Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,205 Bytes
246c106 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
"""
Modification of Open-MAGVIT2 code, including adding gradient accumulation during training, using VQConfig,
removing hardcoded arguments and removing unnecessary code.
"""
import torch
import torch.nn.functional as F
import lightning as L
from collections import OrderedDict
from contextlib import contextmanager
from magvit2.config import VQConfig
from magvit2.modules.diffusionmodules.improved_model import Encoder, Decoder
from magvit2.modules.losses.vqperceptual import VQLPIPSWithDiscriminator
from magvit2.modules.vqvae.lookup_free_quantize import LFQ
from magvit2.modules.scheduler.lr_scheduler import Scheduler_LinearWarmup, Scheduler_LinearWarmup_CosineDecay
from magvit2.modules.ema import LitEma
class VQModel(L.LightningModule):
def __init__(
self,
config: VQConfig,
training_args=None,
ckpt_path=None,
ignore_keys=[],
image_key="image",
colorize_nlabels=None,
monitor=None,
use_ema=True,
stage=None,
):
super().__init__()
self.training_args = training_args
self.image_key = image_key
self.encoder = Encoder(config)
self.decoder = Decoder(config)
self.loss = VQLPIPSWithDiscriminator(config)
self.quantize = LFQ(config)
self.use_ema = use_ema
self.stage = stage
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, stage=stage)
self.image_key = image_key
if colorize_nlabels is not None:
assert isinstance(colorize_nlabels, int)
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
if monitor is not None:
self.monitor = monitor
self.generator_params = list(self.encoder.parameters()) + \
list(self.decoder.parameters()) + \
list(self.quantize.parameters())
if self.use_ema and stage is None: #no need to construct ema when training transformer
self.model_ema = LitEma(self) # Note: this means EMA weights are overriden after `init_from_ckpt`.
self.automatic_optimization = False
self.strict_loading = False
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.parameters())
self.model_ema.copy_to(self)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def state_dict(self, *args, destination=None, prefix='', keep_vars=False):
"""
save the state_dict and filter out the
"""
return {k: v for k, v in super().state_dict(*args, destination, prefix, keep_vars).items() if
("inception_model" not in k and "lpips_vgg" not in k and "lpips_alex" not in k)}
def init_from_ckpt(self, path, ignore_keys=list(), stage=None):
sd = torch.load(path, map_location="cpu")["state_dict"]
ema_mapping = {}
new_params = OrderedDict()
if stage == "transformer": ### directly use ema encoder and decoder parameter
if self.use_ema:
for k, v in sd.items():
if "encoder" in k:
if "model_ema" in k:
k = k.replace("model_ema.", "") #load EMA Encoder or Decoder
new_k = ema_mapping[k]
new_params[new_k] = v
s_name = k.replace('.', '')
ema_mapping.update({s_name: k})
continue
if "decoder" in k:
if "model_ema" in k:
k = k.replace("model_ema.", "") # load EMA Encoder or Decoder
new_k = ema_mapping[k]
new_params[new_k] = v
s_name = k.replace(".", "")
ema_mapping.update({s_name: k})
continue
else: # also only load the Generator
for k, v in sd.items():
if "encoder" in k:
new_params[k] = v
elif "decoder" in k:
new_params[k] = v
missing_keys, unexpected_keys = self.load_state_dict(new_params, strict=False)
else: ## simple resume
missing_keys, unexpected_keys = self.load_state_dict(sd, strict=False)
# print(f"{missing_keys=} {unexpected_keys=}")
print(f"Restored from {path}")
def encode_without_quantize(self, x):
h = self.encoder(x)
return h
def encode(self, x, **kwargs):
h = self.encoder(x)
(quant, emb_loss, info), loss_breakdown = self.quantize(h, return_loss_breakdown=True, **kwargs)
### using token factorization the info is a tuple (each for embedding)
return quant, emb_loss, info, loss_breakdown
def decode(self, quant):
dec = self.decoder(quant)
return dec
def forward(self, input):
quant, codebook_loss, _, loss_break = self.encode(input)
dec = self.decode(quant)
return dec, codebook_loss, loss_break
def get_input(self, batch, image_key):
x = batch[image_key]
if len(x.shape) == 3: # grayscale case I think? - Kevin
x = x[..., None]
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format)
return x.float()
# fix mulitple optimizer bug
# refer to https://lightning.ai/docs/pytorch/stable/model/manual_optimization.html
def training_step(self, batch, batch_idx):
x = self.get_input(batch, self.image_key)
x_reconstructed, codebook_loss, loss_break = self(x)
# generator
aeloss, log_dict_ae = self.loss(codebook_loss, loss_break, x, x_reconstructed, 0, self.global_step,
last_layer=self.get_last_layer(), split="train")
self.manual_backward(aeloss / self.training_args.grad_accum_steps, inputs=self.generator_params)
# https://discuss.pytorch.org/t/how-to-implement-gradient-accumulation-for-gan/112751/4
# discriminator
discloss, log_dict_disc = self.loss(codebook_loss, loss_break, x, x_reconstructed, 1, self.global_step,
last_layer=self.get_last_layer(), split="train")
# x_reconstructed gets detached, `codebook_loss` and `loss_break` unused
self.manual_backward(discloss / self.training_args.grad_accum_steps)
# TODO: clip grads?
if (batch_idx + 1) % self.training_args.grad_accum_steps == 0: # might not update at end of epoch?
