Spaces:
Runtime error
Runtime error
File size: 34,243 Bytes
bb48ea5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
from contextlib import contextmanager
import gradio as gr
from database.operation import *
from memorize import *
from database import SessionLocal, engine, Base
import database.schema as schema
from database import constant
import time
import asyncio
import pandas as pd
from collections import defaultdict
from datetime import datetime
Base.metadata.create_all(bind=engine)
db = SessionLocal()
@contextmanager
def session_scope():
try:
yield db
db.commit()
except Exception:
db.rollback()
raise
finally:
db.close()
intro = """\
目标场景:只考虑记住单词及其意思,使得能无障碍阅读,不考虑用于写作。
主要想法:批量记单词,每批 n 个单词,这 n 个单词用 AI 生成故事,复述故事即可记住单词。
为什么?
- 批量记单词,一次可以记住 n 个单词,而不是一个一个记,效率高。
- 复述故事,即费曼学习法,故事是单词的记忆之锚。
- 复述故事而不是复述单词,故事具有连续性,更符合人类天性,容易记。
### 使用建议
1. 记单词前,先完整过一遍全部单词,剔除已记住的单词,从而提高新词密度
2. 先看单词表格,然后看英文故事,对照中文完成记忆
3. 记忆完成后需要一个一个勾选已记住的单词,勾选时尝试复述单词意思,以此来检验记忆效果
> 本项目基于[开源数据集](https://github.com/LinXueyuanStdio/DictionaryData),并且[开源代码](https://github.com/LinXueyuanStdio/oh-my-words),欢迎大家贡献代码~
"""
with gr.Blocks(title="批量记单词") as demo:
# gr.Markdown("# 批量记单词")
gr.HTML("<h1 align=\"center\">批量记单词</h1>")
user = gr.State(value={})
# 0. 登录
with gr.Tab("主页"):
gr.Markdown(intro)
gr.Markdown(f"共 {get_book_count(db)} 本书")
gr.HTML("""<iframe src="https://ghbtns.com/github-btn.html?user=LinXueyuanStdio&repo=oh-my-words&type=star&count=true&size=small" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>""")
with gr.Row():
with gr.Column():
email = gr.TextArea(value=constant.email, lines=1, label="邮箱")
password = gr.TextArea(value=constant.password, lines=1, label="密码")
login_btn = gr.Button("登录")
with gr.Column():
register_email = gr.TextArea(value='', lines=1, label="邮箱")
register_password = gr.TextArea(value='', lines=1, label="密码")
register_btn = gr.Button("立即注册", variant="primary")
user_status = gr.Textbox("", lines=1, label="用户状态")
# 1. 创建记忆计划
tab1 = gr.Tab("创建记忆计划", visible=False)
with tab1:
select_book = gr.Dropdown([], label="单词书", info="选择一本单词书")
batch_size = gr.Number(value=10, label="批次大小")
randomize = gr.Checkbox(value=True, label="以单词乱序进行记忆")
title = gr.TextArea(value='单词书', lines=1, label="记忆计划的名称")
btn = gr.Button("创建记忆计划")
status = gr.Textbox("", lines=1, label="状态")
def submit(user: Dict[str, str], book, title, randomize, batch_size):
user_id = user.get("id", None)
if user_id is None:
gr.Error("请先登录")
return "请先登录"
book_id = book.split(" [")[1][:-1]
user_book = create_user_book(db, UserBookCreate(
owner_id=user_id,
book_id=book_id,
title=title,
random=randomize,
batch_size=batch_size
))
if user_book is not None:
return "成功"
else:
return "失败"
btn.click(submit, [user, select_book, title, randomize, batch_size], [status])
def on_select(user: Dict[str, str], evt: gr.SelectData):
user_id = user.get("id", None)
new_options = []
if user_id is None:
return gr.Dropdown(choices=new_options), "请先登录"
books = get_all_books_for_user(db, user_id)
new_options = [f"{'⭐ ' if book.permission == 'private' else ''}{book.bk_name} (共 {book.bk_item_num} 词) [{book.bk_id}]" for book in books]
return gr.Dropdown(choices=new_options), f"您好,{user['email']}"
tab1.select(on_select, [user], [select_book, status])
# 2. 选择单词分批
with gr.Tab("选择单词分批") as tab2:
select_user_book = gr.Dropdown(
[], label="记忆计划", info="请选择记忆计划"
)
