Spaces:
Sleeping
Sleeping
Update core/image_generator.py
Browse files- core/image_generator.py +41 -59
core/image_generator.py
CHANGED
|
@@ -9,20 +9,27 @@ from typing import Dict, Any
|
|
| 9 |
from PIL import Image
|
| 10 |
from io import BytesIO
|
| 11 |
import base64
|
|
|
|
| 12 |
|
| 13 |
# --------------------------------------------------------------
|
| 14 |
-
#
|
| 15 |
# --------------------------------------------------------------
|
| 16 |
HF_CACHE_DIR = Path("/tmp/hf_cache")
|
| 17 |
-
|
| 18 |
-
SEED_DIR = Path("/tmp/seed_images")
|
| 19 |
-
TMP_DIR = Path("/tmp/generated_images")
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
|
|
|
|
|
|
| 26 |
os.environ.update({
|
| 27 |
"HF_HOME": str(HF_CACHE_DIR),
|
| 28 |
"HF_HUB_CACHE": str(HF_CACHE_DIR),
|
|
@@ -35,23 +42,19 @@ os.environ.update({
|
|
| 35 |
"CACHE_DIR": str(HF_CACHE_DIR),
|
| 36 |
})
|
| 37 |
|
| 38 |
-
# Force Python's tempfile to use /tmp/hf_cache too
|
| 39 |
-
import tempfile
|
| 40 |
tempfile.tempdir = str(HF_CACHE_DIR)
|
| 41 |
|
| 42 |
-
# π Extra layer: patch os.path.expanduser to block β/.cacheβ
|
| 43 |
-
import os.path
|
| 44 |
-
def safe_expanduser(path):
|
| 45 |
-
if path.startswith("~") or path.startswith("/.cache"):
|
| 46 |
-
return str(HF_CACHE_DIR)
|
| 47 |
-
return os.path.expanduser_original(path)
|
| 48 |
-
|
| 49 |
-
os.path.expanduser_original = os.path.expanduser
|
| 50 |
-
os.path.expanduser = safe_expanduser
|
| 51 |
-
|
| 52 |
print("[DEBUG] β
Hugging Face and Diffusers cache fully redirected to:", HF_CACHE_DIR)
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
|
|
|
|
|
|
| 55 |
|
| 56 |
print("[DEBUG] β
Using persistent Hugging Face cache at:", HF_CACHE_DIR)
|
| 57 |
print("[DEBUG] β
Model directory:", MODEL_DIR)
|
|
@@ -88,7 +91,6 @@ def download_model() -> Path:
|
|
| 88 |
print("[ImageGen] β
Model already exists at:", model_path)
|
| 89 |
return model_path
|
| 90 |
|
| 91 |
-
|
| 92 |
# --------------------------------------------------------------
|
| 93 |
# MEMORY-SAFE PIPELINE MANAGER
|
| 94 |
# --------------------------------------------------------------
|
|
@@ -116,10 +118,27 @@ def unload_pipelines(target="all"):
|
|
| 116 |
torch.cuda.empty_cache()
|
| 117 |
print("[ImageGen] β
Memory cleared.")
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
|
| 120 |
def load_pipeline():
|
| 121 |
global pipe
|
| 122 |
-
unload_pipelines(target="pipe")
|
| 123 |
model_path = download_model()
|
| 124 |
print("[ImageGen] Loading main (txt2img) pipeline...")
|
| 125 |
pipe = safe_load_pipeline(StableDiffusionXLPipeline, model_path)
|
|
@@ -130,10 +149,9 @@ def load_pipeline():
|
|
| 130 |
print("[ImageGen] β
Text-to-image pipeline ready.")
|
| 131 |
return pipe
|
| 132 |
|
| 133 |
-
|
| 134 |
def load_img2img_pipeline():
|
| 135 |
global img2img_pipe
|
| 136 |
-
unload_pipelines(target="img2img_pipe")
|
| 137 |
model_path = download_model()
|
| 138 |
print("[ImageGen] Loading img2img pipeline...")
|
| 139 |
img2img_pipe = safe_load_pipeline(StableDiffusionXLImg2ImgPipeline, model_path)
|
|
@@ -144,41 +162,6 @@ def load_img2img_pipeline():
|
|
| 144 |
print("[ImageGen] β
Img2Img pipeline ready.")
