File size: 16,962 Bytes
2a0848a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ad0902
2a0848a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a61d0e
2a0848a
f0d8c7b
7116635
 
2a0848a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import streamlit as st
from annotated_text import annotated_text
from transformers import AutoModelForQuestionAnswering, Trainer

import torch
from transformers import pipeline
from transformers import AutoModelForTokenClassification, AutoTokenizer
from transformers import AutoModelForQuestionAnswering

import json


st.set_page_config(layout="wide")

file = open("questions.json")
questions = json.load(file)

model = AutoModelForTokenClassification.from_pretrained("models/trigger/ACE_base_google_pt")
tokenizer = AutoTokenizer.from_pretrained("models/trigger/ACE_base_google_pt", model_max_length=512)
tagger = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy='first') #aggregation_strategy='max'
  
qa_model2_path = "models/argument/bert-base-portuguese-squad2-ace-impossible1.4"
qa_model_path = "models/argument/bert-base-portuguese-squad-ace-pt-pt"
model_qa = pipeline("question-answering", model=qa_model_path)
model_qa2 = AutoModelForQuestionAnswering.from_pretrained(qa_model2_path)
tokenizer_qa2 = AutoTokenizer.from_pretrained(qa_model2_path)


def aggregate_subwords(input_tokens, labels):
    new_inputs = []
    new_labels = []
    current_word = ""
    current_label = ""
    for i, token in enumerate(input_tokens):     
        label = labels[i]
        # Handle subwords
        if token.startswith('##'):
            current_word += token[2:]
        else:
            # Finish previous word
            if current_word:
                new_inputs.append(current_word)
                new_labels.append(current_label)
            # Start new word
            current_word = token
            current_label = label
    new_inputs.append(current_word)
    new_labels.append(current_label)
    return new_inputs, new_labels

def annotateTriggers(line):
    line = line.strip()
    inputs = tokenizer(line, return_tensors="pt")
    input_tokens = tokenizer.convert_ids_to_tokens(inputs['input_ids'][0])

    with torch.no_grad():
        logits = model(**inputs).logits

    predictions = torch.argmax(logits, dim=2)
    predicted_token_class = [model.config.id2label[t.item()] for t in predictions[0]]
    input_tokens, predicted_token_class =  aggregate_subwords(input_tokens,predicted_token_class)
    token_labels = []
    current_entity = ''
    for i, label in enumerate(predicted_token_class):
        token = input_tokens[i]
        if label == 'O':
            token_labels.append((token, 'O', ''))
            current_entity = ''
        elif label.startswith('B-'):
            current_entity = label[2:]
            token_labels.append((token, 'B', current_entity))
        elif label.startswith('I-'):
            if current_entity == '':
                raise ValueError(f"Invalid label sequence: {predicted_token_class}")
            token_labels[-1] = (token_labels[-1][0] + f" {token}", 'I', current_entity)
        else:
            raise ValueError(f"Invalid label: {label}")
    return token_labels[1:-1]







n_best_size = 20
max_answer_length = 30
max_length = 384 # The maximum length of a feature (question and context)
doc_stride = 128 # The authorized overlap between two part of the context when splitting it is needed.
squad_v2 = True
pad_on_right = tokenizer.padding_side == "right"



def prepare_validation_features(examples):
    # Some of the questions have lots of whitespace on the left, which is not useful and will make the
    # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
    # left whitespace
    examples["question"] = [q.lstrip() for q in examples["question"]]

    # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
    # in one example possible giving several features when a context is long, each of those features having a
    # context that overlaps a bit the context of the previous feature.
    tokenized_examples = tokenizer(
        examples["question" if pad_on_right else "context"],
        examples["context" if pad_on_right else "question"],
        truncation="only_second" if pad_on_right else "only_first",
        max_length=max_length,
        stride=doc_stride,
        return_overflowing_tokens=True,
        return_offsets_mapping=True,
        padding="max_length",
    )

    # Since one example might give us several features if it has a long context, we need a map from a feature to
    # its corresponding example. This key gives us just that.
    sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")

    # We keep the example_id that gave us this feature and we will store the offset mappings.
    tokenized_examples["example_id"] = []

    for i in range(len(tokenized_examples["input_ids"])):
        # Grab the sequence corresponding to that example (to know what is the context and what is the question).
        sequence_ids = tokenized_examples.sequence_ids(i)
        context_index = 1 if pad_on_right else 0

        # One example can give several spans, this is the index of the example containing this span of text.
        sample_index = sample_mapping[i]
        tokenized_examples["example_id"].append(examples["id"][sample_index])

        # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
        # position is part of the context or not.
        tokenized_examples["offset_mapping"][i] = [
            (o if sequence_ids[k] == context_index else None)
            for k, o in enumerate(tokenized_examples["offset_mapping"][i])
        ]

    return tokenized_examples

from tqdm.auto import tqdm
import numpy as np
import collections


def softmax(x):
    return(np.exp(x)/np.exp(x).sum())

def normalizeScores(answers,min_null_score):
    scores = [a["score"] for a in answers] + [min_null_score]
    scores = softmax(scores)
    for i in range(len(answers)):
        answers[i]["score"] = scores[i]
    return answers, scores[-1]


def postprocess_qa_predictions(examples, features, raw_predictions, n_best_size = 20, max_answer_length = 30):
    all_start_logits, all_end_logits = raw_predictions
    # Build a map example to its corresponding features.
    example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
    features_per_example = collections.defaultdict(list)
    for i, feature in enumerate(features):
        features_per_example[example_id_to_index[feature["example_id"]]].append(i)

    # The dictionaries we have to fill.
    predictions = collections.OrderedDict()

    # Logging.
    print(f"Post-processing {len(examples)} example predictions split into {len(features)} features.")

    # Let's loop over all the examples!
    for example_index, example in enumerate(tqdm(examples)):
        # Those are the indices of the features associated to the current example.
        feature_indices = features_per_example[example_index]

        min_null_score = None # Only used if squad_v2 is True.
        valid_answers = []
        
        context = example["context"]
        # Looping through all the features associated to the current example.
        for feature_index in feature_indices:
            # We grab the predictions of the model for this feature.
            start_logits = all_start_logits[feature_index]
            end_logits = all_end_logits[feature_index]
            # This is what will allow us to map some the positions in our logits to span of texts in the original
            # context.
            offset_mapping = features[feature_index]["offset_mapping"]

            # Update minimum null prediction.
            cls_index = features[feature_index]["input_ids"].index(tokenizer.cls_token_id)
            feature_null_score = start_logits[cls_index] + end_logits[cls_index]
            if min_null_score is None or min_null_score < feature_null_score:
                min_null_score = feature_null_score

            # Go through all possibilities for the `n_best_size` greater start and end logits.
            start_indexes = np.argsort(start_logits)[-1 : -n_best_size - 1 : -1].tolist()
            end_indexes = np.argsort(end_logits)[-1 : -n_best_size - 1 : -1].tolist()
            for start_index in start_indexes:
                for end_index in end_indexes:
                    # Don't consider out-of-scope answers, either because the indices are out of bounds or correspond
                    # to part of the input_ids that are not in the context.
                    if (
                        start_index >= len(offset_mapping)
                        or end_index >= len(offset_mapping)
                        or offset_mapping[start_index] is None
                        or offset_mapping[end_index] is None
                    ):
                        continue
                    # Don't consider answers with a length that is either < 0 or > max_answer_length.
                    if end_index < start_index or end_index - start_index + 1 > max_answer_length:
                        continue

                    start_char = offset_mapping[start_index][0]
                    end_char = offset_mapping[end_index][1]
                    valid_answers.append(
                        {
                            "score": start_logits[start_index] + end_logits[end_index],
                            "text": context[start_char: end_char]
                        }
                    )
        
        if len(valid_answers) > 0:
            valid_answers, min_null_score = normalizeScores(valid_answers,min_null_score)
            #print(valid_answers)
        
            best_answer = sorted(valid_answers, key=lambda x: x["score"], reverse=True)[0]
        else:
            # In the very rare edge case we have not a single non-null prediction, we create a fake prediction to avoid
            # failure.
            best_answer = {"text": "", "score": 0.0}
        
        # Let's pick our final answer: the best one or the null answer (only for squad_v2)
        if not squad_v2:
            predictions[example["id"]] = best_answer["text"]
        else:
            answer = best_answer if best_answer["score"] > min_null_score else {"text":"No answer","score":min_null_score}
            predictions[example["id"]] = answer
    return predictions

def qa(line,question):


    d = {}
    d["question"] = [question] #["Qual é o diametro do sol?"]
    d["context"] = [line] #["O meu pai foi para Lisboa"]
    d["id"] = ["my precious"]


    from datasets import Dataset
    dataset_validation = Dataset.from_dict(d)

    validation_features = prepare_validation_features(d)
    from datasets import Dataset
    validation_features = Dataset.from_dict(validation_features)

    trainer = Trainer(
    model=model_qa2,
    tokenizer=tokenizer_qa2,
    )

    raw_predictions = trainer.predict(validation_features)
    validation_features.set_format(type=validation_features.format["type"], columns=list(validation_features.features.keys()))

    final_predictions = postprocess_qa_predictions(dataset_validation, validation_features, raw_predictions.predictions)

    formatted_predictions = [{"id": k, "prediction_text": v["text"], "no_answer_probability": 0, "score":v["score"]} for k, v in final_predictions.items()]
    r = {"context":line,"question":question,"answer":formatted_predictions[0]["prediction_text"],"score": formatted_predictions[0]["score"]}
    return r


def joinEntities(entities):