opt_gen, opt_disc = self.optimizers()
scheduler_gen, scheduler_disc = self.lr_schedulers()
####################
# fix global step bug
# refer to https://github.com/Lightning-AI/pytorch-lightning/issues/17958
opt_disc._on_before_step = lambda: self.trainer.profiler.start("optimizer_step")
opt_disc._on_after_step = lambda: self.trainer.profiler.stop("optimizer_step")
# opt_gen._on_before_step = lambda: self.trainer.profiler.start("optimizer_step")
# opt_gen._on_after_step = lambda: self.trainer.profiler.stop("optimizer_step")
####################
opt_gen.step()
scheduler_gen.step()
opt_gen.zero_grad()
opt_disc.step()
scheduler_disc.step()
opt_disc.zero_grad()
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self)
def validation_step(self, batch, batch_idx):
if self.use_ema:
with self.ema_scope():
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
else:
log_dict = self._validation_step(batch, batch_idx)
def _validation_step(self, batch, batch_idx, suffix=""):
x = self.get_input(batch, self.image_key)
quant, eloss, indices, loss_break = self.encode(x)
x_rec = self.decode(quant).clamp(-1, 1)
aeloss, log_dict_ae = self.loss(eloss, loss_break, x, x_rec, 0, self.global_step,
last_layer=self.get_last_layer(), split="val" + suffix)
discloss, log_dict_disc = self.loss(eloss, loss_break, x, x_rec, 1, self.global_step,
last_layer=self.get_last_layer(), split="val" + suffix)
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
return self.log_dict
def configure_optimizers(self):
lr = self.training_args.learning_rate
adam_betas = (self.training_args.adam_beta_1, self.training_args.adam_beta_2)
opt_gen = torch.optim.Adam(self.generator_params,
lr=lr, betas=adam_betas)
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
lr=lr, betas=adam_betas)
# steps_per_epoch = len(self.trainer.datamodule._train_dataloader()) // self.trainer.world_size
steps_per_epoch = len(self.trainer.fit_loop._data_source.instance) // self.trainer.world_size // self.training_args.grad_accum_steps
if self.trainer.is_global_zero:
print(f"{steps_per_epoch=}")
warmup_steps = steps_per_epoch * self.training_args.warmup_epochs
training_steps = steps_per_epoch * self.trainer.max_epochs
if self.training_args.scheduler_type == "None":
return ({"optimizer": opt_gen}, {"optimizer": opt_disc})
if self.training_args.scheduler_type == "linear-warmup":
scheduler_ae = torch.optim.lr_scheduler.LambdaLR(opt_gen, Scheduler_LinearWarmup(warmup_steps))
scheduler_disc = torch.optim.lr_scheduler.LambdaLR(opt_disc, Scheduler_LinearWarmup(warmup_steps))
elif self.training_args.scheduler_type == "linear-warmup_cosine-decay":
multipler_min = self.training_args.min_learning_rate / self.training_args.learning_rate
scheduler_ae = torch.optim.lr_scheduler.LambdaLR(opt_gen, Scheduler_LinearWarmup_CosineDecay(
warmup_steps=warmup_steps, max_steps=training_steps, multipler_min=multipler_min))
scheduler_disc = torch.optim.lr_scheduler.LambdaLR(opt_disc, Scheduler_LinearWarmup_CosineDecay(
warmup_steps=warmup_steps, max_steps=training_steps, multipler_min=multipler_min))
else:
raise NotImplementedError()
return {"optimizer": opt_gen, "lr_scheduler": scheduler_ae}, {"optimizer": opt_disc,
"lr_scheduler": scheduler_disc}
def get_last_layer(self):
return self.decoder.conv_out.weight
def log_images(self, batch, **kwargs):
log = dict()
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
xrec, _ = self(x)
if x.shape[1] > 3:
# colorize with random projection
assert xrec.shape[1] > 3
x = self.to_rgb(x)
xrec = self.to_rgb(xrec)
log["inputs"] = x
log["reconstructions"] = xrec
return log
def to_rgb(self, x):
assert self.image_key == "segmentation"
if not hasattr(self, "colorize"):
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
x = F.conv2d(x, weight=self.colorize)
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
return x
|