|
| 145 |
return img2img_pipe
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
def load_img2img_pipeline():
|
| 150 |
-
"""Load img2img pipeline into RAM."""
|
| 151 |
-
global img2img_pipe
|
| 152 |
-
unload_pipelines() # Ensure txt2img is removed first
|
| 153 |
-
model_path = download_model()
|
| 154 |
-
print("[ImageGen] Loading img2img pipeline...")
|
| 155 |
-
|
| 156 |
-
img2img_pipe = safe_load_pipeline(StableDiffusionXLImg2ImgPipeline, model_path)
|
| 157 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 158 |
-
img2img_pipe.to(device)
|
| 159 |
-
img2img_pipe.safety_checker = None
|
| 160 |
-
img2img_pipe.enable_attention_slicing()
|
| 161 |
-
print("[ImageGen] β
Img2Img pipeline ready.")
|
| 162 |
-
return img2img_pipe
|
| 163 |
-
|
| 164 |
-
def safe_load_pipeline(pipeline_class, model_path):
|
| 165 |
-
"""Safely load a pipeline with retry logic and memory handling."""
|
| 166 |
-
try:
|
| 167 |
-
print(f"[ImageGen] π Loading {pipeline_class.__name__} from {model_path} ...")
|
| 168 |
-
pipe = pipeline_class.from_single_file(
|
| 169 |
-
model_path,
|
| 170 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 171 |
-
)
|
| 172 |
-
print(f"[ImageGen] β
Successfully loaded {pipeline_class.__name__}.")
|
| 173 |
-
return pipe
|
| 174 |
-
except Exception as e:
|
| 175 |
-
print(f"[ImageGen] β Failed to load {pipeline_class.__name__}: {e}")
|
| 176 |
-
unload_pipelines()
|
| 177 |
-
gc.collect()
|
| 178 |
-
if torch.cuda.is_available():
|
| 179 |
-
torch.cuda.empty_cache()
|
| 180 |
-
raise e
|
| 181 |
-
|
| 182 |
# --------------------------------------------------------------
|
| 183 |
# UTILITY: PIL β BASE64
|
| 184 |
# --------------------------------------------------------------
|
|
@@ -187,7 +170,6 @@ def pil_to_base64(img: Image.Image) -> str:
|
|
| 187 |
img.save(buffered, format="PNG")
|
| 188 |
return f"data:image/png;base64,{base64.b64encode(buffered.getvalue()).decode()}"
|
| 189 |
|
| 190 |
-
|
| 191 |
# --------------------------------------------------------------
|
| 192 |
# UNIFIED IMAGE GENERATION FUNCTION
|
| 193 |
# --------------------------------------------------------------
|
|
|
|
| 9 |
from PIL import Image
|
| 10 |
from io import BytesIO
|
| 11 |
import base64
|
| 12 |
+
import tempfile
|
| 13 |
|
| 14 |
# --------------------------------------------------------------
|
| 15 |
+
# π¨ ABSOLUTE FIX FOR PermissionError('/.cache')
|
| 16 |
# --------------------------------------------------------------
|
| 17 |
HF_CACHE_DIR = Path("/tmp/hf_cache")
|
| 18 |
+
HF_CACHE_DIR.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# Patch expanduser BEFORE any library imports that might touch ~/.cache
|
| 21 |
+
import os.path
|
| 22 |
+
if not hasattr(os.path, "expanduser_original"):
|
| 23 |
+
os.path.expanduser_original = os.path.expanduser
|
| 24 |
|
| 25 |
+
def safe_expanduser(path):
|
| 26 |
+
if path.startswith("~") or path.startswith("/.cache"):
|
| 27 |
+
return str(HF_CACHE_DIR)
|
| 28 |
+
return os.path.expanduser_original(path)
|
| 29 |
|
| 30 |
+
os.path.expanduser = safe_expanduser
|
| 31 |
+
|
| 32 |
+
# Set environment variables AFTER patching
|
| 33 |
os.environ.update({
|
| 34 |
"HF_HOME": str(HF_CACHE_DIR),
|
| 35 |
"HF_HUB_CACHE": str(HF_CACHE_DIR),
|
|
|
|
| 42 |
"CACHE_DIR": str(HF_CACHE_DIR),
|
| 43 |
})
|
| 44 |
|
|
|
|
|
|
|
| 45 |