word_count = gr.Number(value=0, label="单词个数")
known_words = gr.CheckboxGroup(
[], label="已学会的单词", info="正式记忆前将去除已学会的单词,提高每个批次的新词密度,进而提高效率"
)
btn = gr.Button("生成批次")
status = gr.Textbox("3000 词大概要 2 小时才能写完所有的故事", lines=1, label="生成结果")
def on_select_user(user):
user_id = user.get("id", None)
if user_id is None:
gr.Error("请先登录")
return gr.Dropdown(choices=[]), "请先登录"
new_options = []
user_book = get_user_books_by_owner_id(db, user_id)
new_options = [f"{book.title} | {book.batch_size}个单词一组 [{book.id}]" for book in user_book]
return gr.Dropdown(choices=new_options), "3000 词大概要 2 小时才能写完所有的故事"
def on_select_user_book(user_book):
logger.debug(f'user_book {user_book}')
if user_book is None:
return 0, gr.CheckboxGroup(choices=[])
new_options = []
user_book_id = user_book.split(" [")[1][:-1]
user_book = get_user_book(db, user_book_id)
book_id = user_book.book_id
book = get_book(db, book_id)
if book is None:
return 0, gr.CheckboxGroup(choices=[])
words = get_words_for_book(db, user_book)
new_options = [f"{word.vc_vocabulary}" for word in words]
return len(words), gr.CheckboxGroup(choices=new_options)
select_user_book.select(on_select_user_book, inputs=[select_user_book], outputs=[word_count, known_words])
tab2.select(on_select_user, [user], [select_user_book, status])
def submit(user_book, known_words):
start_time = time.time()
user_book_id = user_book.split(" [")[1][:-1]
user_book = get_user_book(db, user_book_id)
all_words = get_words_for_book(db, user_book)
unknown_words = []
for w in all_words:
if w.vc_vocabulary not in known_words:
unknown_words.append(w)
track(db, user_book, unknown_words)
end_time = time.time()
duration = end_time - start_time
return f"成功!分为 {len(unknown_words) // user_book.batch_size} 个批次,共 {len(unknown_words)} 个单词,耗时 {duration:.2f} 秒"
btn.click(submit, [select_user_book, known_words], [status])
# 3. 记忆
with gr.Tab("记忆") as tab3:
select_user_book = gr.Dropdown(
[], label="记忆计划", info="请选择记忆计划"
)
info = gr.Accordion(f"新词", open=False)
with info:
gr.Markdown(f"新词")
dataframe_header = ["单词", "中文词意", "英式音标", "美式音标", "记忆量"]
memorizing_dataframe = gr.Dataframe(
headers=dataframe_header,
datatype=["str"] * len(dataframe_header),
col_count=(len(dataframe_header), "fixed"),
wrap=True,
)
batches = gr.State(value=[])
current_batch_index = gr.State(value=-1)
user_book_id = gr.State(value=None)
with gr.Row():
# story = gr.HighlightedText([])
# translated_story = gr.HighlightedText([])
# story = gr.Textbox()
# translated_story = gr.Textbox()
story = gr.Markdown()
translated_story = gr.Markdown()
# 试了一下,还是 markdown 的显示效果好
memorize_action = gr.CheckboxGroup(choices=[], label="记住的单词", info="能够复述出意思才算记住")
with gr.Row():
previous_batch_btn = gr.Button("上一批")
regenerate_btn = gr.Button("重新生成故事")
next_batch_btn = gr.Button("下一批", variant="primary")
progress = gr.Slider(1, 1, value=1, step=1, label="进度", info="")
def on_select_user(user):
user_id = user.get("id", None)
if user_id is None:
gr.Error("请先登录")
return gr.Dropdown(choices=[])
new_options = []
user_book = get_user_books_by_owner_id(db, user_id)
new_options = [f"{book.title} | {book.batch_size}个单词一组 [{book.id}]" for book in user_book]
return gr.Dropdown(choices=new_options)
def update_from_batch(memorizing_batch: UserMemoryBatch):
new_options = []
word_df = []
