File size: 4,608 Bytes
7f9bea6
dc20d4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f9bea6
 
 
 
 
 
 
 
 
 
 
 
dc20d4a
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
from fastapi import FastAPI
import os
from pathlib import Path
import sys
import torch
from PIL import Image, ImageOps

from utils_ootd import get_mask_location

PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
sys.path.insert(0, str(PROJECT_ROOT))

from preprocess.openpose.run_openpose import OpenPose
from preprocess.humanparsing.run_parsing import Parsing
from ootd.inference_ootd_hd import OOTDiffusionHD
from ootd.inference_ootd_dc import OOTDiffusionDC

openpose_model_hd = OpenPose(0)
parsing_model_hd = Parsing(0)
ootd_model_hd = OOTDiffusionHD(0)

openpose_model_dc = OpenPose(1)
parsing_model_dc = Parsing(1)
ootd_model_dc = OOTDiffusionDC(1)


category_dict = ['upperbody', 'lowerbody', 'dress']
category_dict_utils = ['upper_body', 'lower_body', 'dresses']

example_path = os.path.join(os.path.dirname(__file__), 'examples')
model_hd = os.path.join(example_path, 'model/model_1.png')
garment_hd = os.path.join(example_path, 'garment/03244_00.jpg')
model_dc = os.path.join(example_path, 'model/model_8.png')
garment_dc = os.path.join(example_path, 'garment/048554_1.jpg')

import spaces

@spaces.GPU
def process_hd(vton_img, garm_img, n_samples, n_steps, image_scale, seed):
    model_type = 'hd'
    category = 0 # 0:upperbody; 1:lowerbody; 2:dress

    with torch.no_grad():
        openpose_model_hd.preprocessor.body_estimation.model.to('cuda')
        ootd_model_hd.pipe.to('cuda')
        ootd_model_hd.image_encoder.to('cuda')
        ootd_model_hd.text_encoder.to('cuda')
        
        garm_img = Image.open(garm_img).resize((768, 1024))
        vton_img = Image.open(vton_img).resize((768, 1024))
        keypoints = openpose_model_hd(vton_img.resize((384, 512)))
        model_parse, _ = parsing_model_hd(vton_img.resize((384, 512)))

        mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
        mask = mask.resize((768, 1024), Image.NEAREST)
        mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
        
        masked_vton_img = Image.composite(mask_gray, vton_img, mask)

        images = ootd_model_hd(
            model_type=model_type,
            category=category_dict[category],
            image_garm=garm_img,
            image_vton=masked_vton_img,
            mask=mask,
            image_ori=vton_img,
            num_samples=n_samples,
            num_steps=n_steps,
            image_scale=image_scale,
            seed=seed,
        )

    return images

@spaces.GPU
def process_dc(vton_img, garm_img, category, n_samples, n_steps, image_scale, seed):
    model_type = 'dc'
    if category == 'Upper-body':
        category = 0
    elif category == 'Lower-body':
        category = 1
    else:
        category =2

    with torch.no_grad():
        openpose_model_dc.preprocessor.body_estimation.model.to('cuda')
        ootd_model_dc.pipe.to('cuda')
        ootd_model_dc.image_encoder.to('cuda')
        ootd_model_dc.text_encoder.to('cuda')
        
        garm_img = Image.open(garm_img).resize((768, 1024))
        vton_img = Image.open(vton_img).resize((768, 1024))
        keypoints = openpose_model_dc(vton_img.resize((384, 512)))
        model_parse, _ = parsing_model_dc(vton_img.resize((384, 512)))

        mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
        mask = mask.resize((768, 1024), Image.NEAREST)
        mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
        
        masked_vton_img = Image.composite(mask_gray, vton_img, mask)

        images = ootd_model_dc(
            model_type=model_type,
            category=category_dict[category],
            image_garm=garm_img,
            image_vton=masked_vton_img,
            mask=mask,
            image_ori=vton_img,
            num_samples=n_samples,
            num_steps=n_steps,
            image_scale=image_scale,
            seed=seed,
        )

    return images

app = FastAPI()

@app.get("/")
def read_root():
    return {"Hello": "World"}

@app.get('/hello')
def hello():
    """
    Hi!
    """
    return {"From": "Luwi"}

@app.post("/test")
def test():
    vimg = file("https://levihsu-ootdiffusion.hf.space/--replicas/1b6rr/file=/tmp/gradio/2e0cca23e744c036b3905c4b6167371632942e1c/model_1.png")
    gimg = file("https://levihsu-ootdiffusion.hf.space/--replicas/1b6rr/file=/tmp/gradio/31c958b21068795c7a90552fc6dc123282b4c7ab/00126_00.jpg")
    category = "Upper-body"
    n_samples = 1
    n_steps = 20
    image_scale = 1
    seed = -1
    return process_dc(vimg, gimg, category, n_samples, n_steps, image_scale, seed)