Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,529 Bytes
5f093a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, logging, randn_tensor
from .scheduling_utils import SchedulerMixin
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class CMStochasticIterativeSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's step function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: torch.FloatTensor
class CMStochasticIterativeScheduler(SchedulerMixin, ConfigMixin):
"""
Multistep and onestep sampling for consistency models from Song et al. 2023 [1]. This implements Algorithm 1 in the
paper [1].
[1] Song, Yang and Dhariwal, Prafulla and Chen, Mark and Sutskever, Ilya. "Consistency Models"
https://arxiv.org/pdf/2303.01469 [2] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based
Generative Models." https://arxiv.org/abs/2206.00364
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions.
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
sigma_min (`float`):
Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the original implementation.
sigma_max (`float`):
Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the original implementation.
sigma_data (`float`):
The standard deviation of the data distribution, following the EDM paper [2]. This was set to 0.5 in the
original implementation, which is also the original value suggested in the EDM paper.
s_noise (`float`):
The amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000,
1.011]. This was set to 1.0 in the original implementation.
rho (`float`):
The rho parameter used for calculating the Karras sigma schedule, introduced in the EDM paper [2]. This was
set to 7.0 in the original implementation, which is also the original value suggested in the EDM paper.
clip_denoised (`bool`):
Whether to clip the denoised outputs to `(-1, 1)`. Defaults to `True`.
timesteps (`List` or `np.ndarray` or `torch.Tensor`, *optional*):
Optionally, an explicit timestep schedule can be specified. The timesteps are expected to be in increasing
order.
"""
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 40,
sigma_min: float = 0.002,
sigma_max: float = 80.0,
sigma_data: float = 0.5,
s_noise: float = 1.0,
rho: float = 7.0,
clip_denoised: bool = True,
):
# standard deviation of the initial noise distribution
self.init_noise_sigma = sigma_max
ramp = np.linspace(0, 1, num_train_timesteps)
sigmas = self._convert_to_karras(ramp)
timesteps = self.sigma_to_t(sigmas)
# setable values
self.num_inference_steps = None
self.sigmas = torch.from_numpy(sigmas)
self.timesteps = torch.from_numpy(timesteps)
self.custom_timesteps = False
self.is_scale_input_called = False
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
return indices.item()
def scale_model_input(
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
) -> torch.FloatTensor:
"""
Scales the consistency model input by `(sigma**2 + sigma_data**2) ** 0.5`, following the EDM model.
Args:
sample (`torch.FloatTensor`): input sample
timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain
Returns:
`torch.FloatTensor`: scaled input sample
"""
# Get sigma corresponding to timestep
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
step_idx = self.index_for_timestep(timestep)
sigma = self.sigmas[step_idx]
sample = sample / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
self.is_scale_input_called = True
return sample
def sigma_to_t(self, sigmas: Union[float, np.ndarray]):
"""
Gets scaled timesteps from the Karras sigmas, for input to the consistency model.
Args:
sigmas (`float` or `np.ndarray`): single Karras sigma or array of Karras sigmas
Returns:
`float` or `np.ndarray`: scaled input timestep or scaled input timestep array
"""
if not isinstance(sigmas, np.ndarray):
sigmas = np.array(sigmas, dtype=np.float64)
timesteps = 1000 * 0.25 * np.log(sigmas + 1e-44)
return timesteps
def set_timesteps(
self,
num_inference_steps: Optional[int] = None,
device: Union[str, torch.device] = None,
timesteps: Optional[List[int]] = None,
):
"""
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, optional):
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, optional):
custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of equal spacing between timesteps is used. If passed, `num_inference_steps`
must be `None`.
"""
if num_inference_steps is None and timesteps is None:
raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.")
if num_inference_steps is not None and timesteps is not None:
raise ValueError("Can only pass one of `num_inference_steps` or `timesteps`.")
# Follow DDPMScheduler custom timesteps logic
if timesteps is not None:
for i in range(1, len(timesteps)):
if timesteps[i] >= timesteps[i - 1]:
raise ValueError("`timesteps` must be in descending order.")
if timesteps[0] >= self.config.num_train_timesteps:
raise ValueError(
f"`timesteps` must start before `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps}."
)
timesteps = np.array(timesteps, dtype=np.int64)
self.custom_timesteps = True
else:
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
f" maximal {self.config.num_train_timesteps} timesteps."
