Spaces:
Runtime error
Runtime error
File size: 14,138 Bytes
a35e94c cbe014c a35e94c dd217c7 a35e94c cbe014c a35e94c cbe014c a35e94c dd217c7 a35e94c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
#!/usr/bin/env python3
# coding: utfβ8
"""
CosyVoice gRPC backβend β updated to mirror the FastAPI logic
* loads CosyVoice2 with TRT / FP16 first (falls back to CosyVoice)
* inference_zero_shot β adds stream=False + speed
* inference_instruct β keeps original βspeakerβIDβ path
* inference_instruct2 β new: promptβaudio + speed (no speakerβID)
"""
import io, tempfile, requests, soundfile as sf, torchaudio
import os
import sys
from concurrent import futures
import argparse
import logging
import grpc
import numpy as np
import torch
import cosyvoice_pb2
import cosyvoice_pb2_grpc
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# setβup
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(level=logging.INFO,
format="%(asctime)s %(levelname)s %(message)s")
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.extend([
f"{ROOT_DIR}/../../..",
f"{ROOT_DIR}/../../../third_party/Matcha-TTS",
])
from cosyvoice.cli.cosyvoice import CosyVoice2 # noqa: E402
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# helpers
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def _bytes_to_tensor(wav_bytes: bytes) -> torch.Tensor:
"""
Convert int16 littleβendian PCM bytes β torch.FloatTensor in range [β1,1]
"""
speech = torch.from_numpy(
np.frombuffer(wav_bytes, dtype=np.int16)
).unsqueeze(0).float() / (2 ** 15)
return speech # [1,β―T]
def _yield_audio(model_output):
"""
Generator that converts CosyVoice output β protobuf Response messages.
"""
for seg in model_output:
pcm16 = (seg["tts_speech"].numpy() * (2 ** 15)).astype(np.int16)
resp = cosyvoice_pb2.Response(tts_audio=pcm16.tobytes())
yield resp
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# gRPC service
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
class CosyVoiceServiceImpl(cosyvoice_pb2_grpc.CosyVoiceServicer):
def __init__(self, args):
# try CosyVoice2 first (preferred runtime: TRT / FP16)
try:
self.cosyvoice = CosyVoice2(args.model_dir,
load_jit=False,
load_trt=True,
fp16=True)
logging.info("Loaded CosyVoice2 (TRT / FP16).")
except Exception:
raise TypeError("No valid CosyVoice model found!")
# ---------------------------------------------------------------------
# single biβdi streaming RPC
# ---------------------------------------------------------------------
def Inference(self, request, context):
"""Route to the correct model call based on the oneof field present."""
# 1. Supervised fineβtuning
if request.HasField("sft_request"):
logging.info("Received SFT inference request")
mo = self.cosyvoice.inference_sft(
request.sft_request.tts_text,
request.sft_request.spk_id
)
yield from _yield_audio(mo)
return
# 2. Zeroβshot speaker cloning (bytes OR S3 URL)
if request.HasField("zero_shot_request"):
logging.info("Received zeroβshot inference request")
zr = request.zero_shot_request
tmp_path = None # initialise so we can delete later
try:
# βββββ determine payload type ββββββββββββββββββββββββββββββββββββββ
if zr.prompt_audio.startswith(b'http'):
# ββ remote URL ββ ---------------------------------------------
url = zr.prompt_audio.decode('utfβ8')
logging.info("Downloading prompt audio from %s", url)
resp = requests.get(url, timeout=10)
resp.raise_for_status()
# save to a temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
f.write(resp.content)
tmp_path = f.name
# load, monoβise, resample β tensor [1,β―T]
wav, sr = sf.read(tmp_path, dtype="float32")
if wav.ndim > 1:
wav = wav.mean(axis=1)
if sr != 16_000:
wav = torchaudio.functional.resample(
torch.from_numpy(wav).unsqueeze(0), sr, 16_000
)[0].numpy()
prompt = torch.from_numpy(wav).unsqueeze(0)
else:
# ββ legacy raw PCM bytes ββ -----------------------------------
prompt = _bytes_to_tensor(zr.prompt_audio)
# βββββ call the model ββββββββββββββββββββββββββββββββββββββββββββββ
speed = getattr(zr, "speed", 1.0)
