File size: 8,755 Bytes
32fdadc
b2d1424
 
 
 
 
 
 
 
 
 
df0021c
b2d1424
 
 
32fdadc
 
 
b2d1424
611d9b7
 
 
 
 
 
 
 
 
 
 
b2d1424
 
611d9b7
 
b2d1424
 
 
 
 
 
 
 
 
 
 
df0021c
 
 
 
 
b930636
b2d1424
 
 
df0021c
 
 
b930636
df0021c
a4cef1b
b2d1424
 
 
 
 
 
 
 
 
 
 
 
 
 
93479b1
b2d1424
611d9b7
b2d1424
 
 
 
 
 
 
b930636
 
 
b2d1424
df909cd
6eba30e
b2d1424
 
 
df909cd
b2d1424
 
 
b930636
b2d1424
a094ab1
 
 
 
 
 
 
 
 
 
 
 
 
 
ee6e4be
a094ab1
 
611d9b7
a094ab1
 
 
b930636
a094ab1
b930636
a094ab1
 
 
 
b2d1424
6eba30e
b2d1424
 
dfcefc3
b2d1424
 
 
df0021c
 
 
 
b2d1424
df0021c
 
 
 
 
b2d1424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee6e4be
 
 
 
 
 
 
b2d1424
 
 
 
 
b930636
b2d1424
 
 
 
 
 
5e6132a
 
453dbdc
5e6132a
b2d1424
 
df909cd
611d9b7
fd064aa
 
 
 
 
 
 
0fcbf1f
 
098049a
0fcbf1f
 
fd064aa
 
 
 
 
 
 
 
 
 
 
b2d1424
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import streamlit as st
import geopandas as gpd
import pydeck as pdk
import pandas as pd
from branca import colormap as cm
import pathlib
import os
import requests
import json
from shapely.geometry import shape
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import io
import base64
import numpy as np

st.set_page_config(layout="wide")

# Data source
prefectures = {
    "北海道": "Hokkaido", "青森県": "Aomori", "岩手県": "Iwate", "宮城県": "Miyagi", "秋田県": "Akita", 
    "山形県": "Yamagata", "福島県": "Fukushima", "茨城県": "Ibaraki", "栃木県": "Tochigi", "群馬県": "Gunma", 
    "埼玉県": "Saitama", "千葉県": "Chiba", "東京都": "Tokyo", "神奈川県": "Kanagawa", "新潟県": "Niigata", 
    "富山県": "Toyama", "石川県": "Ishikawa", "福井県": "Fukui", "山梨県": "Yamanashi", "長野県": "Nagano", 
    "岐阜県": "Gifu", "静岡県": "Shizuoka", "愛知県": "Aichi", "三重県": "Mie", "滋賀県": "Shiga", 
    "京都府": "Kyoto", "大阪府": "Osaka", "兵庫県": "Hyogo", "奈良県": "Nara", "和歌山県": "Wakayama", 
    "鳥取県": "Tottori", "島根県": "Shimane", "岡山県": "Okayama", "広島県": "Hiroshima", "山口県": "Yamaguchi", 
    "徳島県": "Tokushima", "香川県": "Kagawa", "愛媛県": "Ehime", "高知県": "Kochi", "福岡県": "Fukuoka", 
    "佐賀県": "Saga", "長崎県": "Nagasaki", "熊本県": "Kumamoto", "大分県": "Oita", "宮崎県": "Miyazaki", 
    "鹿児島県": "Kagoshima", "沖縄県": "Okinawa"
}

data_links = {pref_jp: f"https://raw.githubusercontent.com/kunifujiwara/data/master/frac_veg/FRAC_VEG_{pref_en}.geojson" for pref_jp, pref_en in prefectures.items()}

@st.cache_data
def get_geom_data(prefecture):
    response = requests.get(data_links[prefecture])
    if response.status_code == 200:
        geojson_data = json.loads(response.content)
        gdf = gpd.GeoDataFrame.from_features(geojson_data['features'])
        return gdf
    else:
        st.error(f"Failed to fetch data for {prefecture}. Status code: {response.status_code}")
        return None

def create_discontinuous_colormap(n_colors):
    cmap = plt.get_cmap('Greens')
    colors = [cmap(i / (n_colors - 1)) for i in range(n_colors)]
    return mcolors.ListedColormap(colors)

def create_colormap_legend(vmin, vmax, cmap, n_colors):
    fig, ax = plt.subplots(figsize=(6, 0.8))
    fig.subplots_adjust(bottom=0.5)

    bounds = np.linspace(vmin, vmax, n_colors + 1)
    norm = mcolors.BoundaryNorm(bounds, cmap.N)
    cbar = fig.colorbar(plt.cm.ScalarMappable(norm=norm, cmap=cmap), cax=ax, orientation='horizontal', 
                        spacing='proportional', boundaries=bounds, format='%.0f')
    cbar.set_ticks(bounds)
    # ax.set_title("緑被率 %", fontsize=10, pad=10)
    
    buf = io.BytesIO()
    plt.savefig(buf, format='png', dpi=300, bbox_inches='tight')
    plt.close(fig)
    return base64.b64encode(buf.getvalue()).decode()

def calculate_zoom_level(bbox):
    lon_range = bbox[2] - bbox[0]
    lat_range = bbox[3] - bbox[1]
    max_range = max(lon_range, lat_range)
    zoom = int(np.log2(360 / max_range)) - 1
    return min(max(1, zoom), 20)  # Clamp zoom between 1 and 20

def app():
    st.title("日本全国緑被率マップ (町丁目別)")

    prefecture = st.selectbox("都道府県", list(prefectures.keys()))
    
    gdf = get_geom_data(prefecture)

    if gdf is None:
        st.error("Failed to load data. Please try again later.")
        return

