Spaces:
Runtime error
Runtime error
File size: 8,496 Bytes
796fad1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
from time import sleep
import ast
import astunparse
import openai
from openai.error import RateLimitError, APIConnectionError
from pygments import highlight
from pygments.lexers import PythonLexer
from pygments.formatters import TerminalFormatter
class LMP:
def __init__(self, name, cfg, lmp_fgen, fixed_vars, variable_vars, md_logger):
self._name = name
self._cfg = cfg
self._md_logger = md_logger
with open(self._cfg['prompt_path'], 'r') as f:
self._base_prompt = f.read()
self._stop_tokens = list(self._cfg['stop'])
self._lmp_fgen = lmp_fgen
self._fixed_vars = fixed_vars
self._variable_vars = variable_vars
self.exec_hist = ''
def clear_exec_hist(self):
self.exec_hist = ''
def build_prompt(self, query, context=''):
if len(self._variable_vars) > 0:
variable_vars_imports_str = f"from utils import {', '.join(self._variable_vars.keys())}"
else:
variable_vars_imports_str = ''
prompt = self._base_prompt.replace('{variable_vars_imports}', variable_vars_imports_str)
if self._cfg['maintain_session']:
prompt += f'\n{self.exec_hist}'
if context != '':
prompt += f'\n{context}'
use_query = f'{self._cfg["query_prefix"]}{query}{self._cfg["query_suffix"]}'
prompt += f'\n{use_query}'
return prompt, use_query
def __call__(self, query, context='', **kwargs):
prompt, use_query = self.build_prompt(query, context=context)
while True:
try:
code_str = openai.Completion.create(
prompt=prompt,
stop=self._stop_tokens,
temperature=self._cfg['temperature'],
engine=self._cfg['engine'],
max_tokens=self._cfg['max_tokens']
)['choices'][0]['text'].strip()
break
except (RateLimitError, APIConnectionError) as e:
print(f'OpenAI API got err {e}')
print('Retrying after 10s.')
sleep(10)
if self._cfg['include_context'] and context != '':
to_exec = f'{context}\n{code_str}'
to_log = f'{context}\n{use_query}\n{code_str}'
else:
to_exec = code_str
to_log = f'{use_query}\n{to_exec}'
to_log_pretty = highlight(to_log, PythonLexer(), TerminalFormatter())
print(f'LMP {self._name} generated code:\n{to_log_pretty}')
self._md_logger.log_text(f'LMP {self._name} Generated Code:')
self._md_logger.log_code(to_log)
new_fs = self._lmp_fgen.create_new_fs_from_code(code_str)
self._variable_vars.update(new_fs)
gvars = merge_dicts([self._fixed_vars, self._variable_vars])
lvars = kwargs
if not self._cfg['debug_mode']:
exec_safe(to_exec, gvars, lvars)
self.exec_hist += f'\n{to_exec}'
if self._cfg['maintain_session']:
self._variable_vars.update(lvars)
if self._cfg['has_return']:
return lvars[self._cfg['return_val_name']]
class LMPFGen:
def __init__(self, cfg, fixed_vars, variable_vars, md_logger):
self._cfg = cfg
self._stop_tokens = list(self._cfg['stop'])
self._fixed_vars = fixed_vars
self._variable_vars = variable_vars
self._md_logger = md_logger
with open(self._cfg['prompt_path'], 'r') as f:
self._base_prompt = f.read()
def create_f_from_sig(self, f_name, f_sig, other_vars=None, fix_bugs=False, return_src=False):
print(f'Creating function: {f_sig}')
use_query = f'{self._cfg["query_prefix"]}{f_sig}{self._cfg["query_suffix"]}'
prompt = f'{self._base_prompt}\n{use_query}'
while True:
try:
f_src = openai.Completion.create(
prompt=prompt,
stop=self._stop_tokens,
temperature=self._cfg['temperature'],
engine=self._cfg['engine'],
max_tokens=self._cfg['max_tokens']
)['choices'][0]['text'].strip()
break
except (RateLimitError, APIConnectionError) as e:
print(f'OpenAI API got err {e}')
print('Retrying after 10s.')
