of y
"""
ndim_to_expand = x.ndim - y.ndim
for _ in range(ndim_to_expand):
y = y.unsqueeze(-1)
return x * y
def masked_mean(x, m):
"""
takes the mean of the elements of x that are not masked
the mean is taken along the shared leading dims of m
equivalent to: x[m].mean(tuple(range(m.ndim)))
The benefit of using masked_mean rather than using
tensor indexing is that masked_mean is much faster
for torch-compile on batches.
The drawback is larger floating point errors
"""
x = mult_along_first_dims(x, m)
x = x / m.sum()
return x.sum(tuple(range(m.ndim)))
def entropy_loss(
logits,
mask=None,
temperature=0.01,
sample_minimization_weight=1.0,
batch_maximization_weight=1.0,
eps=1e-5,
):
"""
Entropy loss of unnormalized logits
logits: Affinities are over the last dimension
https://github.com/google-research/magvit/blob/05e8cfd6559c47955793d70602d62a2f9b0bdef5/videogvt/train_lib/losses.py#L279
LANGUAGE MODEL BEATS DIFFUSION — TOKENIZER IS KEY TO VISUAL GENERATION (2024)
"""
probs = F.softmax(logits / temperature, -1)
log_probs = F.log_softmax(logits / temperature + eps, -1)
if mask is not None:
avg_probs = masked_mean(probs, mask)
else:
avg_probs = reduce(probs, "... D -> D", "mean")
avg_entropy = -torch.sum(avg_probs * torch.log(avg_probs + eps))
sample_entropy = -torch.sum(probs * log_probs, -1)
if mask is not None:
sample_entropy = masked_mean(sample_entropy, mask).mean()
else:
sample_entropy = torch.mean(sample_entropy)
loss = (sample_minimization_weight * sample_entropy) - (
batch_maximization_weight * avg_entropy
)
return sample_entropy, avg_entropy, loss
class LFQ(Module):
def __init__(self, config: VQConfig):
super().__init__()
# some assert validations
assert exists(config.z_channels) or exists(config.codebook_size), \
"either dim or codebook_size must be specified for LFQ"
assert not exists(config.codebook_size) or log2(config.codebook_size).is_integer(), \
f"your codebook size must be a power of 2 for lookup free quantization (suggested {2 ** ceil(log2(config.codebook_size))})"
self.codebook_size = default(config.codebook_size, lambda: 2 ** dim)
self.codebook_dim = int(log2(config.codebook_size))
codebook_dims = self.codebook_dim * config.num_codebooks
dim = default(config.z_channels, codebook_dims)
has_projections = dim != codebook_dims
self.has_projections = has_projections
self.dim = dim
self.codebook_dim = self.codebook_dim
self.num_codebooks = config.num_codebooks
# for entropy loss
self.sample_minimization_weight = config.sample_minimization_weight
self.batch_maximization_weight = config.batch_maximization_weight
# for no auxiliary loss, during inference
self.token_factorization = config.token_factorization # only utilized in second stage
if not self.token_factorization: # for first stage model
self.register_buffer('mask', 2 ** torch.arange(self.codebook_dim - 1, -1, -1), persistent=False)
else:
k = self.codebook_dim // 2
self.register_buffer("mask", 2 ** torch.arange(k - 1, -1, -1), persistent=False)
self.register_buffer('zero', torch.tensor(0.), persistent=False)
# codes
all_codes = torch.arange(config.codebook_size)
bits = self.indices_to_bits(all_codes)
codebook = bits * 2.0 - 1.0
self.register_buffer('codebook', codebook, persistent=False)
@property
def dtype(self):
return self.codebook.dtype
def indices_to_bits(self, x):
"""
x: long tensor of indices for constructing codebook, but actually not utilized in all the experiments.
