File size: 22,764 Bytes
10e9b7d
 
eccf8e4
3c4371f
8d4d62e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10e9b7d
e80aab9
3db6293
e80aab9
8d4d62e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
 
8d4d62e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4021bf3
8d4d62e
31243f4
8d4d62e
31243f4
7d65c66
b177367
3c4371f
7e4a06b
8d4d62e
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
e80aab9
8d4d62e
31243f4
8d4d62e
31243f4
3c4371f
31243f4
3c4371f
7d65c66
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
3c4371f
 
31243f4
3c4371f
 
7d65c66
3c4371f
8d4d62e
 
 
7d65c66
31243f4
 
e80aab9
8d4d62e
7d65c66
8d4d62e
 
3c4371f
8d4d62e
31243f4
 
 
8d4d62e
 
31243f4
 
 
8d4d62e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d65c66
8d4d62e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
 
8d4d62e
 
31243f4
8d4d62e
7d65c66
8d4d62e
31243f4
e80aab9
8d4d62e
31243f4
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
8d4d62e
 
 
 
e80aab9
 
 
8d4d62e
0ee0419
e514fd7
 
 
81917a3
e514fd7
8d4d62e
 
 
e514fd7
 
8d4d62e
 
 
 
 
e514fd7
e80aab9
 
7e4a06b
e80aab9
8d4d62e
 
 
 
e80aab9
8d4d62e
7d65c66
e80aab9
31243f4
8d4d62e
 
 
 
 
 
 
 
 
 
 
31243f4
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
8d4d62e
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
import os
import gradio as gr
import requests
import pandas as pd
import yaml
from smolagents import CodeAgent, LiteLLMModel, DuckDuckGoSearchTool, WikipediaSearchTool
from datasets import load_dataset
from cache_manager import CacheManager
from tools.final_answer import final_answer
from tools.get_file import get_file
from tools.web_scraping import (
    scrape_webpage_content,
    extract_links_from_webpage,
    get_webpage_metadata
)

# Load the GAIA dataset
dataset = load_dataset("gaia-benchmark/GAIA", "2023_level1", trust_remote_code=True, cache_dir="GAIA")
print("GAIA dataset loaded successfully.")

# Initialize cache manager
cache_manager = CacheManager()

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- QA Agent Definition ---
class QAAgent:
    def __init__(self, temperature=None, max_tokens=None, max_steps=None):
        """
        Initialize the QA Agent with configuration from config.yaml.
        
        Args:
            temperature: Temperature for text generation (overrides config)
            max_tokens: Maximum number of tokens for the model (overrides config)
            max_steps: Maximum number of steps the agent can take (overrides config)
        """
        print("Initializing QA Agent with configuration...")
        
        try:
            # Load configuration
            config = self._load_config()
            
            # Load prompts
            prompts = self._load_prompts()
            
            # Get model configuration with overrides
            model_config = config.get('model', {})
            model_id = model_config.get('model_id', 'anthropic/claude-sonnet-4-20250514')
            temp = temperature if temperature is not None else model_config.get('temperature', 0.2)
            max_tok = max_tokens if max_tokens is not None else model_config.get('max_tokens', 2096)
            
            # Get agent configuration with overrides
            agent_config = config.get('agent', {})
            self.max_steps = max_steps if max_steps is not None else agent_config.get('max_steps', 5)
            
            print(f"Model: {model_id}")
            print(f"Temperature: {temp}")
            print(f"Max tokens: {max_tok}")
            print(f"Max steps: {self.max_steps}")
            
            # Prepare model initialization parameters
            model_params = {
                'model_id': model_id,
                'temperature': temp,
                'max_tokens': max_tok
            }
            
            # Add Vertex AI specific parameters if using a vertex_ai model
            if model_id.startswith('vertex_ai/'):
                print("Configuring Vertex AI parameters...")
                vertex_config = config.get('vertex_ai', {})
                
                # Add vertex project if specified
                if 'vertex_project' in vertex_config and vertex_config['vertex_project'] != 'your-gcp-project-id':
                    model_params['vertex_project'] = vertex_config['vertex_project']
                    print(f"  Vertex Project: {vertex_config['vertex_project']}")
                
                # Add vertex location if specified
                if 'vertex_location' in vertex_config:
                    model_params['vertex_location'] = vertex_config['vertex_location']
                    print(f"  Vertex Location: {vertex_config['vertex_location']}")
                
