File size: 8,496 Bytes
796fad1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from time import sleep
import ast
import astunparse
import openai
from openai.error import RateLimitError, APIConnectionError
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import TerminalFormatter


class LMP:

    def __init__(self, name, cfg, lmp_fgen, fixed_vars, variable_vars, md_logger):
        self._name = name
        self._cfg = cfg
        self._md_logger = md_logger

        with open(self._cfg['prompt_path'], 'r') as f:
            self._base_prompt = f.read()

        self._stop_tokens = list(self._cfg['stop'])

        self._lmp_fgen = lmp_fgen

        self._fixed_vars = fixed_vars
        self._variable_vars = variable_vars
        self.exec_hist = ''

    def clear_exec_hist(self):
        self.exec_hist = ''

    def build_prompt(self, query, context=''):
        if len(self._variable_vars) > 0:
            variable_vars_imports_str = f"from utils import {', '.join(self._variable_vars.keys())}"
        else:
            variable_vars_imports_str = ''
        prompt = self._base_prompt.replace('{variable_vars_imports}', variable_vars_imports_str)

        if self._cfg['maintain_session']:
            prompt += f'\n{self.exec_hist}'

        if context != '':
            prompt += f'\n{context}'

        use_query = f'{self._cfg["query_prefix"]}{query}{self._cfg["query_suffix"]}'
        prompt += f'\n{use_query}'

        return prompt, use_query

    def __call__(self, query, context='', **kwargs):
        prompt, use_query = self.build_prompt(query, context=context)

        while True:
            try:
                code_str = openai.Completion.create(
                    prompt=prompt,
                    stop=self._stop_tokens,
                    temperature=self._cfg['temperature'],
                    engine=self._cfg['engine'],
                    max_tokens=self._cfg['max_tokens']
                )['choices'][0]['text'].strip()
                break
            except (RateLimitError, APIConnectionError) as e:
                print(f'OpenAI API got err {e}')
                print('Retrying after 10s.')
                sleep(10)

        if self._cfg['include_context'] and context != '':
            to_exec = f'{context}\n{code_str}'
            to_log = f'{context}\n{use_query}\n{code_str}'
        else:
            to_exec = code_str
            to_log = f'{use_query}\n{to_exec}'

        to_log_pretty = highlight(to_log, PythonLexer(), TerminalFormatter())
        print(f'LMP {self._name} generated code:\n{to_log_pretty}')
        self._md_logger.log_text(f'LMP {self._name} Generated Code:')
        self._md_logger.log_code(to_log)

        new_fs = self._lmp_fgen.create_new_fs_from_code(code_str)
        self._variable_vars.update(new_fs)

        gvars = merge_dicts([self._fixed_vars, self._variable_vars])
        lvars = kwargs

        if not self._cfg['debug_mode']:
            exec_safe(to_exec, gvars, lvars)

        self.exec_hist += f'\n{to_exec}'

        if self._cfg['maintain_session']:
            self._variable_vars.update(lvars)

        if self._cfg['has_return']:
            return lvars[self._cfg['return_val_name']]


class LMPFGen:

    def __init__(self, cfg, fixed_vars, variable_vars, md_logger):
        self._cfg = cfg

        self._stop_tokens = list(self._cfg['stop'])
        self._fixed_vars = fixed_vars
        self._variable_vars = variable_vars
        self._md_logger = md_logger

        with open(self._cfg['prompt_path'], 'r') as f:
            self._base_prompt = f.read()

    def create_f_from_sig(self, f_name, f_sig, other_vars=None, fix_bugs=False, return_src=False):
        print(f'Creating function: {f_sig}')

        use_query = f'{self._cfg["query_prefix"]}{f_sig}{self._cfg["query_suffix"]}'
        prompt = f'{self._base_prompt}\n{use_query}'

        while True:
            try:
                f_src = openai.Completion.create(
                    prompt=prompt, 
                    stop=self._stop_tokens,
                    temperature=self._cfg['temperature'],
                    engine=self._cfg['engine'],
                    max_tokens=self._cfg['max_tokens']
                )['choices'][0]['text'].strip()
                break
            except (RateLimitError, APIConnectionError) as e:
                print(f'OpenAI API got err {e}')
                print('Retrying after 10s.')
                sleep(10)