sleep(10)
if fix_bugs:
f_src = openai.Edit.create(
model='code-davinci-edit-001',
input='# ' + f_src,
temperature=0,
instruction='Fix the bug if there is one. Improve readability. Keep same inputs and outputs. Only small changes. No comments.',
)['choices'][0]['text'].strip()
if other_vars is None:
other_vars = {}
gvars = merge_dicts([self._fixed_vars, self._variable_vars, other_vars])
lvars = {}
exec_safe(f_src, gvars, lvars)
f = lvars[f_name]
to_print = f'{use_query}\n{f_src}'
to_print_pretty = highlight(to_print, PythonLexer(), TerminalFormatter())
print(f'LMPFGen generated code:\n{to_print_pretty}')
self._md_logger.log_text('Generated Function:')
self._md_logger.log_code(to_print)
if return_src:
return f, f_src
return f
def create_new_fs_from_code(self, code_str, other_vars=None, fix_bugs=False, return_src=False):
fs, f_assigns = {}, {}
f_parser = FunctionParser(fs, f_assigns)
f_parser.visit(ast.parse(code_str))
for f_name, f_assign in f_assigns.items():
if f_name in fs:
fs[f_name] = f_assign
if other_vars is None:
other_vars = {}
new_fs = {}
srcs = {}
for f_name, f_sig in fs.items():
all_vars = merge_dicts([self._fixed_vars, self._variable_vars, new_fs, other_vars])
if not var_exists(f_name, all_vars):
f, f_src = self.create_f_from_sig(f_name, f_sig, new_fs, fix_bugs=fix_bugs, return_src=True)
# recursively define child_fs in the function body if needed
f_def_body = astunparse.unparse(ast.parse(f_src).body[0].body)
child_fs, child_f_srcs = self.create_new_fs_from_code(
f_def_body, other_vars=all_vars, fix_bugs=fix_bugs, return_src=True
)
if len(child_fs) > 0:
new_fs.update(child_fs)
srcs.update(child_f_srcs)
# redefine parent f so newly created child_fs are in scope
gvars = merge_dicts([self._fixed_vars, self._variable_vars, new_fs, other_vars])
lvars = {}
exec_safe(f_src, gvars, lvars)
f = lvars[f_name]
new_fs[f_name], srcs[f_name] = f, f_src
if return_src:
return new_fs, srcs
return new_fs
class FunctionParser(ast.NodeTransformer):
def __init__(self, fs, f_assigns):
super().__init__()
self._fs = fs
self._f_assigns = f_assigns
def visit_Call(self, node):
self.generic_visit(node)
if isinstance(node.func, ast.Name):
f_sig = astunparse.unparse(node).strip()
f_name = astunparse.unparse(node.func).strip()
self._fs[f_name] = f_sig
return node
def visit_Assign(self, node):
self.generic_visit(node)
if isinstance(node.value, ast.Call):
assign_str = astunparse.unparse(node).strip()
f_name = astunparse.unparse(node.value.func).strip()
self._f_assigns[f_name] = assign_str
return node
def var_exists(name, all_vars):
try:
eval(name, all_vars)
except:
exists = False
else:
exists = True
return exists
def merge_dicts(dicts):
return {
k : v
for d in dicts
for k, v in d.items()
}
def exec_safe(code_str, gvars=None, lvars=None):
banned_phrases = ['import', '__']
for phrase in banned_phrases:
assert phrase not in code_str
if gvars is None:
gvars = {}
if lvars is None:
lvars = {}
empty_fn = lambda *args, **kwargs: None
custom_gvars = merge_dicts([
gvars,
{'exec': empty_fn, 'eval': empty_fn}
])
exec(code_str, custom_gvars, lvars) |