# logger.debug(get_user_memory_batch(db, memorizing_batch.id))
# logger.debug(memorizing_batch.id)
# logger.debug(get_user_memory_words_by_batch_id(db, memorizing_batch.id))
# logger.debug(get_words_by_ids(db, [w.word_id for w in get_user_memory_words_by_batch_id(db, memorizing_batch.id)]))
# words = get_words_in_batch(db, memorizing_batch.id)
# words = get_words_by_ids(db, [w.word_id for w in memorizing_words])
memorizing_words = get_user_memory_words_by_batch_id(db, memorizing_batch.id)
words = get_words_by_ids(db, [w.word_id for w in memorizing_words])
# 统计记忆量
actions = get_actions_at_each_word(db, [w.word_id for w in memorizing_words])
remember_count = defaultdict(int)
forget_count = defaultdict(int)
for a in actions:
if a.action == "remember":
remember_count[a.word_id] += 1
else:
forget_count[a.word_id] += 1
# 统计记忆效率
batch_actions = get_user_memory_batch_actions_by_user_memory_batch_id(db, memorizing_batch.id)
batch_actions.sort(key=lambda x: x.create_time)
start, end = None, None
total_duration = None
for a in batch_actions:
if a.action == "start":
start: datetime = a.create_time
elif a.action == "end":
end: datetime = a.create_time
if start is None:
continue
if total_duration is None:
total_duration = end - start
else:
total_duration += end - start
memory_speed = f"{memorizing_batch.batch_type}"
if total_duration is not None:
sec = total_duration.total_seconds()
minutes = sec / 60
memory_speed += f":当前批次记忆效率 {len(memorizing_words) / minutes:.2f} 词/分钟,{minutes:.2f} 分钟/批次"
# 单词信息表格与勾选
for w in words:
new_options.append(f"{w.vc_vocabulary}")
word_df.append([
w.vc_vocabulary, # 单词
w.vc_translation, # 中文词意
w.vc_phonetic_uk, # 英式音标
w.vc_phonetic_us, # 美式音标
f"{remember_count[w.vc_id]} / {remember_count[w.vc_id] + forget_count[w.vc_id]}", # 记忆量
])
df = pd.DataFrame(word_df, columns=dataframe_header)
if memorizing_batch.batch_type == "回忆":
df = pd.DataFrame([[row[0], "", row[2], row[3], row[4]] for row in word_df], columns=dataframe_header)
# 故事
story = memorizing_batch.story
translated_story = memorizing_batch.translated_story
if len(story) == 0 or len(translated_story) == 0:
story, translated_story = regenerate_for_batch(memorizing_batch, words)
logger.info("计算批次信息")
logger.info(new_options)
logger.info(story)
logger.info(translated_story)
logger.info("=" * 8)
return (gr.Accordion(label=memory_speed), df, story, translated_story, gr.CheckboxGroup(choices=new_options))
def on_select_user_book(user_book_id: str):
"""
1. 当前单词
2. 对当前单词的操作
3. 故事
"""
logger.debug(f'user_book {user_book_id}')
if user_book_id is None:
# 为什么会空?这里返回的东西可能会爆炸,但好像执行不到这里
# 不管了,放个告示牌在这里,大家看见这个坑请绕着走
return [], gr.CheckboxGroup(choices=[])
user_book_id: str = user_book_id.split(" [")[1][:-1]
user_book = get_user_book(db, user_book_id)
batches = get_new_user_memory_batches_by_user_book_id(db, user_book_id) # 只缓存新词
batch_id = user_book.memorizing_batch
memorizing_batch = get_user_memory_batch(db, batch_id)
current_batch_index = -1
if memorizing_batch is not None:
for index, b in enumerate(batches):
if b.id == memorizing_batch.id:
current_batch_index = index
break
if current_batch_index == -1:
# 当前还没开始记忆,或者当前批次不是新词批次
current_batch_index = 0
memorizing_batch = batches[0]
batch_id = memorizing_batch.id
user_book.memorizing_batch = batch_id
update_user_book(db, user_book_id, UserBookUpdate(
owner_id=user_book.owner_id,
book_id=user_book.book_id,
title=user_book.title,
random=user_book.random,
