Spaces:
Sleeping
Sleeping
Create app.py
#1
by
kunal5711
- opened
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from torchvision import transforms
|
5 |
+
from transformers import ViTForImageClassification
|
6 |
+
|
7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
+
model = ViTForImageClassification.from_pretrained('umutbozdag/plant-identity', num_labels=10, ignore_mismatched_sizes=True)
|
9 |
+
model.load_state_dict(torch.load('model.pth', map_location=device))
|
10 |
+
model.to(device)
|
11 |
+
model.eval()
|
12 |
+
|
13 |
+
# Define the prediction function
|
14 |
+
def predict_image(img):
|
15 |
+
transform = transforms.Compose([
|
16 |
+
transforms.Resize((224, 224)),
|
17 |
+
transforms.ToTensor(),
|
18 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
19 |
+
])
|
20 |
+
img_t = transform(img).unsqueeze(0).to(device)
|
21 |
+
with torch.no_grad():
|
22 |
+
outputs = model(img_t).logits
|
23 |
+
_, predicted = torch.max(outputs, 1)
|
24 |
+
class_names = ["Aloe Vera", "Areca Palm", "Boston Fern", "Chinese evergreen", "Dracaena", "Money Tree", "Peace lily", "Rubber Plant", "Snake Plant", "ZZ Plant"]
|
25 |
+
return class_names[predicted.item()]
|
26 |
+
|
27 |
+
# Create a Gradio interface
|
28 |
+
interface = gr.Interface(fn=predict_image, inputs=gr.Image(type="pil"), outputs="text")
|
29 |
+
interface.launch(share = True)
|