File size: 15,494 Bytes
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d7d353
 
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
517b6c2
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b617fb2
6dc0c9c
 
 
 
 
da079a2
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b617fb2
 
 
 
 
 
 
 
 
 
6dc0c9c
b617fb2
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59a40c7
 
d710d8b
 
489bcf5
 
d710d8b
 
59a40c7
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59a40c7
6dc0c9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
"""
Multimodal Chatbot Arena (side-by-side) tab.
Users chat with two chosen models.
"""

import json
import os
import time

import gradio as gr
import numpy as np

from src.constants import (
    TEXT_MODERATION_MSG,
    IMAGE_MODERATION_MSG,
    MODERATION_MSG,
    CONVERSATION_LIMIT_MSG,
    SLOW_MODEL_MSG,
    INPUT_CHAR_LEN_LIMIT,
    CONVERSATION_TURN_LIMIT,
)
from src.model.model_adapter import get_conversation_template
from src.serve.gradio_block_arena_named import (
    flash_buttons,
    share_click,
    bot_response_multi,
)
from src.serve.gradio_block_arena_vision import (
    get_vqa_sample,
    set_invisible_image,
    set_visible_image,
    add_image,
    moderate_input,
)
from src.serve.gradio_web_server import (
    State,
    bot_response,
    get_conv_log_filename,
    no_change_btn,
    enable_btn,
    disable_btn,
    invisible_btn,
    acknowledgment_md,
    get_ip,
    get_model_description_md,
    _prepare_text_with_image,
)
from src.serve.remote_logger import get_remote_logger
from src.utils import (
    build_logger,
    moderation_filter,
    image_moderation_filter,
)


logger = build_logger("gradio_web_server_multi", "gradio_web_server_multi.log")

num_sides = 2
enable_moderation = False


def clear_history_example(request: gr.Request):
    logger.info(f"clear_history_example (named). ip: {get_ip(request)}")
    return (
        [None] * num_sides
        + [None] * num_sides
        + [invisible_btn] * 4
        + [disable_btn] * 2
    )


def vote_last_response(states, vote_type, model_selectors, request: gr.Request):
    filename = get_conv_log_filename(states[0].is_vision, states[0].has_csam_image)
    with open(filename, "a") as fout:
        data = {
            "tstamp": round(time.time(), 4),
            "type": vote_type,
            "models": [x for x in model_selectors],
            "states": [x.dict() for x in states],
            "ip": get_ip(request),
        }
        fout.write(json.dumps(data) + "\n")
    get_remote_logger().log(data)


def leftvote_last_response(
    state0, state1, model_selector0, model_selector1, request: gr.Request
):
    logger.info(f"leftvote (named). ip: {get_ip(request)}")
    vote_last_response(
        [state0, state1], "leftvote", [model_selector0, model_selector1], request
    )
    return (None,) + (disable_btn,) * 4


def rightvote_last_response(
    state0, state1, model_selector0, model_selector1, request: gr.Request
):
    logger.info(f"rightvote (named). ip: {get_ip(request)}")
    vote_last_response(
        [state0, state1], "rightvote", [model_selector0, model_selector1], request
    )
    return (None,) + (disable_btn,) * 4


def tievote_last_response(
    state0, state1, model_selector0, model_selector1, request: gr.Request
):
    logger.info(f"tievote (named). ip: {get_ip(request)}")
    vote_last_response(
        [state0, state1], "tievote", [model_selector0, model_selector1], request
    )
    return (None,) + (disable_btn,) * 4


def bothbad_vote_last_response(
    state0, state1, model_selector0, model_selector1, request: gr.Request
):
    logger.info(f"bothbad_vote (named). ip: {get_ip(request)}")
    vote_last_response(
        [state0, state1], "bothbad_vote", [model_selector0, model_selector1], request
    )
    return (None,) + (disable_btn,) * 4


def regenerate(state0, state1, request: gr.Request):
    logger.info(f"regenerate (named). ip: {get_ip(request)}")
    states = [state0, state1]
    if state0.regen_support and state1.regen_support:
        for i in range(num_sides):
            states[i].conv.update_last_message(None)
        return (
            states
            + [x.to_gradio_chatbot() for x in states]
            + [None]
            + [disable_btn] * 6
        )
    states[0].skip_next = True
    states[1].skip_next = True
    return (
        states + [x.to_gradio_chatbot() for x in states] + [None] + [no_change_btn] * 6
    )


def clear_history(request: gr.Request):
    logger.info(f"clear_history (named). ip: {get_ip(request)}")
    return (
        [None] * num_sides
        + [None] * num_sides
        + [None]
        + [invisible_btn] * 4
        + [disable_btn] * 2
    )


def add_text(
    state0, state1, model_selector0, model_selector1, chat_input, request: gr.Request
):
    text, images = chat_input["text"], chat_input["files"]
    ip = get_ip(request)
    logger.info(f"add_text (named). ip: {ip}. len: {len(text)}")
    states = [state0, state1]
    model_selectors = [model_selector0, model_selector1]

