Spaces:
Sleeping
Sleeping
File size: 20,373 Bytes
e423c4b ff8eac8 25e7823 db1d80a 836d682 d88d679 836d682 17379cc db1d80a 1791ffb 9f7b4e6 1791ffb c4a3510 17379cc 00d5996 9f7b4e6 d04069e 9f7b4e6 d04069e 32e7681 9f7b4e6 94eb043 9f7b4e6 32e7681 17379cc 4e87d3f 17379cc 32e7681 17379cc db1d80a 00d5996 47413cf 1791ffb 4e87d3f 1791ffb d88d679 836d682 d88d679 4e87d3f 836d682 1791ffb 836d682 47413cf 079d316 836d682 079d316 836d682 079d316 836d682 079d316 836d682 d88d679 17379cc d88d679 4e87d3f d88d679 17379cc d88d679 17379cc d88d679 17379cc 836d682 47413cf 836d682 17379cc 836d682 d88d679 47413cf 25e7823 079d316 17379cc 079d316 d88d679 079d316 d04069e 0b5b20e 1b704ad 0b5b20e d04069e dda7776 d04069e 845979b dda7776 d04069e dda7776 00d5996 dda7776 00d5996 dda7776 c65196c 836d682 dda7776 836d682 dda7776 836d682 00d5996 836d682 00d5996 836d682 00d5996 dda7776 836d682 dda7776 c65196c dda7776 836d682 dda7776 836d682 dda7776 c65196c dda7776 00d5996 dda7776 c65196c dda7776 d88d679 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
# import os
# from pathlib import Path
# import gc
# import torch
# from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
# from huggingface_hub import hf_hub_download
# from typing import Dict, Any
# from PIL import Image
# from io import BytesIO
# import base64
# import tempfile
# # --------------------------------------------------------------
# # π¨ ABSOLUTE FIX FOR PermissionError('/.cache') & '/root/.cache'
# # --------------------------------------------------------------
# HF_CACHE_DIR = Path("/tmp/hf_cache")
# HF_CACHE_DIR.mkdir(parents=True, exist_ok=True)
# # Set ALL key environment variables FIRST
# os.environ.update({
# "HF_HOME": str(HF_CACHE_DIR),
# "HF_HUB_CACHE": str(HF_CACHE_DIR),
# "DIFFUSERS_CACHE": str(HF_CACHE_DIR),
# "TRANSFORMERS_CACHE": str(HF_CACHE_DIR),
# "XDG_CACHE_HOME": str(HF_CACHE_DIR),
# "HF_DATASETS_CACHE": str(HF_CACHE_DIR),
# "HF_MODULES_CACHE": str(HF_CACHE_DIR),
# "TMPDIR": str(HF_CACHE_DIR),
# "CACHE_DIR": str(HF_CACHE_DIR),
# "TORCH_HOME": str(HF_CACHE_DIR),
# "HOME": str(HF_CACHE_DIR)
# })
# # Patch expanduser BEFORE any library imports that might touch ~/.cache
# import os.path
# if not hasattr(os.path, "expanduser_original"):
# os.path.expanduser_original = os.path.expanduser
# def safe_expanduser(path):
# if (
# path.startswith("~") or
# path.startswith("/.cache") or
# path.startswith("/root/.cache")
# ):
# print(f"[DEBUG] π Patched path expanduser call for: {path}")
# return str(HF_CACHE_DIR)
# return os.path.expanduser_original(path)
# os.path.expanduser = safe_expanduser
# tempfile.tempdir = str(HF_CACHE_DIR)
# print("[DEBUG] β
Hugging Face, Diffusers, Datasets and Torch cache fully redirected to:", HF_CACHE_DIR)
# # --------------------------------------------------------------
# # β
PERSISTENT STORAGE SETUP (for Hugging Face Spaces)
# # --------------------------------------------------------------
# MODEL_DIR = Path("/tmp/models/realvisxl_v4")
# SEED_DIR = Path("/tmp/seed_images")
# TMP_DIR = Path("/tmp/generated_images")
# for d in [MODEL_DIR, SEED_DIR, TMP_DIR]:
# d.mkdir(parents=True, exist_ok=True)
# print("[DEBUG] β
Using persistent Hugging Face cache at:", HF_CACHE_DIR)
# print("[DEBUG] β
Model directory:", MODEL_DIR)
# print("[DEBUG] β
Seed directory:", SEED_DIR)
