File size: 6,481 Bytes
5f093a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Slower implementation of the global alignment that allows to freeze partial poses/intrinsics
# --------------------------------------------------------
import numpy as np
import torch
import torch.nn as nn

from dust3r.cloud_opt.base_opt import BasePCOptimizer
from dust3r.utils.geometry import geotrf
from dust3r.utils.device import to_cpu, to_numpy
from dust3r.utils.geometry import depthmap_to_pts3d


class ModularPointCloudOptimizer (BasePCOptimizer):
    """ Optimize a global scene, given a list of pairwise observations.
    Unlike PointCloudOptimizer, you can fix parts of the optimization process (partial poses/intrinsics)
    Graph node: images
    Graph edges: observations = (pred1, pred2)
    """

    def __init__(self, *args, optimize_pp=False, fx_and_fy=False, focal_brake=20, **kwargs):
        super().__init__(*args, **kwargs)
        self.has_im_poses = True  # by definition of this class
        self.focal_brake = focal_brake

        # adding thing to optimize
        self.im_depthmaps = nn.ParameterList(torch.randn(H, W)/10-3 for H, W in self.imshapes)  # log(depth)
        self.im_poses = nn.ParameterList(self.rand_pose(self.POSE_DIM) for _ in range(self.n_imgs))  # camera poses
        default_focals = [self.focal_brake * np.log(max(H, W)) for H, W in self.imshapes]
        self.im_focals = nn.ParameterList(torch.FloatTensor([f, f] if fx_and_fy else [
                                          f]) for f in default_focals)  # camera intrinsics
        self.im_pp = nn.ParameterList(torch.zeros((2,)) for _ in range(self.n_imgs))  # camera intrinsics
        self.im_pp.requires_grad_(optimize_pp)

    def preset_pose(self, known_poses, pose_msk=None):  # cam-to-world
        if isinstance(known_poses, torch.Tensor) and known_poses.ndim == 2:
            known_poses = [known_poses]
        for idx, pose in zip(self._get_msk_indices(pose_msk), known_poses):
            if self.verbose:
                print(f' (setting pose #{idx} = {pose[:3,3]})')
            self._no_grad(self._set_pose(self.im_poses, idx, torch.tensor(pose), force=True))

        # normalize scale if there's less than 1 known pose
        n_known_poses = sum((p.requires_grad is False) for p in self.im_poses)
        self.norm_pw_scale = (n_known_poses <= 1)

    def preset_intrinsics(self, known_intrinsics, msk=None):
        if isinstance(known_intrinsics, torch.Tensor) and known_intrinsics.ndim == 2:
            known_intrinsics = [known_intrinsics]
        for K in known_intrinsics:
            assert K.shape == (3, 3)
        self.preset_focal([K.diagonal()[:2].mean() for K in known_intrinsics], msk)
        self.preset_principal_point([K[:2, 2] for K in known_intrinsics], msk)

    def preset_focal(self, known_focals, msk=None):
        for idx, focal in zip(self._get_msk_indices(msk), known_focals):
            if self.verbose:
                print(f' (setting focal #{idx} = {focal})')
            self._no_grad(self._set_focal(idx, focal, force=True))

    def preset_principal_point(self, known_pp, msk=None):
        for idx, pp in zip(self._get_msk_indices(msk), known_pp):
            if self.verbose:
                print(f' (setting principal point #{idx} = {pp})')
            self._no_grad(self._set_principal_point(idx, pp, force=True))

    def _no_grad(self, tensor):
        return tensor.requires_grad_(False)

    def _get_msk_indices(self, msk):
        if msk is None:
            return range(self.n_imgs)
        elif isinstance(msk, int):
            return [msk]
        elif isinstance(msk, (tuple, list)):
            return self._get_msk_indices(np.array(msk))
        elif msk.dtype in (bool, torch.bool, np.bool_):
            assert len(msk) == self.n_imgs
            return np.where(msk)[0]
        elif np.issubdtype(msk.dtype, np.integer):
            return msk
        else:
            raise ValueError(f'bad {msk=}')

    def _set_focal(self, idx, focal, force=False):
        param = self.im_focals[idx]
        if param.requires_grad or force:  # can only init a parameter not already initialized
            param.data[:] = self.focal_brake * np.log(focal)
        return param

    def get_focals(self):
        log_focals = torch.stack(list(self.im_focals), dim=0)
        return (log_focals / self.focal_brake).exp()

    def _set_principal_point(self, idx, pp, force=False):
        param = self.im_pp[idx]
        H, W = self.imshapes[idx]
        if param.requires_grad or force:  # can only init a parameter not already initialized
            param.data[:] = to_cpu(to_numpy(pp) - (W/2, H/2)) / 10
        return param

    def get_principal_points(self):
        return torch.stack([pp.new((W/2, H/2))+10*pp for pp, (H, W) in zip(self.im_pp, self.imshapes)])

    def get_intrinsics(self):
        K = torch.zeros((self.n_imgs, 3, 3), device=self.device)
        focals = self.get_focals().view(self.n_imgs, -1)
        K[:, 0, 0] = focals[:, 0]
        K[:, 1, 1] = focals[:, -1]
        K[:, :2, 2] = self.get_principal_points()
        K[:, 2, 2] = 1
        return K

    def get_im_poses(self):  # cam to world
        cam2world = self._get_poses(torch.stack(list(self.im_poses)))
        return cam2world

    def _set_depthmap(self, idx, depth, force=False):
        param = self.im_depthmaps[idx]
        if param.requires_grad or force:  # can only init a parameter not already initialized
            param.data[:] = depth.log().nan_to_num(neginf=0)
        return param

    def get_depthmaps(self):
        return [d.exp() for d in self.im_depthmaps]

    def depth_to_pts3d(self):
        # Get depths and  projection params if not provided
        focals = self.get_focals()
        pp = self.get_principal_points()
        im_poses = self.get_im_poses()
        depth = self.get_depthmaps()

        # convert focal to (1,2,H,W) constant field
        def focal_ex(i): return focals[i][..., None, None].expand(1, *focals[i].shape, *self.imshapes[i])
        # get pointmaps in camera frame
        rel_ptmaps = [depthmap_to_pts3d(depth[i][None], focal_ex(i), pp=pp[i:i+1])[0] for i in range(im_poses.shape[0])]
        # project to world frame
        return [geotrf(pose, ptmap) for pose, ptmap in zip(im_poses, rel_ptmaps)]

    def get_pts3d(self):
        return self.depth_to_pts3d()