returns big endian bits
"""
mask = 2 ** torch.arange(self.codebook_dim, device=x.device, dtype=torch.long)
# x is now big endian bits, the last dimension being the bits
x = (x.unsqueeze(-1) & mask) != 0
return x
def get_codebook_entry(self, x, bhwc):
if self.token_factorization:
k = self.codebook_dim // 2
mask = 2 ** torch.arange(k - 1, -1, -1, device=x.device, dtype=torch.long)
else:
mask = 2 ** torch.arange(self.codebook_dim-1, -1, -1, device=x.device, dtype=torch.long)
x = (x.unsqueeze(-1) & mask) != 0 # find its bit representation
x = x * 2.0 - 1.0 #back to the float
## scale back to the desired shape
b, h, w, c = bhwc
x = rearrange(x, "b (h w) c -> b h w c", h=h, w=w, c=c)
x = rearrange(x, "b h w c -> b c h w")
return x
def bits_to_indices(self, bits):
"""
bits: bool tensor of big endian bits, where the last dimension is the bit dimension
returns indices, which are long integers from 0 to self.codebook_size
"""
assert bits.shape[-1] == self.codebook_dim
indices = 2 ** torch.arange(
0,
self.codebook_dim,
1,
dtype=torch.long,
device=bits.device,
)
return (bits * indices).sum(-1)
def decode(self, x):
"""
x: ... NH
where NH is number of codebook heads
A longtensor of codebook indices, containing values from
0 to self.codebook_size
"""
x = self.indices_to_bits(x)
# to some sort of float
x = x.to(self.dtype)
# -1 or 1
x = x * 2 - 1
x = rearrange(x, "... NC Z-> ... (NC Z)")
return x
def forward(
self,
x,
return_loss_breakdown=False,
mask=None,
return_loss=True,
flip=False,
):
"""
einstein notation
b - batch
n - sequence (or flattened spatial dimensions)
d - feature dimension, which is also log2(codebook size)
c - number of codebook dim
"""
x = rearrange(x, 'b d ... -> b ... d')
x, ps = pack_one(x, 'b * d')
# split out number of codebooks
x = rearrange(x, 'b n (c d) -> b n c d', c=self.num_codebooks)
codebook_value = torch.Tensor([1.0]).to(device=x.device, dtype=x.dtype)
quantized = torch.where(x > 0, codebook_value, -codebook_value) # higher than 0 filled
# calculate indices
if self.token_factorization:
k = self.codebook_dim // 2
indices_pre = reduce((quantized[..., :k] > 0).int() * self.mask.int(), "b n c d -> b n c", "sum")
indices_post = reduce((quantized[..., k:] > 0).int() * self.mask.int(), "b n c d -> b n c", "sum")
# indices_post = 2**k + indices_post #shifter to the 1024
else:
if not flip:
indices = reduce((quantized > 0).int() * self.mask.int(), 'b n c d -> b n c', 'sum')
else:
# not sure why this is necessary
indices = reduce((quantized > 0).flip(-1).int() * self.mask.int(), 'b n c d -> b n c', 'sum')
# entropy aux loss
if self.training and return_loss:
logits = 2 * einsum('... i d, j d -> ... i j', x, self.codebook)
# the same as Euclidean distance up to a constant
per_sample_entropy, codebook_entropy, entropy_aux_loss = entropy_loss(
logits=logits,
sample_minimization_weight=self.sample_minimization_weight,
batch_maximization_weight=self.batch_maximization_weight
)
avg_probs = self.zero
else:
## calculate the codebook_entropy needed for one batch evaluation
#------------------------------------------------------------------
# logits = 2 * einsum('... i d, j d -> ... i j', x, self.codebook)
# probs = F.softmax(logits / 0.01, -1)
# avg_probs = reduce(probs, "b n c d -> b d", "mean")
# avg_probs = torch.sum(avg_probs, 0) #batch dimension
#-------------------------------------------------------------------
# if not training, just return dummy 0
per_sample_entropy = codebook_entropy = self.zero
entropy_aux_loss = self.zero
avg_probs = self.zero
# commit loss
if self.training:
commit_loss = F.mse_loss(x, quantized.detach(), reduction='none')
if exists(mask):
commit_loss = commit_loss[mask]
commit_loss = commit_loss.mean()
else:
commit_loss = self.zero
# use straight-through gradients (optionally with custom activation fn) if training
quantized = x + (quantized - x).detach() # transfer to quantized
# merge back codebook dim
quantized = rearrange(quantized, 'b n c d -> b n (c d)')
# reconstitute image or video dimensions
quantized = unpack_one(quantized, ps, 'b * d')
quantized = rearrange(quantized, 'b ... d -> b d ...')
if self.token_factorization:
indices_pre = unpack_one(indices_pre, ps, "b * c")
indices_post = unpack_one(indices_post, ps, "b * c")
indices_pre = indices_pre.flatten()
indices_post = indices_post.flatten()
indices = (indices_pre, indices_post)
else:
indices = unpack_one(indices, ps, 'b * c')
indices = indices.flatten()
ret = (quantized, entropy_aux_loss, indices)
if not return_loss_breakdown:
return ret
return ret, LossBreakdown(per_sample_entropy, codebook_entropy, commit_loss, avg_probs)
|