Spaces:
Runtime error
Runtime error
File size: 9,560 Bytes
3b80337 25c5769 3b80337 dc3964b 3b80337 ed1264c 3b80337 e26df21 1ede566 658ff2f 3b80337 ed1264c 3b80337 ed1264c ad46a46 ed1264c 3b80337 1e22e27 3b80337 e5371d8 3b80337 c2b497e 52def34 29de853 52def34 c2b497e 29de853 c2b497e 29de853 c2b497e 29de853 52def34 3b80337 658ff2f 3b80337 e2e4bf1 3b80337 25c5769 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
from io import BytesIO
import torch
import numpy as np
from PIL import Image
from einops import rearrange
from torch import autocast
from contextlib import nullcontext
import requests
import functools
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from ldm.extras import load_model_from_config, load_training_dir
import clip
from PIL import Image
from huggingface_hub import hf_hub_download
ckpt = hf_hub_download(repo_id="lambdalabs/image-mixer", filename="image-mixer-pruned.ckpt")
config = hf_hub_download(repo_id="lambdalabs/image-mixer", filename="image-mixer-config.yaml")
device = "cuda:0"
model = load_model_from_config(config, ckpt, device=device, verbose=False)
model = model.to(device).half()
clip_model, preprocess = clip.load("ViT-L/14", device=device)
n_inputs = 5
torch.cuda.empty_cache()
@functools.lru_cache()
def get_url_im(t):
user_agent = {'User-agent': 'gradio-app'}
response = requests.get(t, headers=user_agent)
return Image.open(BytesIO(response.content))
@torch.no_grad()
def get_im_c(im_path, clip_model):
# im = Image.open(im_path).convert("RGB")
prompts = preprocess(im_path).to(device).unsqueeze(0)
return clip_model.encode_image(prompts).float()
@torch.no_grad()
def get_txt_c(txt, clip_model):
text = clip.tokenize([txt,]).to(device)
return clip_model.encode_text(text)
def get_txt_diff(txt1, txt2, clip_model):
return get_txt_c(txt1, clip_model) - get_txt_c(txt2, clip_model)
def to_im_list(x_samples_ddim):
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
ims = []
for x_sample in x_samples_ddim:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
ims.append(Image.fromarray(x_sample.astype(np.uint8)))
return ims
@torch.no_grad()
def sample(sampler, model, c, uc, scale, start_code, h=512, w=512, precision="autocast",ddim_steps=50):
ddim_eta=0.0
precision_scope = autocast if precision=="autocast" else nullcontext
with precision_scope("cuda"):
shape = [4, h // 8, w // 8]
samples_ddim, _ = sampler.sample(S=ddim_steps,
conditioning=c,
batch_size=c.shape[0],
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
eta=ddim_eta,
x_T=start_code)
x_samples_ddim = model.decode_first_stage(samples_ddim)
return to_im_list(x_samples_ddim)
def run(*args):
inps = []
for i in range(0, len(args)-4, n_inputs):
inps.append(args[i:i+n_inputs])
scale, n_samples, seed, steps = args[-4:]
h = w = 640
sampler = DDIMSampler(model)
# sampler = PLMSSampler(model)
torch.manual_seed(seed)
start_code = torch.randn(n_samples, 4, h//8, w//8, device=device)
conds = []
for b, t, im, s in zip(*inps):
if b == "Image":
this_cond = s*get_im_c(im, clip_model)
elif b == "Text/URL":
if t.startswith("http"):
im = get_url_im(t)
this_cond = s*get_im_c(im, clip_model)
else:
this_cond = s*get_txt_c(t, clip_model)
else:
this_cond = torch.zeros((1, 768), device=device)
conds.append(this_cond)
conds = torch.cat(conds, dim=0).unsqueeze(0)
conds = conds.tile(n_samples, 1, 1)
ims = sample(sampler, model, conds, 0*conds, scale, start_code, ddim_steps=steps)
# return make_row(ims)
# Clear GPU memory cache so less likely to OOM
torch.cuda.empty_cache()
return ims
import gradio as gr
from functools import partial
from itertools import chain
def change_visible(txt1, im1, val):
outputs = {}
if val == "Image":
outputs[im1] = gr.update(visible=True)
outputs[txt1] = gr.update(visible=False)
elif val == "Text/URL":
outputs[im1] = gr.update(visible=False)
outputs[txt1] = gr.update(visible=True)
elif val == "Nothing":
outputs[im1] = gr.update(visible=False)
outputs[txt1] = gr.update(visible=False)
return outputs
with gr.Blocks(title="Image Mixer", css=".gr-box {border-color: #8136e2}") as demo:
gr.Markdown("")
gr.Markdown(
"""
# Image Mixer
_Created by [Justin Pinkney](https://www.justinpinkney.com) at [Lambda Labs](https://lambdalabs.com/)_