batch_size=user_book.batch_size,
memorizing_batch=batch_id
))
updates = update_from_batch(memorizing_batch)
on_batch_start(db, memorizing_batch.id)
asyncio.run(pregenerate(batches, current_batch_index))
return (batches, current_batch_index, user_book) + updates + (
gr.Slider(
minimum=1,
maximum=len(batches),
value=current_batch_index,
),)
batch_widget = [info, memorizing_dataframe, story, translated_story, memorize_action]
tab3.select(on_select_user, inputs=[user], outputs=[select_user_book])
select_user_book.select(
on_select_user_book,
inputs=[select_user_book],
outputs=[batches, current_batch_index, user_book_id] + batch_widget + [progress]
)
async def worker_regenerate_for_batch(batches: List[UserMemoryBatch], index: int):
started_at = time.monotonic()
logger.info(f"started {index}")
# start
batch = batches[index]
story = batch.story
translated_story = batch.translated_story
if len(story) == 0 or len(translated_story) == 0:
batch_words = get_words_in_batch(db, batch.id)
regenerate_for_batch(batch, batch_words)
# end
total = time.monotonic() - started_at
logger.info(f'completed in {total:.2f} seconds')
async def pregenerate(batches: List[UserMemoryBatch], current_batch_index: int):
logger.info("开始预生成故事")
indexes = [current_batch_index+i+1 for i in range(3)]+[current_batch_index-i-1 for i in range(3)]
indexes = [i for i in indexes if 0 <= i < len(batches)]
for index in indexes:
asyncio.ensure_future(worker_regenerate_for_batch(batches, index))
logger.info("结束预生成故事")
def submit_batch(batches: List[UserMemoryBatch], current_batch_index: int):
memorizing_batch = batches[current_batch_index]
return set_memorizing_batch(batches, current_batch_index, memorizing_batch)
def set_memorizing_batch(batches: List[UserMemoryBatch], current_batch_index: int, memorizing_batch: UserMemoryBatch):
updates = update_from_batch(memorizing_batch)
asyncio.run(pregenerate(batches, current_batch_index))
logger.info("pregenerated")
return updates + (gr.Slider(value=current_batch_index+1), current_batch_index)
def save_progress(old_batch: UserMemoryBatch, memorize_action: List[str]):
# 保存单词记忆进度
actions = []
words = get_words_in_batch(db, old_batch.id)
for word in words:
if word.vc_vocabulary in memorize_action:
actions.append((word.vc_id, "remember"))
else:
actions.append((word.vc_id, "forget"))
save_memorizing_word_action(db, old_batch.id, actions)
def previous_batch(batches: List[UserMemoryBatch], current_batch_index: int, user_book: schema.UserBook, memorize_action: List[str]):
old_index = current_batch_index
if current_batch_index <= 0:
current_batch_index = 0
elif current_batch_index > 0:
current_batch_index -= 1
if current_batch_index != old_index:
# 下一页之前需要保存记忆进度
# logger.info("下一页之前需要保存记忆进度")
# logger.info(memorize_action)
# 保存批次进度
old_batch = batches[old_index]
current_batch = batches[current_batch_index]
save_progress(old_batch, memorize_action)
on_batch_end(db, old_batch.id)
on_batch_start(db, current_batch.id)
user_book_id = user_book.id
update_user_book_memorizing_batch(db, user_book_id, current_batch.id)
return submit_batch(batches, current_batch_index)
def next_batch(batches: List[UserMemoryBatch], current_batch_index: int, user_book: schema.UserBook, memorize_action: List[str]):
old_index = current_batch_index
if current_batch_index >= len(batches)-1:
current_batch_index = len(batches)-1