# # --------------------------------------------------------------
# # MODEL CONFIG
# # --------------------------------------------------------------
# MODEL_REPO = "SG161222/RealVisXL_V4.0"
# MODEL_FILENAME = "RealVisXL_V4.0.safetensors"
# # ---------------- GLOBAL PIPELINE CACHE ----------------
# pipe: StableDiffusionXLPipeline | None = None
# img2img_pipe: StableDiffusionXLImg2ImgPipeline | None = None
# # --------------------------------------------------------------
# # MODEL DOWNLOAD
# # --------------------------------------------------------------
# def download_model() -> Path:
# model_path = MODEL_DIR / MODEL_FILENAME
# if not model_path.exists():
# print("[ImageGen] Downloading RealVisXL V4.0 model...")
# model_path = Path(
# hf_hub_download(
# repo_id=MODEL_REPO,
# filename=MODEL_FILENAME,
# cache_dir=str(HF_CACHE_DIR),
# force_download=False,
# resume_download=True,
# )
# )
# print(f"[ImageGen] β
Model downloaded to: {model_path}")
# else:
# print("[ImageGen] β
Model already exists at:", model_path)
# return model_path
# # --------------------------------------------------------------
# # MEMORY-SAFE PIPELINE MANAGER
# # --------------------------------------------------------------
# def unload_pipelines(target="all"):
# """Unload specific or all pipelines."""
# global pipe, img2img_pipe
# print("[ImageGen] π§Ή Clearing pipelines from memory...")
# if target in ("pipe", "all"):
# try:
# del pipe
# except:
# pass
# pipe = None
# if target in ("img2img_pipe", "all"):
# try:
# del img2img_pipe
# except:
# pass
# img2img_pipe = None
# gc.collect()
# if torch.cuda.is_available():
# torch.cuda.empty_cache()
# print("[ImageGen] β
Memory cleared.")
# def safe_load_pipeline(pipeline_class, model_path):
# """Safely load a pipeline with retry logic and memory handling."""
# try:
# print(f"[ImageGen] π Loading {pipeline_class.__name__} from {model_path} ...")
# pipe = pipeline_class.from_single_file(
# model_path,
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
# )
# print(f"[ImageGen] β
Successfully loaded {pipeline_class.__name__}.")
# return pipe
# except Exception as e:
# print(f"[ImageGen] β Failed to load {pipeline_class.__name__}: {e}")
# unload_pipelines()
# gc.collect()
# if torch.cuda.is_available():
# torch.cuda.empty_cache()
# raise e
# def load_pipeline():
# global pipe
# unload_pipelines(target="pipe")
# model_path = download_model()
# print("[ImageGen] Loading main (txt2img) pipeline...")
# pipe = safe_load_pipeline(StableDiffusionXLPipeline, model_path)
# device = "cuda" if torch.cuda.is_available() else "cpu"
# pipe.to(device)
# pipe.safety_checker = None
# pipe.enable_attention_slicing()
# print("[ImageGen] β
Text-to-image pipeline ready.")
# return pipe
# def load_img2img_pipeline():
# global img2img_pipe
# unload_pipelines(target="img2img_pipe")
# model_path = download_model()
# print("[ImageGen] Loading img2img pipeline...")
# img2img_pipe = safe_load_pipeline(StableDiffusionXLImg2ImgPipeline, model_path)
# device = "cuda" if torch.cuda.is_available() else "cpu"
# img2img_pipe.to(device)
# img2img_pipe.safety_checker = None
# img2img_pipe.enable_attention_slicing()
# print("[ImageGen] β
Img2Img pipeline ready.")
