kunifujiwara commited on
Commit
6eba30e
1 Parent(s): 4afa38b

modify pages

Browse files
Files changed (1) hide show
  1. Home.py +14 -14
Home.py CHANGED
@@ -17,10 +17,10 @@ st.set_page_config(layout="wide")
17
 
18
  # Data source
19
  data_links = {
20
- "Tokyo": "https://raw.githubusercontent.com/kunifujiwara/data/master/frac_veg/FRAC_VEG_Tokyo.geojson",
21
- "Kanagawa": "https://raw.githubusercontent.com/kunifujiwara/data/master/frac_veg/FRAC_VEG_Kanagawa.geojson",
22
- "Chiba": "https://raw.githubusercontent.com/kunifujiwara/data/master/frac_veg/FRAC_VEG_Chiba.geojson",
23
- "Saitama": "https://raw.githubusercontent.com/kunifujiwara/data/master/frac_veg/FRAC_VEG_Saitama.geojson",
24
  }
25
 
26
  @st.cache_data
@@ -60,12 +60,12 @@ def calculate_zoom_level(bbox):
60
  return min(max(1, zoom), 20) # Clamp zoom between 1 and 20
61
 
62
  def app():
63
- st.title("Japan Vegetation Cover Fraction")
64
  st.markdown(
65
  """**Introduction:** This interactive dashboard visualizes Japan Fractional Vegetation Cover at town block levels."""
66
  )
67
 
68
- prefecture = st.selectbox("Prefecture", ["Tokyo", "Kanagawa", "Chiba", "Saitama"])
69
 
70
  gdf = get_geom_data(prefecture)
71
 
@@ -75,7 +75,7 @@ def app():
75
 
76
  # City filter
77
  cities = sorted(gdf['CITY_NAME_x'].unique().tolist())
78
- selected_cities = st.multiselect("Select cities to display", cities, default=[])
79
 
80
  # Filter GeoDataFrame based on selected cities
81
  if selected_cities:
@@ -84,22 +84,22 @@ def app():
84
  gdf_filtered = gdf
85
 
86
  attributes = get_data_columns(gdf_filtered)
87
- selected_attribute = st.selectbox("Select attribute to visualize", attributes)
88
 
89
  col1, col2, col3, col4, col5, col6 = st.columns(6)
90
  with col1:
91
- n_colors = st.slider("Number of colors", min_value=2, max_value=20, value=8)
92
  with col2:
93
- alpha = st.slider("Fill opacity", min_value=0.0, max_value=1.0, value=0.8, step=0.1)
94
  with col3:
95
- vmin = st.number_input("Min value", value=float(gdf_filtered[selected_attribute].min()), step=0.1)
96
  with col4:
97
- vmax = st.number_input("Max value", value=float(gdf_filtered[selected_attribute].max()), step=0.1)
98
  with col5:
99
- show_3d = st.checkbox("Show 3D view", value=False)
100
  with col6:
101
  if show_3d:
102
- elev_scale = st.slider("Elevation scale", min_value=1, max_value=10000, value=1, step=10)
103
  else:
104
  elev_scale = 1
105
 
 
17
 
18
  # Data source
19
  data_links = {
20
+ "東京都": "https://raw.githubusercontent.com/kunifujiwara/data/master/frac_veg/FRAC_VEG_Tokyo.geojson",
21
+ "神奈川県": "https://raw.githubusercontent.com/kunifujiwara/data/master/frac_veg/FRAC_VEG_Kanagawa.geojson",
22
+ "千葉県": "https://raw.githubusercontent.com/kunifujiwara/data/master/frac_veg/FRAC_VEG_Chiba.geojson",
23
+ "埼玉県": "https://raw.githubusercontent.com/kunifujiwara/data/master/frac_veg/FRAC_VEG_Saitama.geojson",
24
  }
25
 
26
  @st.cache_data
 
60
  return min(max(1, zoom), 20) # Clamp zoom between 1 and 20
61
 
62
  def app():
63
+ st.title("緑被率マップ")
64
  st.markdown(
65
  """**Introduction:** This interactive dashboard visualizes Japan Fractional Vegetation Cover at town block levels."""
66
  )
67
 
68
+ prefecture = st.selectbox("都道府県", ["東京都", "神奈川県", "千葉県", "埼玉県"])
69
 
70
  gdf = get_geom_data(prefecture)
71
 
 
75
 
76
  # City filter
77
  cities = sorted(gdf['CITY_NAME_x'].unique().tolist())
78
+ selected_cities = st.multiselect("市区町村", cities, default=[])
79
 
80
  # Filter GeoDataFrame based on selected cities
81
  if selected_cities:
 
84
  gdf_filtered = gdf
85
 
86
  attributes = get_data_columns(gdf_filtered)
87
+ selected_attribute = st.selectbox("指標", attributes)
88
 
89
  col1, col2, col3, col4, col5, col6 = st.columns(6)
90
  with col1:
91
+ n_colors = st.slider("カラースケールの分割数", min_value=2, max_value=20, value=8)
92
  with col2:
93
+ alpha = st.slider("透過率", min_value=0.0, max_value=1.0, value=0.8, step=0.1)
94
  with col3:
95
+ vmin = st.number_input("最大値", value=float(gdf_filtered[selected_attribute].min()), step=0.1)
96
  with col4:
97
+ vmax = st.number_input("最小値", value=float(gdf_filtered[selected_attribute].max()), step=0.1)
98
  with col5:
99
+ show_3d = st.checkbox("3Dビュー", value=False)
100
  with col6:
101
  if show_3d:
102
+ elev_scale = st.slider("スケール", min_value=1, max_value=10000, value=1, step=10)
103
  else:
104
  elev_scale = 1
105