tempfile.tempdir = str(HF_CACHE_DIR)
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
print("[DEBUG] β
Hugging Face and Diffusers cache fully redirected to:", HF_CACHE_DIR)
|
| 48 |
|
| 49 |
+
# --------------------------------------------------------------
|
| 50 |
+
# β
PERSISTENT STORAGE SETUP (for Hugging Face Spaces)
|
| 51 |
+
# --------------------------------------------------------------
|
| 52 |
+
MODEL_DIR = Path("/tmp/models/realvisxl_v4")
|
| 53 |
+
SEED_DIR = Path("/tmp/seed_images")
|
| 54 |
+
TMP_DIR = Path("/tmp/generated_images")
|
| 55 |
|
| 56 |
+
for d in [MODEL_DIR, SEED_DIR, TMP_DIR]:
|
| 57 |
+
d.mkdir(parents=True, exist_ok=True)
|
| 58 |
|
| 59 |
print("[DEBUG] β
Using persistent Hugging Face cache at:", HF_CACHE_DIR)
|
| 60 |
print("[DEBUG] β
Model directory:", MODEL_DIR)
|
|
|
|
| 91 |
print("[ImageGen] β
Model already exists at:", model_path)
|
| 92 |
return model_path
|
| 93 |
|
|
|
|
| 94 |
# --------------------------------------------------------------
|
| 95 |
# MEMORY-SAFE PIPELINE MANAGER
|
| 96 |
# --------------------------------------------------------------
|
|
|
|
| 118 |
torch.cuda.empty_cache()
|
| 119 |
print("[ImageGen] β
Memory cleared.")
|
| 120 |
|
| 121 |
+
def safe_load_pipeline(pipeline_class, model_path):
|
| 122 |
+
"""Safely load a pipeline with retry logic and memory handling."""
|
| 123 |
+
try:
|
| 124 |
+
print(f"[ImageGen] π Loading {pipeline_class.__name__} from {model_path} ...")
|
| 125 |
+
pipe = pipeline_class.from_single_file(
|
| 126 |
+
model_path,
|
| 127 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 128 |
+
)
|
| 129 |
+
print(f"[ImageGen] β
Successfully loaded {pipeline_class.__name__}.")
|
| 130 |
+
return pipe
|
| 131 |
+
except Exception as e:
|
| 132 |
+
print(f"[ImageGen] β Failed to load {pipeline_class.__name__}: {e}")
|
| 133 |
+
unload_pipelines()
|
| 134 |
+
gc.collect()
|
| 135 |
+
if torch.cuda.is_available():
|
| 136 |
+
torch.cuda.empty_cache()
|
| 137 |
+
raise e
|
| 138 |
|
| 139 |
def load_pipeline():
|
| 140 |
global pipe
|
| 141 |
+
unload_pipelines(target="pipe")
|
| 142 |
model_path = download_model()
|
| 143 |
print("[ImageGen] Loading main (txt2img) pipeline...")
|
| 144 |
pipe = safe_load_pipeline(StableDiffusionXLPipeline, model_path)
|
|
|
|
| 149 |
print("[ImageGen] β
Text-to-image pipeline ready.")
|
| 150 |
return pipe
|
| 151 |
|
|
|
|
| 152 |
def load_img2img_pipeline():
|
| 153 |
global img2img_pipe
|
| 154 |
+
unload_pipelines(target="img2img_pipe")
|
| 155 |
model_path = download_model()
|
| 156 |
print("[ImageGen] Loading img2img pipeline...")
|
| 157 |
img2img_pipe = safe_load_pipeline(StableDiffusionXLImg2ImgPipeline, model_path)
|
|
|
|
| 162 |
print("[ImageGen] β
Img2Img pipeline ready.")
|
| 163 |
return img2img_pipe
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
# --------------------------------------------------------------
|
| 166 |
# UTILITY: PIL β BASE64
|
| 167 |
# --------------------------------------------------------------
|
|
|
|
| 170 |
img.save(buffered, format="PNG")
|
| 171 |
return f"data:image/png;base64,{base64.b64encode(buffered.getvalue()).decode()}"
|
| 172 |
|
|
|
|
| 173 |
# --------------------------------------------------------------
|
| 174 |
# UNIFIED IMAGE GENERATION FUNCTION
|
| 175 |
# --------------------------------------------------------------
|