# return img2img_pipe
# # --------------------------------------------------------------
# # UTILITY: PIL β BASE64
# # --------------------------------------------------------------
# def pil_to_base64(img: Image.Image) -> str:
# buffered = BytesIO()
# img.save(buffered, format="PNG")
# return f"data:image/png;base64,{base64.b64encode(buffered.getvalue()).decode()}"
# # --------------------------------------------------------------
# # UNIFIED IMAGE GENERATION FUNCTION
# # --------------------------------------------------------------
# async def generate_images(prompt_or_json, seed: int | None = None, num_images: int = 3):
# global pipe, img2img_pipe
# device = "cuda" if torch.cuda.is_available() else "cpu"
# # ----------------------------------------------------------
# # CASE 1: STRUCTURED JSON (story mode)
# # ----------------------------------------------------------
# if isinstance(prompt_or_json, dict):
# story_json = prompt_or_json
# print("[ImageGen] Detected structured JSON input. Generating cinematic visuals...")
# # Step 1: Load only txt2img for character generation
# pipe = load_pipeline()
# seed_to_char_image = {}
# for char in story_json.get("characters", []):
# char_name = char["name"]
# char_seed = int(char.get("seed", 0))
# char_desc = char.get("description", "")
# seed_image_path = SEED_DIR / f"seed_{char_seed}.png"
# if seed_image_path.exists():
# print(f"[ImageGen] π Reusing existing seed image for '{char_name}' (seed={char_seed})")
# image = Image.open(seed_image_path)
# else:
# print(f"[ImageGen] π¨ Generating new character '{char_name}' (seed={char_seed})")
# generator = torch.Generator(device).manual_seed(char_seed)
# image = pipe(f"{char_name}, {char_desc}", num_inference_steps=30, generator=generator).images[0]
# image.save(seed_image_path)
# seed_to_char_image[char_seed] = image
# # Free txt2img pipeline
# unload_pipelines(target="pipe")
# # Step 2: Load only img2img for keyframes
# img2img_pipe = load_img2img_pipeline()
# for key, scene_data in story_json.items():
# if not key.startswith("scene"):
# continue
# for frame in scene_data.get("keyframes", []):
# frame_seed = int(frame.get("seed", 0))
# if frame_seed not in seed_to_char_image:
# print(f"[WARN] Seed {frame_seed} not found in characters. Skipping keyframes...")
# continue
# init_image = seed_to_char_image[frame_seed]
# for kf_key, kf_prompt in frame.items():
# if kf_key.startswith("keyframe"):
# print(f"[ImageGen] π¬ Generating {key} β {kf_key} using seed {frame_seed}")
# generator = torch.Generator(device).manual_seed(frame_seed)
# img = img2img_pipe(
# prompt=kf_prompt,
# image=init_image,
# strength=0.55,
# num_inference_steps=30,
# generator=generator
# ).images[0]
# out_path = TMP_DIR / f"{key}_{kf_key}_seed{frame_seed}.png"
# img.save(out_path)
# frame[kf_key] = pil_to_base64(img)
# unload_pipelines(target="all") # unload both just in case
# print("[ImageGen] β
Story JSON image generation complete.")
# return story_json
# # ----------------------------------------------------------
# # CASE 2: NORMAL PROMPT
# # ----------------------------------------------------------
# print(f"[ImageGen] Generating {num_images} image(s) for prompt='{prompt_or_json}' seed={seed}")
# pipe = load_pipeline()
# images = []
# for i in range(num_images):
# gen = torch.Generator(device).manual_seed(seed + i) if seed is not None else None
# try:
# img = pipe(prompt_or_json, num_inference_steps=30, generator=gen).images[0]
# img_path = TMP_DIR / f"prompt_{i}.png"
# img.save(img_path)
# images.append(pil_to_base64(img))
# except Exception as e:
# print(f"[ImageGen] β οΈ Failed on image {i}: {e}")
# unload_pipelines(target="pipe")
# print(f"[ImageGen] β
Generated {len(images)} image(s) successfully.")
