File size: 7,774 Bytes
dc4014d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
Color Harmonization utility functions.
Some Codes are imported and adopted from https://github.com/tartarskunk/ColorHarmonization
"""

# Import Libraries
import cv2
import numpy as np
import matplotlib.pyplot as plt
import io

# Constants
HueTemplates = {
    "i": [(0.00, 0.05)],
    "V": [(0.00, 0.26)],
    "L": [(0.00, 0.05), (0.25, 0.22)],
    "mirror_L": [(0.00, 0.05), (-0.25, 0.22)],
    "I": [(0.00, 0.05), (0.50, 0.05)],
    "T": [(0.25, 0.50)],
    "Y": [(0.00, 0.26), (0.50, 0.05)],
    "X": [(0.00, 0.26), (0.50, 0.26)],
}
template_types = list(HueTemplates.keys())
M = len(template_types)
A = 360


def deg_distance(a, b):
    d1 = np.abs(a - b)
    d2 = np.abs(360 - d1)
    d = np.minimum(d1, d2)
    return d


def normalized_gaussian(X, mu, S):
    X = np.asarray(X).astype(np.float64)
    S = np.asarray(S).astype(np.float64)
    D = np.deg2rad(X - mu)
    S = np.deg2rad(S)
    D2 = np.multiply(D, D)
    S2 = np.multiply(S, S)
    return np.exp(-D2 / (2 * S2))


class HueSector:

    def __init__(self, center, width):
        # In Degree [0,2 pi)
        self.center = center
        self.width = width
        self.border = [(self.center - self.width / 2), (self.center + self.width / 2)]

    def is_in_sector(self, H):
        # True/False matrix if hue resides in the sector
        return deg_distance(H, self.center) < self.width / 2

    def distance_to_border(self, H):
        H_1 = deg_distance(H, self.border[0])
        H_2 = deg_distance(H, self.border[1])
        H_dist2bdr = np.minimum(H_1, H_2)
        return H_dist2bdr

    def closest_border(self, H):
        H_1 = deg_distance(H, self.border[0])
        H_2 = deg_distance(H, self.border[1])
        H_cls_bdr = np.argmin((H_1, H_2), axis=0)
        H_cls_bdr = 2 * (H_cls_bdr - 0.5)
        return H_cls_bdr

    def distance_to_center(self, H):
        H_dist2ctr = deg_distance(H, self.center)
        return H_dist2ctr


class HarmonicScheme:

    def __init__(self, m, alpha):
        self.m = m
        self.alpha = alpha
        self.reset_sectors()

    def reset_sectors(self):
        self.sectors = []
        for t in HueTemplates[self.m]:
            center = t[0] * 360 + self.alpha
            width = t[1] * 360
            sector = HueSector(center, width)
            self.sectors.append(sector)

    def harmony_score(self, X):
        # Opencv store H as [0, 180) --> [0, 360)
        H = X[:, :, 0].astype(np.int32) * 2
        # Opencv store S as [0, 255] --> [0, 1]
        S = X[:, :, 1].astype(np.float32) / 255.0

        H_dis = self.hue_distance(H)
        H_dis = np.deg2rad(H_dis)
        return np.sum(np.multiply(H_dis, S))

    def hue_distance(self, H):
        H_dis = []
        for i in range(len(self.sectors)):
            sector = self.sectors[i]
            H_dis.append(sector.distance_to_border(H))
            H_dis[i][sector.is_in_sector(H)] = 0
        H_dis = np.asarray(H_dis)
        H_dis = H_dis.min(axis=0)
        return H_dis

    def hue_shifted(self, X, num_superpixels=-1):
        Y = X.copy()
        H = X[:, :, 0].astype(np.int32) * 2
        S = X[:, :, 1].astype(np.float32) / 255.0

        H_d2b = [sector.distance_to_border(H) for sector in self.sectors]
        H_d2b = np.asarray(H_d2b)

        H_cls = np.argmin(H_d2b, axis=0)
        if num_superpixels != -1:
            SEEDS = cv2.ximgproc.createSuperpixelSEEDS(X.shape[1], X.shape[0], X.shape[2], num_superpixels, 10)
            SEEDS.iterate(X, 4)

            V = np.zeros(H.shape).reshape(-1)
            N = V.shape[0]

            H_ctr = np.zeros((H.shape))
            grid_num = SEEDS.getNumberOfSuperpixels()
            labels = SEEDS.getLabels()
            for i in range(grid_num):

                P = [[], []]
                s = np.average(H_cls[labels == i])
                if s > 0.5:
                    s = 1
                else:
                    s = 0
                H_cls[labels == i] = s

