Spaces:
Runtime error
Runtime error
Commit
·
3b80337
1
Parent(s):
8881aeb
init commit
Browse files- app.py +210 -0
- requirements.txt +26 -0
app.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from io import BytesIO
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from einops import rearrange
|
| 6 |
+
from torch import autocast
|
| 7 |
+
from contextlib import nullcontext
|
| 8 |
+
import requests
|
| 9 |
+
import functools
|
| 10 |
+
|
| 11 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
| 12 |
+
from ldm.models.diffusion.plms import PLMSSampler
|
| 13 |
+
from ldm.extras import load_model_from_config, load_training_dir
|
| 14 |
+
import clip
|
| 15 |
+
|
| 16 |
+
from PIL import Image
|
| 17 |
+
|
| 18 |
+
from huggingface_hub import hf_hub_download
|
| 19 |
+
ckpt = hf_hub_download(repo_id="lambdalabs/image-mixer", filename="image-mixer-pruned.ckpt")
|
| 20 |
+
config = hf_hub_download(repo_id="lambdalabs/image-mixer", filename="image-mixer-config.yaml")
|
| 21 |
+
|
| 22 |
+
device = "cuda:0"
|
| 23 |
+
model = load_model_from_config(config, ckpt, device=device, verbose=False)
|
| 24 |
+
model = model.to(device).half()
|
| 25 |
+
|
| 26 |
+
clip_model, preprocess = clip.load("ViT-L/14", device=device)
|
| 27 |
+
|
| 28 |
+
n_inputs = 5
|
| 29 |
+
|
| 30 |
+
@functools.lru_cache()
|
| 31 |
+
def get_url_im(t):
|
| 32 |
+
user_agent = {'User-agent': 'gradio-app'}
|
| 33 |
+
response = requests.get(t, headers=user_agent)
|
| 34 |
+
return Image.open(BytesIO(response.content))
|
| 35 |
+
|
| 36 |
+
@torch.no_grad()
|
| 37 |
+
def get_im_c(im_path, clip_model):
|
| 38 |
+
# im = Image.open(im_path).convert("RGB")
|
| 39 |
+
prompts = preprocess(im_path).to(device).unsqueeze(0)
|
| 40 |
+
return clip_model.encode_image(prompts).float()
|
| 41 |
+
|
| 42 |
+
@torch.no_grad()
|
| 43 |
+
def get_txt_c(txt, clip_model):
|
| 44 |
+
text = clip.tokenize([txt,]).to(device)
|
| 45 |
+
return clip_model.encode_text(text)
|
| 46 |
+
|
| 47 |
+
def get_txt_diff(txt1, txt2, clip_model):
|
| 48 |
+
return get_txt_c(txt1, clip_model) - get_txt_c(txt2, clip_model)
|
| 49 |
+
|
| 50 |
+
def to_im_list(x_samples_ddim):
|
| 51 |
+
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
| 52 |
+
ims = []
|
| 53 |
+
for x_sample in x_samples_ddim:
|
| 54 |
+
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
| 55 |
+
ims.append(Image.fromarray(x_sample.astype(np.uint8)))
|
| 56 |
+
return ims
|
| 57 |
+
|
| 58 |
+
@torch.no_grad()
|
| 59 |
+
def sample(sampler, model, c, uc, scale, start_code, h=512, w=512, precision="autocast",ddim_steps=50):
|
| 60 |
+
ddim_eta=0.0
|
| 61 |
+
precision_scope = autocast if precision=="autocast" else nullcontext
|
| 62 |
+
with precision_scope("cuda"):
|
| 63 |
+
shape = [4, h // 8, w // 8]
|
| 64 |
+
samples_ddim, _ = sampler.sample(S=ddim_steps,
|
| 65 |
+
conditioning=c,
|
| 66 |
+
batch_size=c.shape[0],
|
| 67 |
+
shape=shape,
|
| 68 |
+
verbose=False,
|
| 69 |
+
unconditional_guidance_scale=scale,
|
| 70 |
+
unconditional_conditioning=uc,
|
| 71 |
+
eta=ddim_eta,
|
| 72 |
+
x_T=start_code)
|
| 73 |
+
|
| 74 |
+
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
| 75 |
+
return to_im_list(x_samples_ddim)
|
| 76 |
+
|
| 77 |
+
def run(*args):
|
| 78 |
+
|
| 79 |
+
inps = []
|
| 80 |
+
for i in range(0, len(args)-4, n_inputs):
|
| 81 |
+
inps.append(args[i:i+n_inputs])
|
| 82 |
+
|