)
self.num_inference_steps = num_inference_steps
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
self.custom_timesteps = False
# Map timesteps to Karras sigmas directly for multistep sampling
# See https://github.com/openai/consistency_models/blob/main/cm/karras_diffusion.py#L675
num_train_timesteps = self.config.num_train_timesteps
ramp = timesteps[::-1].copy()
ramp = ramp / (num_train_timesteps - 1)
sigmas = self._convert_to_karras(ramp)
timesteps = self.sigma_to_t(sigmas)
sigmas = np.concatenate([sigmas, [self.sigma_min]]).astype(np.float32)
self.sigmas = torch.from_numpy(sigmas).to(device=device)
if str(device).startswith("mps"):
# mps does not support float64
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
else:
self.timesteps = torch.from_numpy(timesteps).to(device=device)
# Modified _convert_to_karras implementation that takes in ramp as argument
def _convert_to_karras(self, ramp):
"""Constructs the noise schedule of Karras et al. (2022)."""
sigma_min: float = self.config.sigma_min
sigma_max: float = self.config.sigma_max
rho = self.config.rho
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
def get_scalings(self, sigma):
sigma_data = self.config.sigma_data
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
return c_skip, c_out
def get_scalings_for_boundary_condition(self, sigma):
"""
Gets the scalings used in the consistency model parameterization, following Appendix C of the original paper.
This enforces the consistency model boundary condition.
Note that `epsilon` in the equations for c_skip and c_out is set to sigma_min.
Args:
sigma (`torch.FloatTensor`):
The current sigma in the Karras sigma schedule.
Returns:
`tuple`:
A two-element tuple where c_skip (which weights the current sample) is the first element and c_out
(which weights the consistency model output) is the second element.
"""
sigma_min = self.config.sigma_min
sigma_data = self.config.sigma_data
c_skip = sigma_data**2 / ((sigma - sigma_min) ** 2 + sigma_data**2)
c_out = (sigma - sigma_min) * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
return c_skip, c_out
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[CMStochasticIterativeSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`): direct output from learned diffusion model.
timestep (`float`): current timestep in the diffusion chain.
sample (`torch.FloatTensor`):
current instance of sample being created by diffusion process.
generator (`torch.Generator`, *optional*): Random number generator.
return_dict (`bool`): option for returning tuple rather than EulerDiscreteSchedulerOutput class
Returns:
[`~schedulers.scheduling_utils.CMStochasticIterativeSchedulerOutput`] or `tuple`:
[`~schedulers.scheduling_utils.CMStochasticIterativeSchedulerOutput`] if `return_dict` is True, otherwise a
`tuple`. When returning a tuple, the first element is the sample tensor.
"""
if (
isinstance(timestep, int)
or isinstance(timestep, torch.IntTensor)
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
f" `{self.__class__}.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if not self.is_scale_input_called:
logger.warning(
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
"See `StableDiffusionPipeline` for a usage example."
)
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
sigma_min = self.config.sigma_min
sigma_max = self.config.sigma_max
step_index = self.index_for_timestep(timestep)
# sigma_next corresponds to next_t in original implementation
sigma = self.sigmas[step_index]
if step_index + 1 < self.config.num_train_timesteps:
sigma_next = self.sigmas[step_index + 1]
else:
# Set sigma_next to sigma_min
sigma_next = self.sigmas[-1]
# Get scalings for boundary conditions
c_skip, c_out = self.get_scalings_for_boundary_condition(sigma)
# 1. Denoise model output using boundary conditions
denoised = c_out * model_output + c_skip * sample
if self.config.clip_denoised:
denoised = denoised.clamp(-1, 1)
# 2. Sample z ~ N(0, s_noise^2 * I)
# Noise is not used for onestep sampling.
if len(self.timesteps) > 1:
noise = randn_tensor(
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
)
else:
noise = torch.zeros_like(model_output)
z = noise * self.config.s_noise
sigma_hat = sigma_next.clamp(min=sigma_min, max=sigma_max)
# 3. Return noisy sample
# tau = sigma_hat, eps = sigma_min
prev_sample = denoised + z * (sigma_hat**2 - sigma_min**2) ** 0.5
if not return_dict:
return (prev_sample,)
return CMStochasticIterativeSchedulerOutput(prev_sample=prev_sample)
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
def add_noise(
self,
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.FloatTensor,
) -> torch.FloatTensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps
|