    # Init states if necessary
    for i in range(num_sides):
        if states[i] is None:
            states[i] = State(model_selectors[i], is_vision=True)

    if len(text) <= 0:
        for i in range(num_sides):
            states[i].skip_next = True
        return (
            states
            + [x.to_gradio_chatbot() for x in states]
            + [None]
            + [
                no_change_btn,
            ]
            * 6
        )

    model_list = [states[i].model_name for i in range(num_sides)]
    all_conv_text_left = states[0].conv.get_prompt()
    all_conv_text_right = states[0].conv.get_prompt()
    all_conv_text = (
        all_conv_text_left[-1000:] + all_conv_text_right[-1000:] + "\nuser: " + text
    )

    text, image_flagged, csam_flag = moderate_input(
        text, all_conv_text, model_list, images, ip
    )

    conv = states[0].conv
    if (len(conv.messages) - conv.offset) // 2 >= CONVERSATION_TURN_LIMIT:
        logger.info(f"conversation turn limit. ip: {ip}. text: {text}")
        for i in range(num_sides):
            states[i].skip_next = True
        return (
            states
            + [x.to_gradio_chatbot() for x in states]
            + [{"text": CONVERSATION_LIMIT_MSG}]
            + [
                no_change_btn,
            ]
            * 6
        )

    if image_flagged:
        logger.info(f"image flagged. ip: {ip}. text: {text}")
        for i in range(num_sides):
            states[i].skip_next = True
        return (
            states
            + [x.to_gradio_chatbot() for x in states]
            + [{"text": IMAGE_MODERATION_MSG}]
            + [
                no_change_btn,
            ]
            * 6
        )

    text = text[:INPUT_CHAR_LEN_LIMIT]  # Hard cut-off
    for i in range(num_sides):
        post_processed_text = _prepare_text_with_image(
            states[i], text, images, csam_flag=csam_flag
        )
        logger.info(f"msg={post_processed_text}")
        states[i].conv.append_message(states[i].conv.roles[0], post_processed_text)
        states[i].conv.append_message(states[i].conv.roles[1], None)
        states[i].skip_next = False

    return (
        states
        + [x.to_gradio_chatbot() for x in states]
        + [None]
        + [
            disable_btn,
        ]
        * 6
    )


def build_side_by_side_vision_ui_named(models, random_questions=None):
    notice_markdown = """
# ⚔️  Vision Arena ⚔️ : Benchmarking FIRE-LLaVA VS. LLaVA-NeXT

## 📜 Rules
- Chat with any two models side-by-side and vote!
- You can continue chatting for multiple rounds.
- Click "Clear history" to start a new round.
- You can only chat with <span style='color: #DE3163; font-weight: bold'>one image per conversation</span>. You can upload images less than 15MB.

**❗️ For research purposes, we log user prompts and images, and may release this data to the public in the future. Please do not upload any confidential or personal information.**

## 🤖 Choose two models to compare
"""

    states = [gr.State() for _ in range(num_sides)]
    model_selectors = [None] * num_sides
    chatbots = [None] * num_sides

    notice = gr.Markdown(notice_markdown, elem_id="notice_markdown")

    with gr.Row():
        with gr.Column(scale=2, visible=False) as image_column:
            imagebox = gr.Image(
                type="pil",
                show_label=False,
                interactive=False,
            )

        with gr.Column(scale=5):
            with gr.Group(elem_id="share-region-anony"):
                with gr.Accordion(
                    f"🔍 Expand to see the descriptions of {len(models)} models",
                    open=False,
                ):
                    model_description_md = get_model_description_md(models)
                    gr.Markdown(
                        model_description_md, elem_id="model_description_markdown"
                    )

                with gr.Row():
                    for i in range(num_sides):
                        with gr.Column():
                            model_names_dict = {
                                "llava-fire": 'FIRE-LLaVA',
                                "llava-original": "LLaVA-Next-LLaMA-3-8B"
                            }
                            model_choices = []
                            for model_value in models:
                                if model_value in model_names_dict:
                                    model_choices.append((model_names_dict[model_value], model_value))
                                else:
                                    model_choices.append((model_value, model_value))
                            model_selectors[i] = gr.Dropdown(
                                choices=model_choices,
                                value=models[i] if len(models) > i else "",
                                interactive=True,
                                show_label=False,
                                container=False,
                            )

                with gr.Row():
                    for i in range(num_sides):
                        label = "Model A" if i == 0 else "Model B"
                        with gr.Column():
                            chatbots[i] = gr.Chatbot(
                                label=label,
                                elem_id=f"chatbot",
                                height=550,
                                show_copy_button=True,
                            )

