File size: 16,529 Bytes
5f093a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, logging, randn_tensor
from .scheduling_utils import SchedulerMixin


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class CMStochasticIterativeSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
    """

    prev_sample: torch.FloatTensor


class CMStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
    """
    Multistep and onestep sampling for consistency models from Song et al. 2023 [1]. This implements Algorithm 1 in the
    paper [1].

    [1] Song, Yang and Dhariwal, Prafulla and Chen, Mark and Sutskever, Ilya. "Consistency Models"
    https://arxiv.org/pdf/2303.01469 [2] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based
    Generative Models." https://arxiv.org/abs/2206.00364

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        sigma_min (`float`):
            Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the original implementation.
        sigma_max (`float`):
            Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the original implementation.
        sigma_data (`float`):
            The standard deviation of the data distribution, following the EDM paper [2]. This was set to 0.5 in the
            original implementation, which is also the original value suggested in the EDM paper.
        s_noise (`float`):
            The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
            1.011]. This was set to 1.0 in the original implementation.
        rho (`float`):
            The rho parameter used for calculating the Karras sigma schedule, introduced in the EDM paper [2]. This was
            set to 7.0 in the original implementation, which is also the original value suggested in the EDM paper.
        clip_denoised (`bool`):
            Whether to clip the denoised outputs to `(-1, 1)`. Defaults to `True`.
        timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*):
            Optionally, an explicit timestep schedule can be specified. The timesteps are expected to be in increasing
            order.
    """

    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 40,
        sigma_min: float = 0.002,
        sigma_max: float = 80.0,
        sigma_data: float = 0.5,
        s_noise: float = 1.0,
        rho: float = 7.0,
        clip_denoised: bool = True,
    ):
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = sigma_max

        ramp = np.linspace(0, 1, num_train_timesteps)
        sigmas = self._convert_to_karras(ramp)
        timesteps = self.sigma_to_t(sigmas)

        # setable values
        self.num_inference_steps = None
        self.sigmas = torch.from_numpy(sigmas)
        self.timesteps = torch.from_numpy(timesteps)
        self.custom_timesteps = False
        self.is_scale_input_called = False

    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()
        return indices.item()

    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
        Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`, following the EDM model.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain
        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        # Get sigma corresponding to timestep
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
        step_idx = self.index_for_timestep(timestep)
        sigma = self.sigmas[step_idx]

        sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5)

        self.is_scale_input_called = True
        return sample

    def sigma_to_t(self, sigmas: Union[float, np.ndarray]):
        """
        Gets scaled timesteps from the Karras sigmas, for input to the consistency model.

        Args:
            sigmas (`float` or `np.ndarray`): single Karras sigma or array of Karras sigmas
        Returns:
            `float` or `np.ndarray`: scaled input timestep or scaled input timestep array
        """
        if not isinstance(sigmas, np.ndarray):
            sigmas = np.array(sigmas, dtype=np.float64)

        timesteps = 1000 * 0.25 * np.log(sigmas + 1e-44)

        return timesteps

    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
    ):
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
            timesteps (`List[int]`, optional):
                custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
                timestep spacing strategy of equal spacing between timesteps is used. If passed, `num_inference_steps`
                must be `None`.
        """
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.")

        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `timesteps`.")

        # Follow DDPMScheduler custom timesteps logic
        if timesteps is not None:
            for i in range(1, len(timesteps)):
                if timesteps[i] >= timesteps[i - 1]:
                    raise ValueError("`timesteps` must be in descending order.")

            if timesteps[0] >= self.config.num_train_timesteps:
                raise ValueError(
                    f"`timesteps` must start before `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps}."
                )

            timesteps = np.array(timesteps, dtype=np.int64)
            self.custom_timesteps = True
        else:
            if num_inference_steps > self.config.num_train_timesteps:
                raise ValueError(
                    f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                    f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
                    f" maximal {self.config.num_train_timesteps} timesteps."
                )

            self.num_inference_steps = num_inference_steps

            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
            self.custom_timesteps = False