    # Convert FRAC_VEG to percentage
    gdf['FRAC_VEG_PERCENT'] = gdf['FRAC_VEG'] * 100

    # City filter
    cities = sorted(gdf['CITY_NAME'].unique().tolist())
    selected_cities = st.multiselect("市区町村", cities, default=[])
    
    # Filter GeoDataFrame based on selected cities
    if selected_cities:
        gdf_filtered = gdf[gdf['CITY_NAME'].isin(selected_cities)]
    else:
        gdf_filtered = gdf

    selected_attribute = "FRAC_VEG_PERCENT"

    # Custom CSS to create a box around the color scale controls
    st.markdown("""
    <style>
    .color-scale-box {
        border: 2px solid #4CAF50;
        border-radius: 10px;
        padding: 10px;
        margin-bottom: 10px;
    }
    </style>
    """, unsafe_allow_html=True)

    # Color scale controls in an expander
    with st.expander("カラースケール設定", expanded=True):
        # st.markdown('<div class="color-scale-box">', unsafe_allow_html=True)
        col1, col2, col3, col4 = st.columns(4)
        with col1:
            n_colors = st.slider("分割数", min_value=2, max_value=20, value=5)
        with col2:
            alpha = st.slider("透過率", min_value=0.0, max_value=1.0, value=0.8, step=0.1)
        with col3:
            vmin = st.number_input("最小値 (%)", value=0.0, step=1.0)
        with col4:
            vmax = st.number_input("最大値 (%)", value=100.0, step=1.0)
        st.markdown('</div>', unsafe_allow_html=True)

    # Other controls
    col5, col6 = st.columns(2)
    with col5:
        show_3d = st.checkbox("3Dビュー", value=False)
    with col6:
        if show_3d:
            elev_scale = st.slider("スケール", min_value=1, max_value=100, value=1, step=10)
        else:
            elev_scale = 1

    # Create discontinuous color map
    cmap = create_discontinuous_colormap(n_colors)
    bounds = np.linspace(vmin, vmax, n_colors + 1)
    norm = mcolors.BoundaryNorm(bounds, cmap.N)

    def get_color(value):
        rgba = cmap(norm(value))
        return [int(rgba[0]*255), int(rgba[1]*255), int(rgba[2]*255), int(alpha*255)]

    gdf_filtered['color'] = gdf_filtered[selected_attribute].apply(get_color)

    layer = pdk.Layer(
        "GeoJsonLayer",
        gdf_filtered.__geo_interface__,
        pickable=True,
        opacity=alpha,
        stroked=True,
        filled=True,
        extruded=show_3d,
        wireframe=True,
        get_elevation=f"properties.{selected_attribute}" if show_3d else None,
        elevation_scale=elev_scale if show_3d else 1,
        get_fill_color="properties.color",
        get_line_color=[0, 0, 0],
        get_line_width=2,
        line_width_min_pixels=1,
    )

    # Calculate bounding box and zoom level
    bbox = gdf_filtered.total_bounds
    zoom = calculate_zoom_level(bbox)

    view_state = pdk.ViewState(
        latitude=(bbox[1] + bbox[3]) / 2,
        longitude=(bbox[0] + bbox[2]) / 2,
        zoom=zoom,
        pitch=45 if show_3d else 0,
    )

    r = pdk.Deck(
        layers=[layer],
        initial_view_state=view_state,
        map_style="mapbox://styles/mapbox/light-v9",
        tooltip={
            "html": "<b>{CITY_NAME} {S_NAME}</b><br/>緑被率: {FRAC_VEG_PERCENT}%",
            "style": {
                "backgroundColor": "steelblue",
                "color": "white"
            }
        }
    )

    st.pydeck_chart(r)

    # Create and display color scale legend
    legend_img = create_colormap_legend(vmin, vmax, cmap, n_colors)

    # Create three columns, with the middle one being 30% width
    left_spacer, center_col, right_spacer = st.columns([1, 1, 1])
    
    # Display the legend in the middle column
    with right_spacer:
        st.image(f"data:image/png;base64,{legend_img}", use_column_width=True)
        st.markdown("""
            <h3 style='text-align: center; font-weight: bold; font-size: 16px;'>  緑被率 %</h3>
            """, unsafe_allow_html=True)

    if st.checkbox("Show raw data"):
        st.write(gdf_filtered[['CITY_NAME', 'S_NAME', selected_attribute]])
            
    st.markdown(        
        """
        **データソース**

          ・Vegetation cover fraction in each town block across Japan https://zenodo.org/records/5553516
        
          ・平成27年国勢調査小地域境界データ https://www.e-stat.go.jp/gis/statmap-search?page=1&type=2&aggregateUnitForBoundary=A&toukeiCode=00200521&toukeiYear=2015&serveyId=A002005212015&coordsys=1&format=shape&datum=2000
        """
    )
    st.markdown(" ")
    st.markdown(        
        """
        **引用方法**
        
          ・マップの利用のみの場合:
        
            Kiyono Tomoki, Fujiwara Kunihiko, & Tsurumi Ryuta. (2021). Vegetation cover fraction in each town block across Japan (1.0.1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.5553516

          ・上記以外の場合(この取り組みそのものや,アルゴリズム等への言及):
        
            清野友規, 藤原邦彦, 鶴見隆太. Google Earth Engineを用いた町丁目別緑被率オープンデータ(全国版)の作成と評価, 日本建築学会技術報告集, 2022, 28 巻, 68 号, p. 521-526, https://doi.org/10.3130/aijt.28.521
        """
    )

app()