# return images
import os
from pathlib import Path
import gc
import torch
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, AutoPipelineForText2Image
from huggingface_hub import hf_hub_download
from typing import Dict, Any
from PIL import Image
from io import BytesIO
import base64
import tempfile
# --------------------------------------------------------------
# π¨ ABSOLUTE FIX FOR PermissionError('/.cache') & '/root/.cache'
# --------------------------------------------------------------
HF_CACHE_DIR = Path("/tmp/hf_cache")
HF_CACHE_DIR.mkdir(parents=True, exist_ok=True)
# Set ALL key environment variables FIRST
os.environ.update({
"HF_HOME": str(HF_CACHE_DIR),
"HF_HUB_CACHE": str(HF_CACHE_DIR),
"DIFFUSERS_CACHE": str(HF_CACHE_DIR),
"TRANSFORMERS_CACHE": str(HF_CACHE_DIR),
"XDG_CACHE_HOME": str(HF_CACHE_DIR),
"HF_DATASETS_CACHE": str(HF_CACHE_DIR),
"HF_MODULES_CACHE": str(HF_CACHE_DIR),
"TMPDIR": str(HF_CACHE_DIR),
"CACHE_DIR": str(HF_CACHE_DIR),
"TORCH_HOME": str(HF_CACHE_DIR),
"HOME": str(HF_CACHE_DIR)
})
# Patch expanduser BEFORE any library imports that might touch ~/.cache
import os.path
if not hasattr(os.path, "expanduser_original"):
os.path.expanduser_original = os.path.expanduser
def safe_expanduser(path):
if (
path.startswith("~") or
path.startswith("/.cache") or
path.startswith("/root/.cache")
):
print(f"[DEBUG] π Patched path expanduser call for: {path}")
return str(HF_CACHE_DIR)
return os.path.expanduser_original(path)
os.path.expanduser = safe_expanduser
tempfile.tempdir = str(HF_CACHE_DIR)
print("[DEBUG] β
Hugging Face, Diffusers, Datasets and Torch cache fully redirected to:", HF_CACHE_DIR)
# --------------------------------------------------------------
# β
PERSISTENT STORAGE SETUP (for Hugging Face Spaces)
# --------------------------------------------------------------
MODEL_DIR = Path("/tmp/models/dreamshaper_sd15")
SEED_DIR = Path("/tmp/seed_images")
TMP_DIR = Path("/tmp/generated_images")
for d in [MODEL_DIR, SEED_DIR, TMP_DIR]:
d.mkdir(parents=True, exist_ok=True)
print("[DEBUG] β
Using persistent Hugging Face cache at:", HF_CACHE_DIR)
print("[DEBUG] β
Model directory:", MODEL_DIR)
print("[DEBUG] β
Seed directory:", SEED_DIR)
# --------------------------------------------------------------
# MODEL CONFIG
# --------------------------------------------------------------
MODEL_REPO = "lykon/dreamshaper-8" # Use Hugging Face repo
# ---------------- GLOBAL PIPELINE CACHE ----------------
pipe: StableDiffusionXLPipeline | AutoPipelineForText2Image | None = None
img2img_pipe: StableDiffusionXLImg2ImgPipeline | None = None
# --------------------------------------------------------------
# MEMORY-SAFE PIPELINE MANAGER
# --------------------------------------------------------------
def unload_pipelines(target="all"):
"""Unload specific or all pipelines."""
global pipe, img2img_pipe
print("[ImageGen] π§Ή Clearing pipelines from memory...")
if target in ("pipe", "all"):
try:
del pipe
except:
pass
pipe = None
if target in ("img2img_pipe", "all"):
try:
del img2img_pipe
except:
pass
img2img_pipe = None
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
print("[ImageGen] β
Memory cleared.")
def safe_load_pipeline(pretrained_model_name):
"""Load DreamShaper SD1.5 safely via from_pretrained."""
try:
print(f"[ImageGen] π Loading model {pretrained_model_name} ...")
pipe = AutoPipelineForText2Image.from_pretrained(
pretrained_model_name,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
variant="fp16" # use fp16 if possible
)
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = pipe.to(device)
pipe.enable_attention_slicing()
print(f"[ImageGen] β
Successfully loaded {pretrained_model_name}.")
return pipe
except Exception as e:
print(f"[ImageGen] β Failed to load {pretrained_model_name}: {e}")
unload_pipelines()
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
raise e
def load_pipeline():
global pipe
unload_pipelines(target="pipe")
print("[ImageGen] Loading main (txt2img) pipeline...")
pipe = safe_load_pipeline(MODEL_REPO)
print("[ImageGen] β
Text-to-image pipeline ready.")
return pipe
def load_img2img_pipeline():
global img2img_pipe
unload_pipelines(target="img2img_pipe")
print("[ImageGen] Loading img2img pipeline...")