        # Map timesteps to Karras sigmas directly for multistep sampling
        # See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675
        num_train_timesteps = self.config.num_train_timesteps
        ramp = timesteps[::-1].copy()
        ramp = ramp / (num_train_timesteps - 1)
        sigmas = self._convert_to_karras(ramp)
        timesteps = self.sigma_to_t(sigmas)

        sigmas = np.concatenate([sigmas, [self.sigma_min]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas).to(device=device)

        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
        else:
            self.timesteps = torch.from_numpy(timesteps).to(device=device)

    # Modified _convert_to_karras implementation that takes in ramp as argument
    def _convert_to_karras(self, ramp):
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = self.config.sigma_min
        sigma_max: float = self.config.sigma_max

        rho = self.config.rho
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

    def get_scalings(self, sigma):
        sigma_data = self.config.sigma_data

        c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
        c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        return c_skip, c_out

    def get_scalings_for_boundary_condition(self, sigma):
        """
        Gets the scalings used in the consistency model parameterization, following Appendix C of the original paper.
        This enforces the consistency model boundary condition.

        Note that `epsilon` in the equations for c_skip and c_out is set to sigma_min.

        Args:
            sigma (`torch.FloatTensor`):
                The current sigma in the Karras sigma schedule.
        Returns:
            `tuple`:
                A two-element tuple where c_skip (which weights the current sample) is the first element and c_out
                (which weights the consistency model output) is the second element.
        """
        sigma_min = self.config.sigma_min
        sigma_data = self.config.sigma_data

        c_skip = sigma_data**2 / ((sigma - sigma_min) ** 2 + sigma_data**2)
        c_out = (sigma - sigma_min) * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
        return c_skip, c_out

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[CMStochasticIterativeSchedulerOutput, Tuple]:
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
            timestep (`float`): current timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                current instance of sample being created by diffusion process.
            generator (`torch.Generator`, *optional*): Random number generator.
            return_dict (`bool`): option for returning tuple rather than EulerDiscreteSchedulerOutput class
        Returns:
            [`~schedulers.scheduling_utils.CMStochasticIterativeSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.CMStochasticIterativeSchedulerOutput`] if `return_dict` is True, otherwise a
            `tuple`. When returning a tuple, the first element is the sample tensor.
        """

        if (
            isinstance(timestep, int)
            or isinstance(timestep, torch.IntTensor)
            or isinstance(timestep, torch.LongTensor)
        ):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    f" `{self.__class__}.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if not self.is_scale_input_called:
            logger.warning(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        sigma_min = self.config.sigma_min
        sigma_max = self.config.sigma_max

        step_index = self.index_for_timestep(timestep)

        # sigma_next corresponds to next_t in original implementation
        sigma = self.sigmas[step_index]
        if step_index + 1 < self.config.num_train_timesteps:
            sigma_next = self.sigmas[step_index + 1]
        else:
            # Set sigma_next to sigma_min
            sigma_next = self.sigmas[-1]

        # Get scalings for boundary conditions
        c_skip, c_out = self.get_scalings_for_boundary_condition(sigma)

        # 1. Denoise model output using boundary conditions
        denoised = c_out * model_output + c_skip * sample
        if self.config.clip_denoised:
            denoised = denoised.clamp(-1, 1)

        # 2. Sample z ~ N(0, s_noise^2 * I)
        # Noise is not used for onestep sampling.
        if len(self.timesteps) > 1:
            noise = randn_tensor(
                model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
            )
        else:
            noise = torch.zeros_like(model_output)
        z = noise * self.config.s_noise

        sigma_hat = sigma_next.clamp(min=sigma_min, max=sigma_max)

        # 3. Return noisy sample
        # tau = sigma_hat, eps = sigma_min
        prev_sample = denoised + z * (sigma_hat**2 - sigma_min**2) ** 0.5

        if not return_dict:
            return (prev_sample,)

        return CMStochasticIterativeSchedulerOutput(prev_sample=prev_sample)

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)

        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps