Spaces:
Runtime error
Runtime error
Update run/app.py
Browse files- run/app.py +126 -1
run/app.py
CHANGED
@@ -1,4 +1,118 @@
|
|
1 |
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
app = FastAPI()
|
4 |
|
@@ -11,4 +125,15 @@ def hello():
|
|
11 |
"""
|
12 |
Hi!
|
13 |
"""
|
14 |
-
return {"From": "Luwi"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
import sys
|
5 |
+
import torch
|
6 |
+
from PIL import Image, ImageOps
|
7 |
+
|
8 |
+
from utils_ootd import get_mask_location
|
9 |
+
|
10 |
+
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
|
11 |
+
sys.path.insert(0, str(PROJECT_ROOT))
|
12 |
+
|
13 |
+
from preprocess.openpose.run_openpose import OpenPose
|
14 |
+
from preprocess.humanparsing.run_parsing import Parsing
|
15 |
+
from ootd.inference_ootd_hd import OOTDiffusionHD
|
16 |
+
from ootd.inference_ootd_dc import OOTDiffusionDC
|
17 |
+
|
18 |
+
openpose_model_hd = OpenPose(0)
|
19 |
+
parsing_model_hd = Parsing(0)
|
20 |
+
ootd_model_hd = OOTDiffusionHD(0)
|
21 |
+
|
22 |
+
openpose_model_dc = OpenPose(1)
|
23 |
+
parsing_model_dc = Parsing(1)
|
24 |
+
ootd_model_dc = OOTDiffusionDC(1)
|
25 |
+
|
26 |
+
|
27 |
+
category_dict = ['upperbody', 'lowerbody', 'dress']
|
28 |
+
category_dict_utils = ['upper_body', 'lower_body', 'dresses']
|
29 |
+
|
30 |
+
example_path = os.path.join(os.path.dirname(__file__), 'examples')
|
31 |
+
model_hd = os.path.join(example_path, 'model/model_1.png')
|
32 |
+
garment_hd = os.path.join(example_path, 'garment/03244_00.jpg')
|
33 |
+
model_dc = os.path.join(example_path, 'model/model_8.png')
|
34 |
+
garment_dc = os.path.join(example_path, 'garment/048554_1.jpg')
|
35 |
+
|
36 |
+
import spaces
|
37 |
+
|
38 |
+
@spaces.GPU
|
39 |
+
def process_hd(vton_img, garm_img, n_samples, n_steps, image_scale, seed):
|
40 |
+
model_type = 'hd'
|
41 |
+
category = 0 # 0:upperbody; 1:lowerbody; 2:dress
|
42 |
+
|
43 |
+
with torch.no_grad():
|
44 |
+
openpose_model_hd.preprocessor.body_estimation.model.to('cuda')
|
45 |
+
ootd_model_hd.pipe.to('cuda')
|
46 |
+
ootd_model_hd.image_encoder.to('cuda')
|
47 |
+
ootd_model_hd.text_encoder.to('cuda')
|
48 |
+
|
49 |
+
garm_img = Image.open(garm_img).resize((768, 1024))
|
50 |
+
vton_img = Image.open(vton_img).resize((768, 1024))
|
51 |
+
keypoints = openpose_model_hd(vton_img.resize((384, 512)))
|
52 |
+
model_parse, _ = parsing_model_hd(vton_img.resize((384, 512)))
|
53 |
+
|
54 |
+
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
|
55 |
+
mask = mask.resize((768, 1024), Image.NEAREST)
|
56 |
+
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
|
57 |
+
|
58 |
+
masked_vton_img = Image.composite(mask_gray, vton_img, mask)
|
59 |
+
|
60 |
+
images = ootd_model_hd(
|
61 |
+
model_type=model_type,
|
62 |
+
category=category_dict[category],
|
63 |
+
image_garm=garm_img,
|
64 |
+
image_vton=masked_vton_img,
|
65 |
+
mask=mask,
|
66 |
+
image_ori=vton_img,
|
67 |
+
num_samples=n_samples,
|
68 |
+
num_steps=n_steps,
|
69 |
+
image_scale=image_scale,
|
70 |
+
seed=seed,
|
71 |
+
)
|
72 |
+
|
73 |
+
return images
|
74 |
+
|
75 |
+
@spaces.GPU
|
76 |
+
def process_dc(vton_img, garm_img, category, n_samples, n_steps, image_scale, seed):
|
77 |
+
model_type = 'dc'
|
78 |
+
if category == 'Upper-body':
|
79 |
+
category = 0
|
80 |
+
elif category == 'Lower-body':
|
81 |
+
category = 1
|
82 |
+
else:
|
83 |
+
category =2
|
84 |
+
|
85 |
+
with torch.no_grad():
|
86 |
+
openpose_model_dc.preprocessor.body_estimation.model.to('cuda')
|
87 |
+
ootd_model_dc.pipe.to('cuda')
|
88 |
+
ootd_model_dc.image_encoder.to('cuda')
|
89 |
+
ootd_model_dc.text_encoder.to('cuda')
|
90 |
+
|
91 |
+
garm_img = Image.open(garm_img).resize((768, 1024))
|
92 |
+
vton_img = Image.open(vton_img).resize((768, 1024))
|
93 |
+
keypoints = openpose_model_dc(vton_img.resize((384, 512)))
|
94 |
+
model_parse, _ = parsing_model_dc(vton_img.resize((384, 512)))
|
95 |
+
|
96 |
+
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
|
97 |
+
mask = mask.resize((768, 1024), Image.NEAREST)
|
98 |
+
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
|
99 |
+
|
100 |
+
masked_vton_img = Image.composite(mask_gray, vton_img, mask)
|
101 |
+
|
102 |
+
images = ootd_model_dc(
|
103 |
+
model_type=model_type,
|
104 |
+
category=category_dict[category],
|
105 |
+
image_garm=garm_img,
|
106 |
+
image_vton=masked_vton_img,
|
107 |
+
mask=mask,
|
108 |
+
image_ori=vton_img,
|
109 |
+
num_samples=n_samples,
|
110 |
+
num_steps=n_steps,
|
111 |
+
image_scale=image_scale,
|
112 |
+
seed=seed,
|
113 |
+
)
|
114 |
+
|
115 |
+
return images
|
116 |
|
117 |
app = FastAPI()
|
118 |
|
|
|
125 |
"""
|
126 |
Hi!
|
127 |
"""
|
128 |
+
return {"From": "Luwi"}
|
129 |
+
|
130 |
+
@app.post("/test")
|
131 |
+
def test():
|
132 |
+
vimg = file("https://levihsu-ootdiffusion.hf.space/--replicas/1b6rr/file=/tmp/gradio/2e0cca23e744c036b3905c4b6167371632942e1c/model_1.png")
|
133 |
+
gimg = file("https://levihsu-ootdiffusion.hf.space/--replicas/1b6rr/file=/tmp/gradio/31c958b21068795c7a90552fc6dc123282b4c7ab/00126_00.jpg")
|
134 |
+
category = "Upper-body"
|
135 |
+
n_samples = 1
|
136 |
+
n_steps = 20
|
137 |
+
image_scale = 1
|
138 |
+
seed = -1
|
139 |
+
return process_dc(vimg, gimg, category, n_samples, n_steps, image_scale, seed)
|