elif current_batch_index < len(batches) - 1:
current_batch_index += 1
if current_batch_index != old_index:
# 下一页之前需要保存记忆进度
# logger.info("下一页之前需要保存记忆进度")
# logger.info(memorize_action)
# 保存批次进度
old_batch = batches[old_index]
memorizing_batch = get_user_memory_batch(db, user_book.memorizing_batch)
if memorizing_batch is not None:
old_batch = memorizing_batch
current_batch = batches[current_batch_index]
save_progress(old_batch, memorize_action)
on_batch_end(db, old_batch.id)
next_batch = generate_next_batch(db, user_book, minutes=60, k=3)
if next_batch is not None:
current_batch = next_batch
on_batch_start(db, current_batch.id)
user_book_id = user_book.id
update_user_book_memorizing_batch(db, user_book_id, current_batch.id)
if next_batch is not None:
return set_memorizing_batch(batches, old_index, current_batch)
else:
return set_memorizing_batch(batches, current_batch_index, current_batch)
else:
memorizing_batch = get_user_memory_batch(db, user_book.memorizing_batch)
current_batch = batches[current_batch_index]
save_progress(memorizing_batch, memorize_action)
on_batch_end(db, memorizing_batch.id)
next_batch = generate_next_batch(db, user_book, minutes=60, k=3)
if next_batch is not None:
current_batch = next_batch
on_batch_start(db, current_batch.id)
user_book_id = user_book.id
update_user_book_memorizing_batch(db, user_book_id, current_batch.id)
if next_batch is not None:
return set_memorizing_batch(batches, old_index, current_batch)
else:
return set_memorizing_batch(batches, current_batch_index, current_batch)
previous_batch_btn.click(
previous_batch,
inputs=[batches, current_batch_index, user_book_id, memorize_action],
outputs=batch_widget + [progress, current_batch_index]
)
next_batch_btn.click(
next_batch,
inputs=[batches, current_batch_index, user_book_id, memorize_action],
outputs=batch_widget + [progress, current_batch_index]
)
def regenerate_for_batch(memorizing_batch: UserMemoryBatch, batch_words: List[Word]):
batch_words_str_list = [word.vc_vocabulary for word in batch_words]
logger.info(f"生成故事 {batch_words_str_list}")
story, translated_story = generate_story_and_translated_story(batch_words_str_list)
memorizing_batch.story = story
memorizing_batch.translated_story = translated_story
db.commit()
db.refresh(memorizing_batch)
create_user_memory_batch_generation_history(db, UserMemoryBatchGenerationHistoryCreate(
batch_id=memorizing_batch.id,
story=story,
translated_story=translated_story
))
logger.info(story)
logger.info(translated_story)
return story, translated_story
def regenerate(batches: List[UserMemoryBatch], current_batch_index: int):
# 重新生成故事
memorizing_batch = batches[current_batch_index]
batch_words = get_words_in_batch(db, memorizing_batch.id)
story, translated_story = regenerate_for_batch(memorizing_batch, batch_words)
return story, translated_story
regenerate_btn.click(regenerate, inputs=[batches, current_batch_index], outputs=[story, translated_story])
# 4. 从记忆计划中创建单词书
with gr.Tab("从记忆计划中创建单词书") as tab4:
select_user_book = gr.Dropdown(
[], label="记忆计划", info="请选择记忆计划"
)
word_count = gr.Number(value=0, label="单词个数")
known_words = gr.CheckboxGroup(
[], label="已学会的单词", info="请检查已学会的单词,这些单词将不会被包含在新的单词书中"
)
title = gr.TextArea(value='单词书', lines=1, label="单词书的名称")
btn = gr.Button("从记忆计划中创建单词书")
status = gr.Textbox("", lines=1, label="状态")
def on_select_user(user):
user_id = user.get("id", None)
