File size: 15,494 Bytes
6dc0c9c 8d7d353 6dc0c9c 517b6c2 6dc0c9c b617fb2 6dc0c9c da079a2 6dc0c9c b617fb2 6dc0c9c b617fb2 6dc0c9c 59a40c7 d710d8b 489bcf5 d710d8b 59a40c7 6dc0c9c 59a40c7 6dc0c9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
"""
Multimodal Chatbot Arena (side-by-side) tab.
Users chat with two chosen models.
"""
import json
import os
import time
import gradio as gr
import numpy as np
from src.constants import (
TEXT_MODERATION_MSG,
IMAGE_MODERATION_MSG,
MODERATION_MSG,
CONVERSATION_LIMIT_MSG,
SLOW_MODEL_MSG,
INPUT_CHAR_LEN_LIMIT,
CONVERSATION_TURN_LIMIT,
)
from src.model.model_adapter import get_conversation_template
from src.serve.gradio_block_arena_named import (
flash_buttons,
share_click,
bot_response_multi,
)
from src.serve.gradio_block_arena_vision import (
get_vqa_sample,
set_invisible_image,
set_visible_image,
add_image,
moderate_input,
)
from src.serve.gradio_web_server import (
State,
bot_response,
get_conv_log_filename,
no_change_btn,
enable_btn,
disable_btn,
invisible_btn,
acknowledgment_md,
get_ip,
get_model_description_md,
_prepare_text_with_image,
)
from src.serve.remote_logger import get_remote_logger
from src.utils import (
build_logger,
moderation_filter,
image_moderation_filter,
)
logger = build_logger("gradio_web_server_multi", "gradio_web_server_multi.log")
num_sides = 2
enable_moderation = False
def clear_history_example(request: gr.Request):
logger.info(f"clear_history_example (named). ip: {get_ip(request)}")
return (
[None] * num_sides
+ [None] * num_sides
+ [invisible_btn] * 4
+ [disable_btn] * 2
)
def vote_last_response(states, vote_type, model_selectors, request: gr.Request):
filename = get_conv_log_filename(states[0].is_vision, states[0].has_csam_image)
with open(filename, "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"models": [x for x in model_selectors],
"states": [x.dict() for x in states],
"ip": get_ip(request),
}
fout.write(json.dumps(data) + "\n")
get_remote_logger().log(data)
def leftvote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"leftvote (named). ip: {get_ip(request)}")
vote_last_response(
[state0, state1], "leftvote", [model_selector0, model_selector1], request
)
return (None,) + (disable_btn,) * 4
def rightvote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"rightvote (named). ip: {get_ip(request)}")
vote_last_response(
[state0, state1], "rightvote", [model_selector0, model_selector1], request
)
return (None,) + (disable_btn,) * 4
def tievote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"tievote (named). ip: {get_ip(request)}")
vote_last_response(
[state0, state1], "tievote", [model_selector0, model_selector1], request
)
return (None,) + (disable_btn,) * 4
def bothbad_vote_last_response(
state0, state1, model_selector0, model_selector1, request: gr.Request
):
logger.info(f"bothbad_vote (named). ip: {get_ip(request)}")
vote_last_response(
[state0, state1], "bothbad_vote", [model_selector0, model_selector1], request
)
return (None,) + (disable_btn,) * 4
def regenerate(state0, state1, request: gr.Request):
logger.info(f"regenerate (named). ip: {get_ip(request)}")
states = [state0, state1]
if state0.regen_support and state1.regen_support:
for i in range(num_sides):
states[i].conv.update_last_message(None)
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [None]
+ [disable_btn] * 6
)
states[0].skip_next = True
states[1].skip_next = True
return (
states + [x.to_gradio_chatbot() for x in states] + [None] + [no_change_btn] * 6
)
def clear_history(request: gr.Request):
logger.info(f"clear_history (named). ip: {get_ip(request)}")
return (
[None] * num_sides
+ [None] * num_sides
+ [None]
+ [invisible_btn] * 4
+ [disable_btn] * 2
)
def add_text(
state0, state1, model_selector0, model_selector1, chat_input, request: gr.Request
):
text, images = chat_input["text"], chat_input["files"]
ip = get_ip(request)