# For DreamShaper, img2img uses the same pipeline
img2img_pipe = safe_load_pipeline(MODEL_REPO)
print("[ImageGen] β
Img2Img pipeline ready.")
return img2img_pipe
# --------------------------------------------------------------
# UTILITY: PIL β BASE64
# --------------------------------------------------------------
def pil_to_base64(img: Image.Image) -> str:
buffered = BytesIO()
img.save(buffered, format="PNG")
return f"data:image/png;base64,{base64.b64encode(buffered.getvalue()).decode()}"
# --------------------------------------------------------------
# UNIFIED IMAGE GENERATION FUNCTION
# --------------------------------------------------------------
async def generate_images(prompt_or_json, seed: int | None = None, num_images: int = 3):
global pipe, img2img_pipe
device = "cuda" if torch.cuda.is_available() else "cpu"
# ----------------------------------------------------------
# CASE 1: STRUCTURED JSON (story mode)
# ----------------------------------------------------------
if isinstance(prompt_or_json, dict):
story_json = prompt_or_json
print("[ImageGen] Detected structured JSON input. Generating cinematic visuals...")
# Step 1: Load only txt2img for character generation
pipe = load_pipeline()
seed_to_char_image = {}
for char in story_json.get("characters", []):
char_name = char["name"]
char_seed = int(char.get("seed", 0))
char_desc = char.get("description", "")
seed_image_path = SEED_DIR / f"seed_{char_seed}.png"
if seed_image_path.exists():
print(f"[ImageGen] π Reusing existing seed image for '{char_name}' (seed={char_seed})")
image = Image.open(seed_image_path)
else:
print(f"[ImageGen] π¨ Generating new character '{char_name}' (seed={char_seed})")
generator = torch.Generator(device).manual_seed(char_seed)
image = pipe(f"{char_name}, {char_desc}", num_inference_steps=30, generator=generator).images[0]
image.save(seed_image_path)
seed_to_char_image[char_seed] = image
# Free txt2img pipeline
unload_pipelines(target="pipe")
# Step 2: Load only img2img for keyframes
img2img_pipe = load_img2img_pipeline()
for key, scene_data in story_json.items():
if not key.startswith("scene"):
continue
for frame in scene_data.get("keyframes", []):
frame_seed = int(frame.get("seed", 0))
if frame_seed not in seed_to_char_image:
print(f"[WARN] Seed {frame_seed} not found in characters. Skipping keyframes...")
continue
init_image = seed_to_char_image[frame_seed]
for kf_key, kf_prompt in frame.items():
if kf_key.startswith("keyframe"):
print(f"[ImageGen] π¬ Generating {key} β {kf_key} using seed {frame_seed}")
generator = torch.Generator(device).manual_seed(frame_seed)
img = img2img_pipe(
prompt=kf_prompt,
image=init_image,
strength=0.55,
num_inference_steps=30,
generator=generator
).images[0]
out_path = TMP_DIR / f"{key}_{kf_key}_seed{frame_seed}.png"
img.save(out_path)
frame[kf_key] = pil_to_base64(img)
unload_pipelines(target="all") # unload both just in case
print("[ImageGen] β
Story JSON image generation complete.")
return story_json
# ----------------------------------------------------------
# CASE 2: NORMAL PROMPT
# ----------------------------------------------------------
print(f"[ImageGen] Generating {num_images} image(s) for prompt='{prompt_or_json}' seed={seed}")
pipe = load_pipeline()
images = []
for i in range(num_images):
gen = torch.Generator(device).manual_seed(seed + i) if seed is not None else None
try:
img = pipe(prompt_or_json, num_inference_steps=30, generator=gen).images[0]
img_path = TMP_DIR / f"prompt_{i}.png"
img.save(img_path)
images.append(pil_to_base64(img))
except Exception as e:
print(f"[ImageGen] β οΈ Failed on image {i}: {e}")
unload_pipelines(target="pipe")
print(f"[ImageGen] β
Generated {len(images)} image(s) successfully.")
return images
|