                # Add vertex credentials if specified and valid
                creds_path = vertex_config.get('vertex_credentials')
                if creds_path and creds_path not in ['/path/to/service-account.json', './google.json']:
                    if os.path.exists(creds_path):
                        try:
                            # Validate it's a proper JSON file
                            import json
                            with open(creds_path, 'r') as f:
                                json.load(f)
                            model_params['vertex_credentials'] = creds_path
                            print(f"  Vertex Credentials: {creds_path}")
                        except (json.JSONDecodeError, Exception) as e:
                            print(f"  Warning: Invalid credentials file {creds_path}: {e}")
                    else:
                        print(f"  Warning: Credentials file not found: {creds_path}")
                
                # Add safety settings if specified
                if 'safety_settings' in vertex_config:
                    model_params['safety_settings'] = vertex_config['safety_settings']
                    print(f"  Safety Settings: {len(vertex_config['safety_settings'])} categories configured")
            
            # Initialize the LiteLLM model
            model = LiteLLMModel(**model_params)
            
            # Available tools for the agent
            tools = [
                DuckDuckGoSearchTool(),
                WikipediaSearchTool(),
                get_file,
                scrape_webpage_content,
                extract_links_from_webpage,
                get_webpage_metadata,
                final_answer
            ]
            
            # Create the agent without prompt_templates (they'll be used in question processing)
            self.agent = CodeAgent(
                tools=tools,
                model=model,
                max_steps=self.max_steps
            )
            
            # Store prompts for use in question processing
            self.prompts = prompts
            
            print("Agent initialized successfully!")
            
        except Exception as e:
            # Provide helpful error messages based on the model type
            error_msg = f"Error initializing QA Agent: {e}"
            
            if "authentication" in str(e).lower() or "api" in str(e).lower() or "credentials" in str(e).lower():
                if hasattr(self, '_load_config'):
                    config = self._load_config()
                    model_id = config.get('model', {}).get('model_id', '')
                    
                    if "vertex_ai" in model_id.lower() or "gemini" in model_id.lower():
                        error_msg += "\n\nFor Vertex AI models, please:"
                        error_msg += "\n1. Set up authentication:"
                        error_msg += "\n   Option A: gcloud auth application-default login"
                        error_msg += "\n   Option B: export GOOGLE_APPLICATION_CREDENTIALS='/path/to/service-account.json'"
                        error_msg += "\n   Option C: Set vertex_credentials in config.yaml"
                        error_msg += "\n2. Update config.yaml with your:"
                        error_msg += "\n   - vertex_project: 'your-gcp-project-id'"
                        error_msg += "\n   - vertex_location: 'us-central1' (or your preferred region)"
                    elif "anthropic" in model_id.lower():
                        error_msg += "\n\nFor Anthropic models, please set: export ANTHROPIC_API_KEY='your-key-here'"
                    elif "openai" in model_id.lower() or "gpt" in model_id.lower():
                        error_msg += "\n\nFor OpenAI models, please set: export OPENAI_API_KEY='your-key-here'"
            
            print(error_msg)
            raise Exception(error_msg)
    
    def _load_config(self):
        """Load configuration from config.yaml"""
        try:
            with open('config.yaml', 'r') as f:
                return yaml.safe_load(f)
        except FileNotFoundError:
            print("Warning: config.yaml not found, using default configuration")
            return {}
        except Exception as e:
            print(f"Error loading config.yaml: {e}")
            return {}
    
    def _load_prompts(self):
        """Load prompts from prompts.yaml"""
        try:
            with open('prompts.yaml', 'r') as f:
                return yaml.safe_load(f)
        except FileNotFoundError:
            print("Warning: prompts.yaml not found, using default prompts")
            return {}
        except Exception as e:
            print(f"Error loading prompts.yaml: {e}")
            return {}
    
    def __call__(self, question: str) -> str:
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        try:
            # Get system prompt from loaded prompts and combine with question
            system_prompt = self.prompts.get('system_prompt', '')
            if system_prompt:
                enhanced_question = f"{system_prompt}\n\n{question}"
            else:
                enhanced_question = question
            
            # Use the agent to run and answer the enhanced question
            answer = self.agent.run(enhanced_question)
            print(f"Agent returning answer (first 100 chars): {str(answer)[:100]}...")
            return str(answer)
        except Exception as e:
            print(f"Error running agent: {e}")
            return f"Error processing question: {e}"

def run_questions(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the QAAgent on them, and caches the answers.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"

    # 1. Instantiate Agent
    try:
        agent = QAAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    # 2. Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.JSONDecodeError as e:
         print(f"Error decoding JSON response from questions endpoint: {e}")
         print(f"Response text: {response.text[:500]}")
         return f"Error decoding server response for questions: {e}", None
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run Agent and Cache Results
    results_log = []
    cached_count = 0
    processed_count = 0
    print(f"Running agent on {len(questions_data)} questions...")
    