logger.info(f"add_text (named). ip: {ip}. len: {len(text)}")
states = [state0, state1]
model_selectors = [model_selector0, model_selector1]
# Init states if necessary
for i in range(num_sides):
if states[i] is None:
states[i] = State(model_selectors[i], is_vision=True)
if len(text) <= 0:
for i in range(num_sides):
states[i].skip_next = True
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [None]
+ [
no_change_btn,
]
* 6
)
model_list = [states[i].model_name for i in range(num_sides)]
all_conv_text_left = states[0].conv.get_prompt()
all_conv_text_right = states[0].conv.get_prompt()
all_conv_text = (
all_conv_text_left[-1000:] + all_conv_text_right[-1000:] + "\nuser: " + text
)
text, image_flagged, csam_flag = moderate_input(
text, all_conv_text, model_list, images, ip
)
conv = states[0].conv
if (len(conv.messages) - conv.offset) // 2 >= CONVERSATION_TURN_LIMIT:
logger.info(f"conversation turn limit. ip: {ip}. text: {text}")
for i in range(num_sides):
states[i].skip_next = True
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [{"text": CONVERSATION_LIMIT_MSG}]
+ [
no_change_btn,
]
* 6
)
if image_flagged:
logger.info(f"image flagged. ip: {ip}. text: {text}")
for i in range(num_sides):
states[i].skip_next = True
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [{"text": IMAGE_MODERATION_MSG}]
+ [
no_change_btn,
]
* 6
)
text = text[:INPUT_CHAR_LEN_LIMIT] # Hard cut-off
for i in range(num_sides):
post_processed_text = _prepare_text_with_image(
states[i], text, images, csam_flag=csam_flag
)
logger.info(f"msg={post_processed_text}")
states[i].conv.append_message(states[i].conv.roles[0], post_processed_text)
states[i].conv.append_message(states[i].conv.roles[1], None)
states[i].skip_next = False
return (
states
+ [x.to_gradio_chatbot() for x in states]
+ [None]
+ [
disable_btn,
]
* 6
)
def build_side_by_side_vision_ui_named(models, random_questions=None):
notice_markdown = """
# ⚔️ Vision Arena ⚔️ : Benchmarking FIRE-LLaVA VS. LLaVA-NeXT
## 📜 Rules
- Chat with any two models side-by-side and vote!
- You can continue chatting for multiple rounds.
- Click "Clear history" to start a new round.
- You can only chat with <span style='color: #DE3163; font-weight: bold'>one image per conversation</span>. You can upload images less than 15MB.
**❗️ For research purposes, we log user prompts and images, and may release this data to the public in the future. Please do not upload any confidential or personal information.**
## 🤖 Choose two models to compare
"""
states = [gr.State() for _ in range(num_sides)]
model_selectors = [None] * num_sides
chatbots = [None] * num_sides
notice = gr.Markdown(notice_markdown, elem_id="notice_markdown")
with gr.Row():
with gr.Column(scale=2, visible=False) as image_column:
imagebox = gr.Image(
type="pil",
show_label=False,
interactive=False,
)
with gr.Column(scale=5):
with gr.Group(elem_id="share-region-anony"):
with gr.Accordion(
f"🔍 Expand to see the descriptions of {len(models)} models",
open=False,
):
model_description_md = get_model_description_md(models)
gr.Markdown(
model_description_md, elem_id="model_description_markdown"
)
with gr.Row():
for i in range(num_sides):
with gr.Column():
model_names_dict = {
"llava-fire": 'FIRE-LLaVA',
"llava-original": "LLaVA-Next-LLaMA-3-8B"
}
model_choices = []
for model_value in models:
if model_value in model_names_dict:
model_choices.append((model_names_dict[model_value], model_value))
else:
model_choices.append((model_value, model_value))
model_selectors[i] = gr.Dropdown(
choices=model_choices,
value=models[i] if len(models) > i else "",
interactive=True,
show_label=False,
container=False,
)
with gr.Row():
for i in range(num_sides):
label = "Model A" if i == 0 else "Model B"
with gr.Column():
chatbots[i] = gr.Chatbot(
label=label,
elem_id=f"chatbot",
height=550,
show_copy_button=True,
)
with gr.Row():