if user_id is None:
gr.Error("请先登录")
return gr.Dropdown(choices=[])
new_options = []
user_book = get_user_books_by_owner_id(db, user_id)
new_options = [f"{book.title} | {book.batch_size}个单词一组 [{book.id}]" for book in user_book]
return gr.Dropdown(choices=new_options)
def on_select_user_book(user_book):
logger.debug(f'user_book {user_book}')
if user_book is None:
return 0, gr.CheckboxGroup(choices=[])
new_options = []
user_book_id = user_book.split(" [")[1][:-1]
words = get_words_in_user_book(db, user_book_id)
new_options = [f"{word.vc_vocabulary}" for word in words]
return len(words), gr.CheckboxGroup(choices=new_options)
tab4.select(on_select_user, inputs=[user], outputs=[select_user_book])
select_user_book.select(on_select_user_book, inputs=[select_user_book], outputs=[word_count, known_words])
def submit(user, user_book, known_words, title):
user_id = user.get("id", None)
if user_id is None:
gr.Error("请先登录")
return "请先登录"
user_book_id = user_book.split(" [")[1][:-1]
all_words = get_words_in_user_book(db, user_book_id)
unknown_words = []
for w in all_words:
if w.vc_vocabulary not in known_words:
unknown_words.append(w)
# all_words = get_words_by_vocabulary(db, known_words)
book = save_words_as_book(db, user_id, unknown_words, title)
if book is not None:
return f"成功生成一本单词书:{book.bk_name}"
else:
return "失败"
btn.click(submit, [user, select_user_book, known_words, title], [status])
# 5. 统计
with gr.Tab("统计") as tab5:
# 5.1. 故事生成历史
with gr.Tab("AI 历史记录") as tab51:
select_user_book = gr.Dropdown(
[], label="记忆计划", info="请选择记忆计划"
)
history_header = ["单词", "故事", "中文故事", "生成时间"]
history_dataframe = gr.Dataframe(
headers=history_header,
datatype=["str"] * len(history_header),
col_count=(len(history_header), "fixed"),
wrap=True,
min_width=320,
height=800,
)
def on_select_user(user):
user_id = user.get("id", None)
if user_id is None:
gr.Error("请先登录")
return gr.Dropdown(choices=[])
new_options = []
user_book = get_user_books_by_owner_id(db, user_id)
new_options = [f"{book.title} | {book.batch_size}个单词一组 [{book.id}]" for book in user_book]
return gr.Dropdown(choices=new_options)
def on_select_user_book(user_book_id):
logger.debug(f'user_book {user_book_id}')
if user_book_id is None:
return 0, gr.CheckboxGroup(choices=[])
user_book_id = user_book_id.split(" [")[1][:-1]
batch_id_to_words_and_history = get_generation_hostorys_by_user_book_id(db, user_book_id)
data = []
for batch_id, (words, histories) in batch_id_to_words_and_history.items():
for history in histories:
word = ", ".join([w.vc_vocabulary for w in words])
story = history.story
translated_story = history.translated_story
create_time = history.create_time
data.append([word, story, translated_story, create_time])
df = pd.DataFrame(data, columns=history_header)
return df
tab51.select(on_select_user, inputs=[user], outputs=[select_user_book])
select_user_book.select(on_select_user_book, inputs=[select_user_book], outputs=[history_dataframe])
# 5.2. 记忆历史记录
with gr.Tab("记忆历史记录") as tab52:
select_user_book = gr.Dropdown(
[], label="记忆计划", info="请选择记忆计划"
)
batch_history_header = ["单词", "故事", "中文故事", "批次类型", "记忆情况", "生成时间"]
batch_history_dataframe = gr.Dataframe(
headers=batch_history_header,
datatype=["str"] * len(batch_history_header),
col_count=(len(batch_history_header), "fixed"),
wrap=True,
min_width=320,
height=800,
)
def on_select_user(user):
