Spaces:
Running
on
Zero
Running
on
Zero
File size: 917 Bytes
ec6a7d0 b44532e ec6a7d0 b44532e ec6a7d0 b44532e ec6a7d0 b44532e ec6a7d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import numpy as np
import torch
TORCH_RNG_MAX = 0xFFFF_FFFF_FFFF_FFFF
TORCH_RNG_MIN = -0x8000_0000_0000_0000
NP_RNG_MAX = np.iinfo(np.uint32).max
NP_RNG_MIN = 0
def torch_rng(seed: int):
torch.manual_seed(seed)
random_float = torch.empty(1).uniform_().item()
torch_rn = int(random_float * (TORCH_RNG_MAX - TORCH_RNG_MIN) + TORCH_RNG_MIN)
np_rn = int(random_float * (NP_RNG_MAX - NP_RNG_MIN) + NP_RNG_MIN)
return torch_rn, np_rn
def convert_np_to_torch(np_rn: int):
random_float = (np_rn - NP_RNG_MIN) / (NP_RNG_MAX - NP_RNG_MIN)
torch_rn = int(random_float * (TORCH_RNG_MAX - TORCH_RNG_MIN) + TORCH_RNG_MIN)
return torch_rn
def np_rng():
return int(np.random.randint(NP_RNG_MIN, NP_RNG_MAX, dtype=np.uint32))
if __name__ == "__main__":
import random
print(TORCH_RNG_MIN, TORCH_RNG_MAX)
s1 = np_rng()
s2 = torch_rng(s1)
print(f"s1 {s1} => s2: {s2}")
|