| 83 |
+
scale, n_samples, seed, steps = args[-4:]
|
| 84 |
+
h = w = 640
|
| 85 |
+
|
| 86 |
+
sampler = DDIMSampler(model)
|
| 87 |
+
# sampler = PLMSSampler(model)
|
| 88 |
+
|
| 89 |
+
torch.manual_seed(seed)
|
| 90 |
+
start_code = torch.randn(n_samples, 4, h//8, w//8, device=device)
|
| 91 |
+
conds = []
|
| 92 |
+
|
| 93 |
+
for b, t, im, s in zip(*inps):
|
| 94 |
+
if b == "Image":
|
| 95 |
+
this_cond = s*get_im_c(im, clip_model)
|
| 96 |
+
elif b == "Text/URL":
|
| 97 |
+
if t.startswith("http"):
|
| 98 |
+
im = get_url_im(t)
|
| 99 |
+
this_cond = s*get_im_c(im, clip_model)
|
| 100 |
+
else:
|
| 101 |
+
this_cond = s*get_txt_c(t, clip_model)
|
| 102 |
+
else:
|
| 103 |
+
this_cond = torch.zeros((1, 768), device=device)
|
| 104 |
+
conds.append(this_cond)
|
| 105 |
+
conds = torch.cat(conds, dim=0).unsqueeze(0)
|
| 106 |
+
conds = conds.tile(n_samples, 1, 1)
|
| 107 |
+
|
| 108 |
+
ims = sample(sampler, model, conds, 0*conds, scale, start_code, ddim_steps=steps)
|
| 109 |
+
# return make_row(ims)
|
| 110 |
+
return ims
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
import gradio as gr
|
| 114 |
+
from functools import partial
|
| 115 |
+
from itertools import chain
|
| 116 |
+
|
| 117 |
+
def change_visible(txt1, im1, val):
|
| 118 |
+
outputs = {}
|
| 119 |
+
if val == "Image":
|
| 120 |
+
outputs[im1] = gr.update(visible=True)
|
| 121 |
+
outputs[txt1] = gr.update(visible=False)
|
| 122 |
+
elif val == "Text/URL":
|
| 123 |
+
outputs[im1] = gr.update(visible=False)
|
| 124 |
+
outputs[txt1] = gr.update(visible=True)
|
| 125 |
+
elif val == "Nothing":
|
| 126 |
+
outputs[im1] = gr.update(visible=False)
|
| 127 |
+
outputs[txt1] = gr.update(visible=False)
|
| 128 |
+
return outputs
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
with gr.Blocks(title="Image Mixer") as demo:
|
| 132 |
+
|
| 133 |
+
gr.Markdown("")
|
| 134 |
+
gr.Markdown(
|
| 135 |
+
"""
|
| 136 |
+
# Image Mixer
|
| 137 |
+
|
| 138 |
+
_Created by [Justin Pinkney](https://www.justinpinkney.com) at [Lambda Labs](https://lambdalabs.com/)_
|
| 139 |
+
|
| 140 |
+
### __Provide one or more images to be mixed together by a fine-tuned Stable Diffusion model.__
|
| 141 |
+
|
| 142 |
+

|
| 143 |
+
|
| 144 |
+
""")
|
| 145 |
+
|
| 146 |
+
btns = []
|
| 147 |
+
txts = []
|
| 148 |
+
ims = []
|
| 149 |
+
strengths = []
|
| 150 |
+
|
| 151 |
+
with gr.Row():
|
| 152 |
+
for i in range(n_inputs):
|
| 153 |
+
with gr.Column():
|
| 154 |
+
btn1 = gr.Radio(
|
| 155 |
+
choices=["Image", "Text/URL", "Nothing"],
|
| 156 |
+
label=f"Input {i} type",
|
| 157 |
+
interactive=True,
|
| 158 |
+
value="Nothing",
|
| 159 |
+
)
|
| 160 |
+
txt1 = gr.Textbox(label="Text or Image URL", visible=False, interactive=True)
|
| 161 |
+
im1 = gr.Image(label="Image", interactive=True, visible=False, type="pil")
|
| 162 |
+
strength = gr.Slider(label="Strength", minimum=0, maximum=5, step=0.05, value=1, interactive=True)
|
| 163 |
+
|
| 164 |
+
fn = partial(change_visible, txt1, im1)
|
| 165 |
+
btn1.change(fn=fn, inputs=[btn1], outputs=[txt1, im1])
|
| 166 |
+
|
| 167 |
+
btns.append(btn1)
|
| 168 |
+
txts.append(txt1)
|
| 169 |
+
ims.append(im1)
|
| 170 |
+
strengths.append(strength)
|
| 171 |
+
with gr.Row():
|
| 172 |
+
cfg_scale = gr.Slider(label="CFG scale", value=3, minimum=1, maximum=10, step=0.5)
|
| 173 |
+
n_samples = gr.Slider(label="Num samples", value=2, minimum=1, maximum=4, step=1)