    with gr.Row():
        leftvote_btn = gr.Button(
            value="👈  A is better", visible=False, interactive=False
        )
        rightvote_btn = gr.Button(
            value="👉  B is better", visible=False, interactive=False
        )
        tie_btn = gr.Button(value="🤝  Tie", visible=False, interactive=False)
        bothbad_btn = gr.Button(
            value="👎  Both are bad", visible=False, interactive=False
        )

    with gr.Row():
        textbox = gr.MultimodalTextbox(
            file_types=["image"],
            show_label=False,
            placeholder="Click add or drop your image here",
            container=True,
            elem_id="input_box",
        )

    with gr.Row() as button_row:
        if random_questions:
            global vqa_samples
            with open(random_questions, "r") as f:
                vqa_samples = json.load(f)
            random_btn = gr.Button(value="🎲 Random Example", interactive=True)
        clear_btn = gr.Button(value="🗑️  Clear history", interactive=False)
        regenerate_btn = gr.Button(value="🔄  Regenerate", interactive=False)
        share_btn = gr.Button(value="📷  Share")
    with gr.Row():
        gr.Examples(examples=[
            [
                {
                    "files": ["assets/test_10422.jpg"],
                    "text": "Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end. \nQuestion: 如图,将一个长方形纸片按图示折叠,若∠1=40°,则∠2的度数是() \nChoices: \nA. 40° \nB. 50° \nC. 60° \nD. 70°"
                }
            ],
        ],inputs=[textbox])
    with gr.Accordion("Parameters", open=False) as parameter_row:
        temperature = gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=0.7,
            step=0.1,
            interactive=True,
            label="Temperature",
        )
        top_p = gr.Slider(
            minimum=0.0,
            maximum=1.0,
            value=1.0,
            step=0.1,
            interactive=True,
            label="Top P",
        )
        max_output_tokens = gr.Slider(
            minimum=16,
            maximum=2048,
            value=1024,
            step=64,
            interactive=True,
            label="Max output tokens",
        )

    gr.Markdown(acknowledgment_md, elem_id="ack_markdown")

    # Register listeners
    btn_list = [
        leftvote_btn,
        rightvote_btn,
        tie_btn,
        bothbad_btn,
        regenerate_btn,
        clear_btn,
    ]
    leftvote_btn.click(
        leftvote_last_response,
        states + model_selectors,
        [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
    )
    rightvote_btn.click(
        rightvote_last_response,
        states + model_selectors,
        [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
    )
    tie_btn.click(
        tievote_last_response,
        states + model_selectors,
        [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
    )
    bothbad_btn.click(
        bothbad_vote_last_response,
        states + model_selectors,
        [textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
    )
    regenerate_btn.click(
        regenerate, states, states + chatbots + [textbox] + btn_list
    ).then(
        bot_response_multi,
        states + [temperature, top_p, max_output_tokens],
        states + chatbots + btn_list,
    ).then(
        flash_buttons, [], btn_list
    )
    clear_btn.click(clear_history, None, states + chatbots + [textbox] + btn_list)
    
    share_js = """
function (a, b, c, d) {
    const captureElement = document.querySelector('#share-region-named');
    html2canvas(captureElement)
        .then(canvas => {
            canvas.style.display = 'none'
            document.body.appendChild(canvas)
            return canvas
        })
        .then(canvas => {
            const image = canvas.toDataURL('image/png')
            const a = document.createElement('a')
            a.setAttribute('download', 'chatbot-arena.png')
            a.setAttribute('href', image)
            a.click()
            canvas.remove()
        });
    return [a, b, c, d];
}
"""
    share_btn.click(share_click, states + model_selectors, [], js=share_js)

    for i in range(num_sides):
        model_selectors[i].change(
            clear_history, None, states + chatbots + [textbox] + btn_list
        ).then(set_visible_image, [textbox], [image_column])

    textbox.input(add_image, [textbox], [imagebox]).then(
        set_visible_image, [textbox], [image_column]
    ).then(clear_history_example, None, states + chatbots + btn_list)

    textbox.submit(
        add_text,
        states + model_selectors + [textbox],
        states + chatbots + [textbox] + btn_list,
    ).then(set_invisible_image, [], [image_column]).then(
        bot_response_multi,
        states + [temperature, top_p, max_output_tokens],
        states + chatbots + btn_list,
    ).then(
        flash_buttons, [], btn_list
    )

    if random_questions:
        random_btn.click(
            get_vqa_sample,  # First, get the VQA sample
            [],  # Pass the path to the VQA samples
            [textbox, imagebox],  # Outputs are textbox and imagebox
        ).then(set_visible_image, [textbox], [image_column]).then(
            clear_history_example, None, states + chatbots + btn_list
        )

    return states + model_selectors