        H_ctr = np.zeros((H.shape))
        H_wid = np.zeros((H.shape))
        H_d2c = np.zeros((H.shape))
        H_dir = np.zeros((H.shape))

        for i in range(len(self.sectors)):
            sector = self.sectors[i]
            mask = (H_cls == i)
            H_ctr[mask] = sector.center
            H_wid[mask] = sector.width
            H_dir += sector.closest_border(H) * mask
            H_dist2ctr = sector.distance_to_center(H)
            H_d2c += H_dist2ctr * mask

        H_sgm = H_wid / 2
        H_gau = normalized_gaussian(H_d2c, 0, H_sgm)
        H_tmp = np.multiply(H_wid / 2, 1 - H_gau)
        H_shf = np.multiply(H_dir, H_tmp)
        H_new = (H_ctr + H_shf).astype(np.int32)

        for i in range(len(self.sectors)):
            sector = self.sectors[i]
            mask = sector.is_in_sector(H)
            np.copyto(H_new, H, where=sector.is_in_sector(H))

        H_new = np.remainder(H_new, 360)
        H_new = (H_new / 2).astype(np.uint8)
        Y[:, :, 0] = H_new
        return Y


def count_hue_histogram(X):
    N = 360
    H = X[:, :, 0].astype(np.int32) * 2
    S = X[:, :, 1].astype(np.float64) / 255.0
    H_flat = H.flatten()
    S_flat = S.flatten()

    histo = np.zeros(N)
    for i in range(len(H_flat)):
        histo[H_flat[i]] += S_flat[i]
    return histo


def plothis(hue_histo, harmonic_scheme, caption: str):
    N = 360

    # Compute pie slices
    theta = np.linspace(0.0, 2 * np.pi, N, endpoint=False)
    width = np.pi / 180

    # Compute colors, RGB values for the hue
    hue_colors = np.zeros((N, 4))
    for i in range(hue_colors.shape[0]):
        color_HSV = np.zeros((1, 1, 3), dtype=np.uint8)
        color_HSV[0, 0, :] = [int(i / 2), 255, 255]
        color_BGR = cv2.cvtColor(color_HSV, cv2.COLOR_HSV2BGR)
        B = int(color_BGR[0, 0, 0]) / 255.0
        G = int(color_BGR[0, 0, 1]) / 255.0
        R = int(color_BGR[0, 0, 2]) / 255.0
        hue_colors[i] = (R, G, B, 1.0)

    # Compute colors, for the shadow
    shadow_colors = np.zeros((N, 4))
    for i in range(shadow_colors.shape[0]):
        shadow_colors[i] = (0.0, 0.0, 0.0, 1.0)

    # Create hue, guidline and shadow arrays
    hue_histo = hue_histo.astype(float)

    hue_histo_msx = float(np.max(hue_histo))
    if hue_histo_msx != 0.0:
        hue_histo /= np.max(hue_histo)
    guide_histo = np.array([0.05] * N)
    shadow_histo = np.array([0.0] * N)

    # Compute angels of shadow, template types
    for sector in harmonic_scheme.sectors:
        sector_center = sector.center
        sector_width = sector.width
        end = int((sector_center + sector_width / 2) % 360)
        start = int((sector_center - sector_width / 2) % 360)

        if start < end:
            shadow_histo[start: end] = 1.0
        else:
            shadow_histo[start: 360] = 1.0
            shadow_histo[0: end] = 1.0

    # Plot, 1280 * 800
    fig = plt.figure(figsize=(3.2, 4))
    ax = fig.add_subplot(111, projection='polar')
    # add hue histogram
    ax.bar(theta, hue_histo, width=width, bottom=0.0, color=hue_colors, alpha=1.0)
    # add guidline
    ax.bar(theta, guide_histo, width=width, bottom=1.0, color=hue_colors, alpha=1.0)
    # add shadow angels for the template types
    ax.bar(theta, shadow_histo, width=width, bottom=0.0, color=shadow_colors, alpha=0.1)
    ax.set_title(caption, pad=15)

    plt.close()

    return fig


# https://stackoverflow.com/questions/7821518/matplotlib-save-plot-to-numpy-array
def get_img_from_fig(fig, dpi=100):
    """
    a function which returns an image as numpy array from figure
    """
    buf = io.BytesIO()
    fig.savefig(buf, format="png", dpi=dpi)
    buf.seek(0)
    img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
    buf.close()
    img = cv2.imdecode(img_arr, 1)
    return img