To skip the queue you can try it on <a href="https://cloud.lambdalabs.com/demos/lambda/image-mixer-demo" style="display:inline-block;position: relative;"><img style="margin-top: 0;margin-bottom: 0;margin-left: .25em;" src="https://img.shields.io/badge/-Lambda%20Cloud-blueviolet"></a>
### __Provide one or more images to be mixed together by a fine-tuned Stable Diffusion model (see tips and advice below👇).__
![banner-large.jpeg](https://s3.amazonaws.com/moonup/production/uploads/1674039767068-62bd5f951e22ec84279820e8.jpeg)
""")
btns = []
txts = []
ims = []
strengths = []
with gr.Row():
for i in range(n_inputs):
with gr.Box():
with gr.Column():
btn1 = gr.Radio(
choices=["Image", "Text/URL", "Nothing"],
label=f"Input {i} type",
interactive=True,
value="Nothing",
)
txt1 = gr.Textbox(label="Text or Image URL", visible=False, interactive=True)
im1 = gr.Image(label="Image", interactive=True, visible=False, type="pil")
strength = gr.Slider(label="Strength", minimum=0, maximum=5, step=0.05, value=1, interactive=True)
fn = partial(change_visible, txt1, im1)
btn1.change(fn=fn, inputs=[btn1], outputs=[txt1, im1], queue=False)
btns.append(btn1)
txts.append(txt1)
ims.append(im1)
strengths.append(strength)
with gr.Row():
cfg_scale = gr.Slider(label="CFG scale", value=3, minimum=1, maximum=10, step=0.5)
n_samples = gr.Slider(label="Num samples", value=1, minimum=1, maximum=1, step=1)
seed = gr.Slider(label="Seed", value=0, minimum=0, maximum=10000, step=1)
steps = gr.Slider(label="Steps", value=30, minimum=10, maximum=100, step=5)
with gr.Row():
submit = gr.Button("Generate")
output = gr.Gallery().style(grid=[1,2], height="640px")
inps = list(chain(btns, txts, ims, strengths))
inps.extend([cfg_scale,n_samples,seed, steps,])
submit.click(fn=run, inputs=inps, outputs=[output])
ex = gr.Examples([
[
"Image", "Image", "Text/URL", "Nothing", "Nothing",
"","","central symmetric figure detailed artwork","","",
"gainsborough.jpeg","blonder.jpeg","blonder.jpeg","blonder.jpeg","blonder.jpeg",
1,1.35,1.4,1,1,
3.0, 1, 0, 30,
],
[
"Image", "Image", "Text/URL", "Image", "Nothing",
"","","flowers","","",
"ex2-1.jpeg","ex2-2.jpeg","blonder.jpeg","ex2-3.jpeg","blonder.jpeg",
1,1,1.5,1.25,1,
3.0, 1, 0, 30,
],
[
"Image", "Image", "Image", "Nothing", "Nothing",
"","","","","",
"ex1-1.jpeg","ex1-2.jpeg","ex1-3.jpeg","blonder.jpeg","blonder.jpeg",
1.1,1,1.4,1,1,
3.0, 1, 0, 30,
],
],
fn=run, inputs=inps, outputs=[output], cache_examples=True)
gr.Markdown(
"""
## Tips
- You can provide between 1 and 5 inputs, these can either be an uploaded image a text prompt or a url to an image file.
- The order of the inputs shouldn't matter, any images will be centre cropped before use.
- Each input has an individual strength parameter which controls how big an influence it has on the output.
- The model was not trained using text and can not interpret complex text prompts.
- Using only text prompts doesn't work well, make sure there is at least one image or URL to an image.
- The parameters on the bottom row such as cfg scale do the same as for a normal Stable Diffusion model.
- Balancing the different inputs requires tweaking of the strengths, I suggest getting the right balance for a small number of samples and with few steps until you're
happy with the result then increase the steps for better quality.
- Outputs are 640x640 by default.
- If you want to run locally see the instruction on the [Model Card](https://huggingface.co/lambdalabs/image-mixer).
## How does this work?
This model is based on the [Stable Diffusion Image Variations model](https://huggingface.co/lambdalabs/sd-image-variations-diffusers)
but it has been fined tuned to take multiple CLIP image embeddings. During training, up to 5 random crops were taken from the training images and
the CLIP image embeddings were computed, these were then concatenated and used as the conditioning for the model. At inference time we can combine the image
embeddings from multiple images to mix their concepts (and we can also use the text encoder to add text concepts too).
The model was trained on a subset of LAION Improved Aesthetics at a resolution of 640x640 and was trained using 8xA100 GPUs on [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud).
""")
demo.launch()
|