        if fix_bugs:
            f_src = openai.Edit.create(
                model='code-davinci-edit-001',
                input='# ' + f_src,
                temperature=0,
                instruction='Fix the bug if there is one. Improve readability. Keep same inputs and outputs. Only small changes. No comments.',
            )['choices'][0]['text'].strip()

        if other_vars is None:
            other_vars = {}
        gvars = merge_dicts([self._fixed_vars, self._variable_vars, other_vars])
        lvars = {}
        
        exec_safe(f_src, gvars, lvars)

        f = lvars[f_name]

        to_print = f'{use_query}\n{f_src}'
        to_print_pretty = highlight(to_print, PythonLexer(), TerminalFormatter())
        print(f'LMPFGen generated code:\n{to_print_pretty}')
        self._md_logger.log_text('Generated Function:')
        self._md_logger.log_code(to_print)

        if return_src:
            return f, f_src
        return f

    def create_new_fs_from_code(self, code_str, other_vars=None, fix_bugs=False, return_src=False):
        fs, f_assigns = {}, {}
        f_parser = FunctionParser(fs, f_assigns)
        f_parser.visit(ast.parse(code_str))
        for f_name, f_assign in f_assigns.items():
            if f_name in fs:
                fs[f_name] = f_assign

        if other_vars is None:
            other_vars = {}

        new_fs = {}
        srcs = {}
        for f_name, f_sig in fs.items():
            all_vars = merge_dicts([self._fixed_vars, self._variable_vars, new_fs, other_vars])
            if not var_exists(f_name, all_vars):
                f, f_src = self.create_f_from_sig(f_name, f_sig, new_fs, fix_bugs=fix_bugs, return_src=True)

                # recursively define child_fs in the function body if needed
                f_def_body = astunparse.unparse(ast.parse(f_src).body[0].body)
                child_fs, child_f_srcs = self.create_new_fs_from_code(
                    f_def_body, other_vars=all_vars, fix_bugs=fix_bugs, return_src=True
                )

                if len(child_fs) > 0:
                    new_fs.update(child_fs)
                    srcs.update(child_f_srcs)

                    # redefine parent f so newly created child_fs are in scope
                    gvars = merge_dicts([self._fixed_vars, self._variable_vars, new_fs, other_vars])
                    lvars = {}
                    
                    exec_safe(f_src, gvars, lvars)
                    
                    f = lvars[f_name]

                new_fs[f_name], srcs[f_name] = f, f_src

        if return_src:
            return new_fs, srcs
        return new_fs


class FunctionParser(ast.NodeTransformer):

    def __init__(self, fs, f_assigns):
      super().__init__()
      self._fs = fs
      self._f_assigns = f_assigns

    def visit_Call(self, node):
        self.generic_visit(node)
        if isinstance(node.func, ast.Name):
            f_sig = astunparse.unparse(node).strip()
            f_name = astunparse.unparse(node.func).strip()
            self._fs[f_name] = f_sig
        return node

    def visit_Assign(self, node):
        self.generic_visit(node)
        if isinstance(node.value, ast.Call):
            assign_str = astunparse.unparse(node).strip()
            f_name = astunparse.unparse(node.value.func).strip()
            self._f_assigns[f_name] = assign_str
        return node


def var_exists(name, all_vars):
    try:
        eval(name, all_vars)
    except:
        exists = False
    else:
        exists = True
    return exists


def merge_dicts(dicts):
    return {
        k : v 
        for d in dicts
        for k, v in d.items()
    }
    

def exec_safe(code_str, gvars=None, lvars=None):
    banned_phrases = ['import', '__']
    for phrase in banned_phrases:
        assert phrase not in code_str
  
    if gvars is None:
        gvars = {}
    if lvars is None:
        lvars = {}
    empty_fn = lambda *args, **kwargs: None
    custom_gvars = merge_dicts([
        gvars,
        {'exec': empty_fn, 'eval': empty_fn}
    ])
    exec(code_str, custom_gvars, lvars)