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        file_name = item.get("file_name")
        
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
            
        # Check if answer is already cached
        cached_result = cache_manager.get_cached_answer(question_text)
        if cached_result and cached_result.get('cache_valid', False):
            print(f"Using cached answer for task {task_id}")
            submitted_answer = cached_result['answer']
            cached_count += 1
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text, 
                "Submitted Answer": submitted_answer,
                "Status": "Cached"
            })
        else:
            # Run agent and cache the result
            try:
                print(f"Processing task {task_id} with agent...")
                
                # Enhance question with file information if file is present
                enhanced_question = question_text
                if file_name:
                    enhanced_question = f"{question_text}\n\nNote: This question references a file named '{file_name}'. Use the get_file tool to retrieve its content."
                
                submitted_answer = agent(enhanced_question)
                
                # Cache the answer
                cache_success = cache_manager.cache_answer(
                    question=question_text,
                    answer=submitted_answer,
                    iterations=1,
                    file_name=file_name
                )
                
                processed_count += 1
                status = "Processed & Cached" if cache_success else "Processed (Cache Failed)"
                results_log.append({
                    "Task ID": task_id, 
                    "Question": question_text, 
                    "Submitted Answer": submitted_answer,
                    "Status": status
                })
                
            except Exception as e:
                print(f"Error running agent on task {task_id}: {e}")
                error_answer = f"AGENT ERROR: {e}"
                
                # Cache the error (will be marked as invalid)
                cache_manager.cache_answer(
                    question=question_text,
                    answer=error_answer,
                    iterations=1,
                    file_name=file_name
                )
                
                results_log.append({
                    "Task ID": task_id, 
                    "Question": question_text, 
                    "Submitted Answer": error_answer,
                    "Status": "Error"
                })

    status_message = (
        f"Questions processing completed!\n"
        f"Total questions: {len(questions_data)}\n"
        f"Used cached answers: {cached_count}\n"
        f"Newly processed: {processed_count}\n"
        f"Answers are cached and ready for submission."
    )
    
    print(status_message)
    results_df = pd.DataFrame(results_log)
    return status_message, results_df

def submit_answers(profile: gr.OAuthProfile | None):
    """
    Loads cached answers and submits them to the evaluation server.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"
    
    # In the case of an app running as a Hugging Face space, this link points toward your codebase
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 1. Fetch Questions to get task_ids
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
             print("Fetched questions list is empty.")
             return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None

    # 2. Load Cached Answers
    answers_payload = []
    results_log = []
    missing_answers = []
    
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
            
        # Try to get cached answer
        cached_result = cache_manager.get_cached_answer(question_text)
        if cached_result and cached_result.get('cache_valid', False):
            submitted_answer = cached_result['answer']
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text, 
                "Submitted Answer": submitted_answer,
                "Status": "Ready for Submission"
            })
        else:
            missing_answers.append(task_id)
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text, 
                "Submitted Answer": "NO CACHED ANSWER",
                "Status": "Missing Answer"
            })

    if missing_answers:
        status_message = (
            f"Cannot submit: Missing cached answers for {len(missing_answers)} questions.\n"
            f"Missing task IDs: {missing_answers[:5]}{'...' if len(missing_answers) > 5 else ''}\n"
            f"Please run the questions first to generate and cache answers."
        )
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

    if not answers_payload:
        print("No valid cached answers found for submission.")
        return "No valid cached answers found for submission.", pd.DataFrame(results_log)

    # 3. Prepare Submission 
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Submitting {len(answers_payload)} cached answers for user '{username}'..."
    print(status_update)

    # 4. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

def clear_cache():
    """Clear all cached answers."""
    cache_manager.clear_cache()
    return "Cache cleared successfully!", pd.DataFrame()

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# QA Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Questions' to fetch questions and run your agent (answers will be cached).
        4.  Click 'Submit Answers' to submit the cached answers and see your score.
        5.  Use 'Clear Cache' to remove all cached answers if needed.

        ---
        **Benefits of Separate Run/Submit:**
        - Answers are cached, so you can run questions once and submit multiple times
        - Faster submission since answers are pre-computed
        - Better error handling and recovery
        - Ability to review answers before submission
        """
    )

    gr.LoginButton()

    with gr.Row():
        run_button = gr.Button("Run Questions", variant="primary")
        submit_button = gr.Button("Submit Answers", variant="secondary")
        clear_button = gr.Button("Clear Cache", variant="stop")

    status_output = gr.Textbox(label="Status / Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_questions,
        outputs=[status_output, results_table]
    )
    
    submit_button.click(
        fn=submit_answers,
        outputs=[status_output, results_table]
    )
    
    clear_button.click(
        fn=clear_cache,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for QA Agent Evaluation...")
    demo.launch(debug=True, share=False)