user_id = user.get("id", None)
if user_id is None:
gr.Error("请先登录")
return gr.Dropdown(choices=[])
new_options = []
user_book = get_user_books_by_owner_id(db, user_id)
new_options = [f"{book.title} | {book.batch_size}个单词一组 [{book.id}]" for book in user_book]
return gr.Dropdown(choices=new_options)
def on_select_user_book(user_book_id):
logger.debug(f'user_book {user_book_id}')
if user_book_id is None:
return 0, gr.CheckboxGroup(choices=[])
user_book_id = user_book_id.split(" [")[1][:-1]
actions, batch_id_to_batch, batch_id_to_words, batch_id_to_actions = get_user_memory_batch_history(db, user_book_id)
data = []
for action in actions:
batch_id = action.batch_id
words = batch_id_to_words[batch_id]
word = ", ".join([w.vc_vocabulary for w in words])
batch = batch_id_to_batch[batch_id]
story = batch.story
translated_story = batch.translated_story
batch_type = batch.batch_type
memory_actions = batch_id_to_actions.get(batch_id, [])
remember_word_ids = {a.word_id for a in memory_actions if a.action == "remember"}
remember_words = []
forget_words = []
for w in words:
if w.vc_id in remember_word_ids:
remember_words.append(w.vc_vocabulary)
else:
forget_words.append(w.vc_vocabulary)
memory_status = f"记住 {len(remember_words)} 个单词,忘记 {len(forget_words)} 个单词"
memory_status += f",记住的单词:{', '.join(remember_words)}"
memory_status += f",忘记的单词:{', '.join(forget_words)}"
create_time = action.create_time
data.append([word, story, translated_story, batch_type, memory_status, create_time])
df = pd.DataFrame(data, columns=batch_history_header)
return df
tab52.select(on_select_user, inputs=[user], outputs=[select_user_book])
select_user_book.select(on_select_user_book, inputs=[select_user_book], outputs=[batch_history_dataframe])
on_login_success_ui = [email, password, login_btn, register_email, register_password, register_btn]
on_login_success_ui += [tab1]
def on_login(login_success):
return (
gr.TextArea(visible=not login_success),
gr.TextArea(visible=not login_success),
gr.Button(visible=not login_success),
gr.TextArea(visible=not login_success),
gr.TextArea(visible=not login_success),
gr.Button(visible=not login_success),
# gr.Accordion(visible=not login_success),
) + (
gr.Tab(visible=login_success),
)
def login(email, password):
user = get_user_by_email(db, email)
if password is None or len(password) == 0:
return {
"id": "",
"email": "",
}, "登录失败", *on_login(False)
if user is None or not user.verify_password(password):
return {
"id": "",
"email": "",
}, "登录失败", *on_login(False)
return {
"id": user.id,
"email": user.email,
}, "登录成功", *on_login(True)
login_btn.click(login, [email, password], [user, user_status] + on_login_success_ui)
def register(email, password):
user = get_user_by_email(db, email)
if user is not None:
return {
"id": "",
"email": "",
}, "注册失败,该邮箱已被注册", *on_login(False)
else:
user = create_user(db, email=email, password=password)
return {
"id": user.id,
"email": user.email,
}, "注册并登录成功", *on_login(True)
register_btn.click(register, [register_email, register_password], [user, user_status] + on_login_success_ui)
if __name__ == "__main__":
# import os
# os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
# demo.launch(server_name="127.0.0.1", server_port=8090, debug=True)
logger.add(f"output/logs/web_{date_str}.log", rotation="1 day", retention="7 days", level="INFO")
demo.launch()
|