mo = self.cosyvoice.inference_zero_shot(
zr.tts_text,
zr.prompt_text,
prompt,
stream=False,
speed=speed,
)
finally:
# clean up any temporary file we created
if tmp_path and os.path.exists(tmp_path):
try:
os.remove(tmp_path)
except Exception as e:
logging.warning("Could not remove temp file %s: %s", tmp_path, e)
yield from _yield_audio(mo)
return
# 3. Crossβlingual
if request.HasField("cross_lingual_request"):
logging.info("Received crossβlingual inference request")
cr = request.cross_lingual_request
tmp_path = None
try:
if cr.prompt_audio.startswith(b'http'): # S3 URL case
url = cr.prompt_audio.decode('utfβ8')
logging.info("Downloading crossβlingual prompt from %s", url)
resp = requests.get(url, timeout=10)
resp.raise_for_status()
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
f.write(resp.content)
tmp_path = f.name
wav, sr = sf.read(tmp_path, dtype='float32')
if wav.ndim > 1:
wav = wav.mean(axis=1)
if sr != 16_000:
wav = torchaudio.functional.resample(
torch.from_numpy(wav).unsqueeze(0), sr, 16_000
)[0].numpy()
prompt = torch.from_numpy(wav).unsqueeze(0)
else: # legacy raw bytes
prompt = _bytes_to_tensor(cr.prompt_audio)
mo = self.cosyvoice.inference_cross_lingual(
cr.tts_text,
prompt
)
finally:
if tmp_path and os.path.exists(tmp_path):
try:
os.remove(tmp_path)
except Exception as e:
logging.warning("Could not remove temp file %s: %s",
tmp_path, e)
yield from _yield_audio(mo)
return
# 4. InstructionβTTS (two flavours)
if request.HasField("instruct_request"):
ir = request.instruct_request
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4βa) instructβ2 (has prompt_audio β bytes OR S3 URL)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
if ir.HasField("prompt_audio"):
logging.info("Received instructβ2 inference request")
tmp_path = None
try:
if ir.prompt_audio.startswith(b'http'):
# treat as URL, download then load
url = ir.prompt_audio.decode('utfβ8')
logging.info("Downloading prompt audio from %s", url)
resp = requests.get(url, timeout=10)
resp.raise_for_status()
with tempfile.NamedTemporaryFile(delete=False,
suffix=".wav") as f:
f.write(resp.content)
tmp_path = f.name
wav, sr = sf.read(tmp_path, dtype='float32')
if wav.ndim > 1:
wav = wav.mean(axis=1)
if sr != 16_000:
wav = torchaudio.functional.resample(
torch.from_numpy(wav).unsqueeze(0), sr, 16_000
)[0].numpy()
prompt = torch.from_numpy(wav).unsqueeze(0)
else:
# legacy rawβbytes payload
prompt = _bytes_to_tensor(ir.prompt_audio)
speed = getattr(ir, "speed", 1.0)
mo = self.cosyvoice.inference_instruct2(
ir.tts_text,
ir.instruct_text,
prompt,
stream=False,
speed=speed
)
finally:
if tmp_path and os.path.exists(tmp_path):
try:
os.remove(tmp_path)
except Exception as e:
logging.warning("Could not remove temp file %s: %s",
tmp_path, e)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4βb) classic instruct (speakerβID, no prompt audio)
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
else:
logging.info("Received instruct inference request")
mo = self.cosyvoice.inference_instruct(
ir.tts_text,
ir.spk_id,
ir.instruct_text
)
yield from _yield_audio(mo)
return
# unknown request type
context.abort(grpc.StatusCode.INVALID_ARGUMENT,
"Unsupported request type in oneof field.")
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# entryβpoint
# ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def serve(args):
server = grpc.server(
futures.ThreadPoolExecutor(max_workers=args.max_conc),
maximum_concurrent_rpcs=args.max_conc
)
cosyvoice_pb2_grpc.add_CosyVoiceServicer_to_server(
CosyVoiceServiceImpl(args), server
)
server.add_insecure_port(f"0.0.0.0:{args.port}")
server.start()
logging.info("CosyVoice gRPC server listening on 0.0.0.0:%d", args.port)
server.wait_for_termination()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--max_conc", type=int, default=4,
help="maximum concurrent requests / threads")
parser.add_argument("--model_dir", type=str,
default="pretrained_models/CosyVoice2-0.5B",
help="local path or ModelScope repo id")
serve(parser.parse_args()) |