leftvote_btn = gr.Button(
value="👈 A is better", visible=False, interactive=False
)
rightvote_btn = gr.Button(
value="👉 B is better", visible=False, interactive=False
)
tie_btn = gr.Button(value="🤝 Tie", visible=False, interactive=False)
bothbad_btn = gr.Button(
value="👎 Both are bad", visible=False, interactive=False
)
with gr.Row():
textbox = gr.MultimodalTextbox(
file_types=["image"],
show_label=False,
placeholder="Click add or drop your image here",
container=True,
elem_id="input_box",
)
with gr.Row() as button_row:
if random_questions:
global vqa_samples
with open(random_questions, "r") as f:
vqa_samples = json.load(f)
random_btn = gr.Button(value="🎲 Random Example", interactive=True)
clear_btn = gr.Button(value="🗑️ Clear history", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
share_btn = gr.Button(value="📷 Share")
with gr.Row():
gr.Examples(examples=[
[
{
"files": ["assets/test_10422.jpg"],
"text": "Hint: Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end. \nQuestion: 如图,将一个长方形纸片按图示折叠,若∠1=40°,则∠2的度数是() \nChoices: \nA. 40° \nB. 50° \nC. 60° \nD. 70°"
}
],
],inputs=[textbox])
with gr.Accordion("Parameters", open=False) as parameter_row:
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=1.0,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=16,
maximum=2048,
value=1024,
step=64,
interactive=True,
label="Max output tokens",
)
gr.Markdown(acknowledgment_md, elem_id="ack_markdown")
# Register listeners
btn_list = [
leftvote_btn,
rightvote_btn,
tie_btn,
bothbad_btn,
regenerate_btn,
clear_btn,
]
leftvote_btn.click(
leftvote_last_response,
states + model_selectors,
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
rightvote_btn.click(
rightvote_last_response,
states + model_selectors,
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
tie_btn.click(
tievote_last_response,
states + model_selectors,
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
bothbad_btn.click(
bothbad_vote_last_response,
states + model_selectors,
[textbox, leftvote_btn, rightvote_btn, tie_btn, bothbad_btn],
)
regenerate_btn.click(
regenerate, states, states + chatbots + [textbox] + btn_list
).then(
bot_response_multi,
states + [temperature, top_p, max_output_tokens],
states + chatbots + btn_list,
).then(
flash_buttons, [], btn_list
)
clear_btn.click(clear_history, None, states + chatbots + [textbox] + btn_list)
share_js = """
function (a, b, c, d) {
const captureElement = document.querySelector('#share-region-named');
html2canvas(captureElement)
.then(canvas => {
canvas.style.display = 'none'
document.body.appendChild(canvas)
return canvas
})
.then(canvas => {
const image = canvas.toDataURL('image/png')
const a = document.createElement('a')
a.setAttribute('download', 'chatbot-arena.png')
a.setAttribute('href', image)
a.click()
canvas.remove()
});
return [a, b, c, d];
}
"""
share_btn.click(share_click, states + model_selectors, [], js=share_js)
for i in range(num_sides):
model_selectors[i].change(
clear_history, None, states + chatbots + [textbox] + btn_list
).then(set_visible_image, [textbox], [image_column])
textbox.input(add_image, [textbox], [imagebox]).then(
set_visible_image, [textbox], [image_column]
).then(clear_history_example, None, states + chatbots + btn_list)
textbox.submit(
add_text,
states + model_selectors + [textbox],
states + chatbots + [textbox] + btn_list,
).then(set_invisible_image, [], [image_column]).then(
bot_response_multi,
states + [temperature, top_p, max_output_tokens],
states + chatbots + btn_list,
).then(
flash_buttons, [], btn_list
)
if random_questions:
random_btn.click(
get_vqa_sample, # First, get the VQA sample
[], # Pass the path to the VQA samples
[textbox, imagebox], # Outputs are textbox and imagebox
).then(set_visible_image, [textbox], [image_column]).then(
clear_history_example, None, states + chatbots + btn_list
)
return states + model_selectors
|