File size: 9,447 Bytes
01e655b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import numpy as np
from pydub import AudioSegment
from typing import Any, List, Dict
from scipy.io.wavfile import write
import io
from modules.utils.audio import time_stretch, pitch_shift
from modules import generate_audio
from modules.normalization import text_normalize
import logging
import json
import random
from modules.speaker import Speaker
logger = logging.getLogger(__name__)
def audio_data_to_segment(audio_data, sr):
byte_io = io.BytesIO()
write(byte_io, rate=sr, data=audio_data)
byte_io.seek(0)
return AudioSegment.from_file(byte_io, format="wav")
def combine_audio_segments(audio_segments: list) -> AudioSegment:
combined_audio = AudioSegment.empty()
for segment in audio_segments:
combined_audio += segment
return combined_audio
def apply_prosody(
audio_segment: AudioSegment, rate: float, volume: float, pitch: float
) -> AudioSegment:
if rate != 1:
audio_segment = time_stretch(audio_segment, rate)
if volume != 0:
audio_segment += volume
if pitch != 0:
audio_segment = pitch_shift(audio_segment, pitch)
return audio_segment
def to_number(value, t, default=0):
try:
number = t(value)
return number
except (ValueError, TypeError) as e:
return default
class SynthesizeSegments:
batch_default_spk_seed = int(np.random.randint(0, 2**32 - 1))
batch_default_infer_seed = int(np.random.randint(0, 2**32 - 1))
def __init__(self, batch_size: int = 8):
self.batch_size = batch_size
def segment_to_generate_params(self, segment: Dict[str, Any]) -> Dict[str, Any]:
text = segment.get("text", "")
is_end = segment.get("is_end", False)
text = str(text).strip()
attrs = segment.get("attrs", {})
spk = attrs.get("spk", "")
if isinstance(spk, str):
spk = int(spk)
seed = to_number(attrs.get("seed", ""), int, -1)
top_k = to_number(attrs.get("top_k", ""), int, None)
top_p = to_number(attrs.get("top_p", ""), float, None)
temp = to_number(attrs.get("temp", ""), float, None)
prompt1 = attrs.get("prompt1", "")
prompt2 = attrs.get("prompt2", "")
prefix = attrs.get("prefix", "")
disable_normalize = attrs.get("normalize", "") == "False"
params = {
"text": text,
"temperature": temp if temp is not None else 0.3,
"top_P": top_p if top_p is not None else 0.5,
"top_K": top_k if top_k is not None else 20,
"spk": spk if spk else -1,
"infer_seed": seed if seed else -1,
"prompt1": prompt1 if prompt1 else "",
"prompt2": prompt2 if prompt2 else "",
"prefix": prefix if prefix else "",
}
if not disable_normalize:
params["text"] = text_normalize(text, is_end=is_end)
# Set default values for spk and infer_seed
if params["spk"] == -1:
params["spk"] = self.batch_default_spk_seed
if params["infer_seed"] == -1:
params["infer_seed"] = self.batch_default_infer_seed
return params
def bucket_segments(
self, segments: List[Dict[str, Any]]
) -> List[List[Dict[str, Any]]]:
# Create a dictionary to hold buckets
buckets = {}
for segment in segments:
params = self.segment_to_generate_params(segment)
key_params = params
if isinstance(key_params.get("spk"), Speaker):
key_params["spk"] = str(key_params["spk"].id)
key = json.dumps(
{k: v for k, v in key_params.items() if k != "text"}, sort_keys=True
)
if params["spk"] == -1 or params["infer_seed"] == -1:
key = random.random()
buckets[key] = [segment]
else:
if key not in buckets:
buckets[key] = []
buckets[key].append(segment)
# Convert dictionary to list of buckets
bucket_list = list(buckets.values())
return bucket_list
def synthesize_segments(self, segments: List[Dict[str, Any]]) -> List[AudioSegment]:
audio_segments = [None] * len(
segments
) # Create a list with the same length as segments
buckets = self.bucket_segments(segments)
logger.debug(f"segments len: {len(segments)}")
