Spaces:
Sleeping
Sleeping
File size: 1,732 Bytes
6201f5c bfb34be 6201f5c 6e46e91 6201f5c 6e46e91 6201f5c 6e46e91 6201f5c 6e46e91 6201f5c 304efa6 6e46e91 304efa6 6e46e91 6201f5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
import PIL.Image as Image
from ultralytics import ASSETS, YOLO
model = YOLO("yolo12x.pt")
def predict_image(img, conf_threshold, iou_threshold):
"""Predicts persons and cars in an image and returns the image with detections and counts."""
results = model.predict(
source=img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
classes=[0, 2] # 0 for person, 2 for car
)
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
# Count persons and cars separately
person_count = 0
car_count = 0
if results[0].boxes is not None:
for box in results[0].boxes:
class_id = int(box.cls[0])
if class_id == 0: # person
person_count += 1
elif class_id == 2: # car
car_count += 1
total_count = person_count + car_count
count_text = f"Persons: {person_count} | Cars: {car_count} | Total: {total_count}"
return im, count_text
iface = gr.Interface(
fn=predict_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
],
outputs=[
gr.Image(type="pil", label="Result"),
gr.Textbox(label="Detection Count")
],
title="Person and Car Detection",
description="Upload images to detect persons and cars with individual counts",
)
if __name__ == "__main__":
iface.launch() |