Spaces:
Runtime error
Runtime error
File size: 1,238 Bytes
6201f5c bfb34be 6201f5c 304efa6 6201f5c 7baed24 6201f5c 304efa6 6201f5c 304efa6 6201f5c 304efa6 6201f5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
import PIL.Image as Image
from ultralytics import ASSETS, YOLO
model = YOLO("yolo12x.pt")
def predict_image(img, conf_threshold, iou_threshold):
"""Predicts persons in an image and returns the image with detections and count."""
results = model.predict(
source=img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
classes=[0]
)
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
person_count = len(results[0].boxes) if results[0].boxes is not None else 0
return im, f"Number of persons detected: {person_count}"
iface = gr.Interface(
fn=predict_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
],
outputs=[
gr.Image(type="pil", label="Result"),
gr.Textbox(label="Person Count")
],
title="Image Person Detection",
description="Upload images to detect persons and get a count",
)
if __name__ == "__main__":
iface.launch() |