logger.debug(f"bucket pool size: {len(buckets)}")
for bucket in buckets:
for i in range(0, len(bucket), self.batch_size):
batch = bucket[i : i + self.batch_size]
param_arr = [
self.segment_to_generate_params(segment) for segment in batch
]
texts = [params["text"] for params in param_arr]
params = param_arr[0] # Use the first segment to get the parameters
audio_datas = generate_audio.generate_audio_batch(
texts=texts,
temperature=params["temperature"],
top_P=params["top_P"],
top_K=params["top_K"],
spk=params["spk"],
infer_seed=params["infer_seed"],
prompt1=params["prompt1"],
prompt2=params["prompt2"],
prefix=params["prefix"],
)
for idx, segment in enumerate(batch):
(sr, audio_data) = audio_datas[idx]
rate = float(segment.get("rate", "1.0"))
volume = float(segment.get("volume", "0"))
pitch = float(segment.get("pitch", "0"))
audio_segment = audio_data_to_segment(audio_data, sr)
audio_segment = apply_prosody(audio_segment, rate, volume, pitch)
original_index = segments.index(
segment
) # Get the original index of the segment
audio_segments[original_index] = (
audio_segment # Place the audio_segment in the correct position
)
return audio_segments
def generate_audio_segment(
text: str,
spk: int = -1,
seed: int = -1,
top_p: float = 0.5,
top_k: int = 20,
temp: float = 0.3,
prompt1: str = "",
prompt2: str = "",
prefix: str = "",
enable_normalize=True,
is_end: bool = False,
) -> AudioSegment:
if enable_normalize:
text = text_normalize(text, is_end=is_end)
logger.debug(f"generate segment: {text}")
sample_rate, audio_data = generate_audio.generate_audio(
text=text,
temperature=temp if temp is not None else 0.3,
top_P=top_p if top_p is not None else 0.5,
top_K=top_k if top_k is not None else 20,
spk=spk if spk else -1,
infer_seed=seed if seed else -1,
prompt1=prompt1 if prompt1 else "",
prompt2=prompt2 if prompt2 else "",
prefix=prefix if prefix else "",
)
byte_io = io.BytesIO()
write(byte_io, sample_rate, audio_data)
byte_io.seek(0)
return AudioSegment.from_file(byte_io, format="wav")
def synthesize_segment(segment: Dict[str, Any]) -> AudioSegment | None:
if "break" in segment:
pause_segment = AudioSegment.silent(duration=segment["break"])
return pause_segment
attrs = segment.get("attrs", {})
text = segment.get("text", "")
is_end = segment.get("is_end", False)
text = str(text).strip()
if text == "":
return None
spk = attrs.get("spk", "")
if isinstance(spk, str):
spk = int(spk)
seed = to_number(attrs.get("seed", ""), int, -1)
top_k = to_number(attrs.get("top_k", ""), int, None)
top_p = to_number(attrs.get("top_p", ""), float, None)
temp = to_number(attrs.get("temp", ""), float, None)
prompt1 = attrs.get("prompt1", "")
prompt2 = attrs.get("prompt2", "")
prefix = attrs.get("prefix", "")
disable_normalize = attrs.get("normalize", "") == "False"
audio_segment = generate_audio_segment(
text,
enable_normalize=not disable_normalize,
spk=spk,
seed=seed,
top_k=top_k,
top_p=top_p,
temp=temp,
prompt1=prompt1,
prompt2=prompt2,
prefix=prefix,
is_end=is_end,
)
rate = float(attrs.get("rate", "1.0"))
volume = float(attrs.get("volume", "0"))
pitch = float(attrs.get("pitch", "0"))
audio_segment = apply_prosody(audio_segment, rate, volume, pitch)
return audio_segment
# 示例使用
if __name__ == "__main__":
ssml_segments = [
{
"text": "大🍌,一条大🍌,嘿,你的感觉真的很奇妙 [lbreak]",
"attrs": {"spk": 2, "temp": 0.1, "seed": 42},
},
{
"text": "大🍉,一个大🍉,嘿,你的感觉真的很奇妙 [lbreak]",
"attrs": {"spk": 2, "temp": 0.1, "seed": 42},
},
{
"text": "大🍌,一条大🍌,嘿,你的感觉真的很奇妙 [lbreak]",
"attrs": {"spk": 2, "temp": 0.3, "seed": 42},
},
]
synthesizer = SynthesizeSegments(batch_size=2)
audio_segments = synthesizer.synthesize_segments(ssml_segments)
combined_audio = combine_audio_segments(audio_segments)
combined_audio.export("output.wav", format="wav")
|