    joined_entities = []
    i = 0
    while i < len(entities):
        curr_entity = entities[i]
        if curr_entity['entity'][0] == 'B':
            label = curr_entity['entity'][2:]
            j = i + 1
            while j < len(entities) and entities[j]['entity'][0] == 'I':
                j += 1
            joined_entity = {
                 'entity': label,
                'score': max(e['score'] for e in entities[i:j]),
                'index': min(e['index'] for e in entities[i:j]),
                'word': ' '.join(e['word'] for e in entities[i:j]),
                'start': entities[i]['start'],
                'end': entities[j-1]['end']
            }
            joined_entities.append(joined_entity)
            i = j - 1
        i += 1
    return joined_entities



import pysbd
seg = pysbd.Segmenter(language="es", clean=False)

def sent_tokenize(text):
    return seg.segment(text)

def getSentenceIndex(lines,span):
    i = 1
    sum = len(lines[0])
    while sum < span:
        sum += len(lines[i])
        i = i + 1
    return i - 1

def generateContext(text, window,span):
    lines = sent_tokenize(text)
    index = getSentenceIndex(lines,span)
    text = " ".join(lines[max(0,index-window):index+window +1])
    return text


def annotateEvents(text,squad,window):
    text = text.strip()
    ner_results = tagger(text)
    #print(ner_results)
    #ner_results = joinEntities(ner_results)
    i = 0
    #exit()
    while i < len(ner_results):
        ner_results[i]["entity"] = ner_results[i]["entity_group"].lstrip("B-")
        ner_results[i]["entity"] = ner_results[i]["entity_group"].lstrip("I-")
        i = i + 1

    events = [] 
    for trigger in ner_results:
        tipo = trigger["entity_group"]
        qs = questions[tipo]
        context = generateContext(text,window,trigger["start"])
        event = {
            "trigger":trigger["word"],
            "type": tipo,
            "score": trigger["score"],
            "context": context,
            "arguments":[]
        }
        print("=========", tipo, "===========")
        for role, question in qs.items():
            question = question.rstrip("?") + " em " + trigger["word"]+"?"
            if squad == 1:
                result = model_qa(question=question, context=context)
            else:
                result = qa( context,question)
            print(f"Question: {question}, answer: '{result['answer']}', score: {round(result['score'], 4)}")
            argument = {
                "role": role,
                "text": result['answer'],
                "score": result['score'],
            }
            event["arguments"].append(argument)
        events.append(event)
    return events


#"A Joana foi atacada pelo João nas ruas do Porto, com uma faca."

st.title('Event Extractor for Portuguese')

st.text('This event extraction system is composed by Question Answering models that were trained with the ACE-2005-PT corpus, a Portuguese translation of ACE-2005.')


options = ["A Joana foi atacada pelo João nas ruas do Porto, com uma faca.","O Estado-Maior ucraniano informou também que a Rússia lançou 19 ataques aéreos e 37 ataques com sistemas de foguete de lançamento múltiplo no último dia, danificando cidades e aldeias e ferindo um número indeterminado de civis.","Pelos menos oito civis morreram numa série de ataques russos várias regiões da Ucrânia.","O comandante das Forças Armadas da Ucrânia declarou que a Rússia disparou 36 mísseis de cruzeiro contra o país na manhã de quinta-feira (16/02), um dia depois que seis balões foram vistos sobre a capital ucraniana, Kiev.","Disparados por terra e mar, os mísseis mataram uma mulher e atingiram infraestrutura crítica, segundo autoridades, que afirmaram também ter observado uma mudança na estratégia de guerra russa, em uma aparente referência aos balões avistados em Kiev.", "O João morreu na guerra do Iraque.", 'A maria foi eleita presidente da republica em Portugal.']

option = st.selectbox(
        'Select examples',
        options)
#option = options [index]
line = st.text_area("Insert Text",option)

st.button('Run')


st.sidebar.write("## Hyperparameters :gear:")
window = st.sidebar.slider('Context Window', 0, 10, 1)
if line != "":
    st.header("Triggers:")
    triggerss = annotateTriggers(line)   
    annotated_text(*[word[0]+" " if word[1] == 'O' else (word[0]+" ",word[2]) for word in triggerss ])

    eventos_1 = annotateEvents(line,1,window)
    eventos_2 = annotateEvents(line,2,window)
    st.header("Arguments:")
    
    c1, c2 = st.columns(2)
    with c1:
        st.subheader("bert-squad1-ace:")
    with c2:
        st.subheader("bert-squad2-ace:")

    for mention1, mention2 in zip(eventos_1,eventos_2):
        st.text("Trigger: " + mention1["trigger"] +" "+ mention1["type"] +" " +str(round(mention1["score"],3))) 
        st.text("Context: "+ mention1["context"])
        col1, col2 = st.columns(2)
        with col1:
            for d in mention1["arguments"]:
                text = d['text']
                role = d['role'] 
                #score = d['score']
                annotated_text((text, role), " ", str(round(d['score'],3)))
            st.write('\n')
        with col2:
                for d in mention2["arguments"]:
                    text = d['text']
                    role = d['role'] 
                    #score = d['score']
                    annotated_text((text, role), " ", str(round(d['score'],3)))
                st.write('\n')
        st.markdown("""---""")