|
| 174 |
+
seed = gr.Slider(label="Seed", value=0, minimum=0, maximum=10000, step=1)
|
| 175 |
+
steps = gr.Slider(label="Steps", value=30, minimum=10, maximum=100, step=5)
|
| 176 |
+
|
| 177 |
+
with gr.Row():
|
| 178 |
+
submit = gr.Button("Generate")
|
| 179 |
+
output = gr.Gallery().style(grid=[1,2,2,2,4,4], height="640px")
|
| 180 |
+
|
| 181 |
+
inps = list(chain(btns, txts, ims, strengths))
|
| 182 |
+
inps.extend([cfg_scale,n_samples,seed, steps,])
|
| 183 |
+
submit.click(fn=run, inputs=inps, outputs=[output])
|
| 184 |
+
|
| 185 |
+
gr.Markdown(
|
| 186 |
+
"""
|
| 187 |
+
|
| 188 |
+
## Tips
|
| 189 |
+
|
| 190 |
+
- You can provide between 1 and 5 inputs, these can either be an uploaded image a text prompt or a url to an image file.
|
| 191 |
+
- The order of the inputs shouldn't matter, any images will be centre cropped before use.
|
| 192 |
+
- Each input has an individual strength parameter which controls how big an influence it has on the output.
|
| 193 |
+
- Using only text prompts doesn't work well, make sure there is at least one image or URL to an image.
|
| 194 |
+
- The parameters on the bottom row such as cfg scale do the same as for a normal Stable Diffusion model.
|
| 195 |
+
- Balancing the different inputs requires tweaking of the strengths, I suggest getting the right balance for a small number of samples and with few steps until you're
|
| 196 |
+
happy with the result then increase the steps for better quality.
|
| 197 |
+
- Outputs are 640x640 by default.
|
| 198 |
+
|
| 199 |
+
## How does this work?
|
| 200 |
+
|
| 201 |
+
This model is based on the [Stable Diffusion Image Variations model](https://huggingface.co/lambdalabs/sd-image-variations-diffusers)
|
| 202 |
+
but it has been fined tuned to take multiple CLIP image embeddings. During training, up to 5 random crops were taken from the training images and
|
| 203 |
+
the CLIP image embeddings were computed, these were then concatenated and used as the conditioning for the model. At inference time we can combine the image
|
| 204 |
+
embeddings from multiple images to mix their concepts (and we can also use the text encoder to add text concepts too).
|
| 205 |
+
|
| 206 |
+
The model was trained on a subset of LAION Improved Aesthetics at a resolution of 640x640 and was trained using 8xA100 GPUs on [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud).
|
| 207 |
+
|
| 208 |
+
""")
|
| 209 |
+
|
| 210 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 2 |
+
torch==1.12.1
|
| 3 |
+
torchvision==0.13.1
|
| 4 |
+
albumentations==0.4.3
|
| 5 |
+
opencv-python==4.5.5.64
|
| 6 |
+
pudb==2019.2
|
| 7 |
+
imageio==2.9.0
|
| 8 |
+
imageio-ffmpeg==0.4.2
|
| 9 |
+
pytorch-lightning==1.4.2
|
| 10 |
+
omegaconf==2.1.1
|
| 11 |
+
test-tube>=0.7.5
|
| 12 |
+
streamlit>=0.73.1
|
| 13 |
+
einops==0.3.0
|
| 14 |
+
torch-fidelity==0.3.0
|
| 15 |
+
transformers==4.22.2
|
| 16 |
+
kornia==0.6
|
| 17 |
+
webdataset==0.2.5
|
| 18 |
+
torchmetrics==0.6.0
|
| 19 |
+
fire==0.4.0
|
| 20 |
+
gradio==3.1.4
|
| 21 |
+
diffusers==0.3.0
|
| 22 |
+
datasets[vision]==2.4.0
|
| 23 |
+
-e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
| 24 |
+
-e git+https://github.com/openai/CLIP.git@main#egg=clip
|
| 25 |
+
-e git+https://github.com/justinpinkney/nomi.git@e9ded23b7e2269cc64d39683e1bf3c0319f552ab#egg=nomi
|
| 26 |
+
-e .
|