Spaces:
Running
Running
kargaranamir
commited on
Commit
·
dc4014d
1
Parent(s):
b18e067
add color harmonization
Browse files- app.py +82 -0
- packages.txt +6 -0
- requirements.txt +6 -0
- utils.py +258 -0
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from utils import *
|
4 |
+
|
5 |
+
torch.hub.download_url_to_file(
|
6 |
+
'https://github.com/aalto-ui/aim/raw/aim2/backend/data/tests/input_values/wikipedia.org_website.png',
|
7 |
+
'wikipedia.org_website.png')
|
8 |
+
torch.hub.download_url_to_file(
|
9 |
+
'https://github.com/aalto-ui/aim/raw/aim2/backend/data/tests/input_values/aalto.fi_website.png',
|
10 |
+
'aalto.fi_website.png')
|
11 |
+
|
12 |
+
|
13 |
+
def inference(img, template, angel):
|
14 |
+
color_image = cv2.imread(img.name, cv2.IMREAD_COLOR)
|
15 |
+
height, width, _ = color_image.shape
|
16 |
+
|
17 |
+
# Resize if it is bigeer than 960 * 800
|
18 |
+
if width > height:
|
19 |
+
if width > 960: # 3/4 * 1280
|
20 |
+
coef_div = width / 960.0
|
21 |
+
color_image = cv2.resize(color_image, dsize=(int(width / coef_div), int(height / coef_div)),
|
22 |
+
interpolation=cv2.INTER_CUBIC)
|
23 |
+
else:
|
24 |
+
if height > 800: # 800
|
25 |
+
coef_div = height / 800.0
|
26 |
+
color_image = cv2.resize(color_image, dsize=(int(width / coef_div), int(height / coef_div)),
|
27 |
+
interpolation=cv2.INTER_CUBIC)
|
28 |
+
|
29 |
+
HSV_image = cv2.cvtColor(color_image, cv2.COLOR_BGR2HSV)
|
30 |
+
selected_harmomic_scheme = HarmonicScheme(str(template), int(angel))
|
31 |
+
new_HSV_image = best_harmomic_scheme.hue_shifted(HSV_image, num_superpixels=-1)
|
32 |
+
|
33 |
+
# Compute shifted histogram
|
34 |
+
histo_1 = count_hue_histogram(HSV_image)
|
35 |
+
histo_2 = count_hue_histogram(new_HSV_image)
|
36 |
+
|
37 |
+
# Create Hue Plots
|
38 |
+
fig1 = plothis(histo_1, best_harmomic_scheme, "Source Hue")
|
39 |
+
fig_1_cv = get_img_from_fig(fig1)
|
40 |
+
fig2 = plothis(histo_2, best_harmomic_scheme, "Target Hue")
|
41 |
+
fig_2_cv = get_img_from_fig(fig2)
|
42 |
+
|
43 |
+
# Stack Hue Plots
|
44 |
+
vis = np.concatenate((fig_1_cv, fig_2_cv), axis=0)
|
45 |
+
# Convert HSV to BGR
|
46 |
+
result_image = cv2.cvtColor(new_HSV_image, cv2.COLOR_HSV2BGR)
|
47 |
+
|
48 |
+
# Final output
|
49 |
+
canvas = np.full((800, 960, 3), (255, 255, 255), dtype=np.uint8)
|
50 |
+
# compute center offset
|
51 |
+
x_center = (960 - width) // 2
|
52 |
+
y_center = (800 - height) // 2
|
53 |
+
# copy img image into center of result image
|
54 |
+
canvas[y_center:y_center + height, x_center:x_center + width] = result_image
|
55 |
+
|
56 |
+
# Combine
|
57 |
+
output = np.concatenate((vis, canvas), axis=1)
|
58 |
+
cv2.imwrite('output.png', output)
|
59 |
+
|
60 |
+
return ['output.png']
|
61 |
+
|
62 |
+
|
63 |
+
title = 'Color Harmonization'
|
64 |
+
description = 'Compute Color Harmonization with Different Templates'
|
65 |
+
article = "<p style='text-align: center'></p>"
|
66 |
+
examples = [['wikipedia.org_website.png'], ['aalto.fi_website.png']]
|
67 |
+
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
|
68 |
+
|
69 |
+
gr.Interface(
|
70 |
+
inference,
|
71 |
+
[gr.inputs.Image(type='file', label='Input'),
|
72 |
+
gr.inputs.Dropdown(["X", "Y", "T", "I", "mirror_L", "L", "V", "i"],
|
73 |
+
default="X",
|
74 |
+
label="Template"),
|
75 |
+
gr.inputs.Slider(0, 359, label="Angle")],
|
76 |
+
[gr.outputs.Image(type='file', label='Color Harmonization of Output Image')],
|
77 |
+
title=title,
|
78 |
+
description=description,
|
79 |
+
article=article,
|
80 |
+
examples=examples,
|
81 |
+
css=css,
|
82 |
+
).launch(debug=True, enable_queue=True)
|
packages.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
libgl1
|
2 |
+
libglib2.0-0
|
3 |
+
libgl1-mesa-glx
|
4 |
+
ffmpeg
|
5 |
+
libsm6
|
6 |
+
libxext6
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python-headless
|
2 |
+
torch
|
3 |
+
gradio
|
4 |
+
opencv-python==4.1.2
|
5 |
+
numpy==1.21.6
|
6 |
+
matplotlib==3.2.2
|
utils.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
"""
|
5 |
+
Color Harmonization utility functions.
|
6 |
+
Some Codes are imported and adopted from https://github.com/tartarskunk/ColorHarmonization
|
7 |
+
"""
|
8 |
+
|
9 |
+
# Import Libraries
|
10 |
+
import cv2
|
11 |
+
import numpy as np
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import io
|
14 |
+
|
15 |
+
# Constants
|
16 |
+
HueTemplates = {
|
17 |
+
"i": [(0.00, 0.05)],
|
18 |
+
"V": [(0.00, 0.26)],
|
19 |
+
"L": [(0.00, 0.05), (0.25, 0.22)],
|
20 |
+
"mirror_L": [(0.00, 0.05), (-0.25, 0.22)],
|
21 |
+
"I": [(0.00, 0.05), (0.50, 0.05)],
|
22 |
+
"T": [(0.25, 0.50)],
|
23 |
+
"Y": [(0.00, 0.26), (0.50, 0.05)],
|
24 |
+
"X": [(0.00, 0.26), (0.50, 0.26)],
|
25 |
+
}
|
26 |
+
template_types = list(HueTemplates.keys())
|
27 |
+
M = len(template_types)
|
28 |
+
A = 360
|
29 |
+
|
30 |
+
|
31 |
+
def deg_distance(a, b):
|
32 |
+
d1 = np.abs(a - b)
|
33 |
+
d2 = np.abs(360 - d1)
|
34 |
+
d = np.minimum(d1, d2)
|
35 |
+
return d
|
36 |
+
|
37 |
+
|
38 |
+
def normalized_gaussian(X, mu, S):
|
39 |
+
X = np.asarray(X).astype(np.float64)
|
40 |
+
S = np.asarray(S).astype(np.float64)
|
41 |
+
D = np.deg2rad(X - mu)
|
42 |
+
S = np.deg2rad(S)
|
43 |
+
D2 = np.multiply(D, D)
|
44 |
+
S2 = np.multiply(S, S)
|
45 |
+
return np.exp(-D2 / (2 * S2))
|
46 |
+
|
47 |
+
|
48 |
+
class HueSector:
|
49 |
+
|
50 |
+
def __init__(self, center, width):
|
51 |
+
# In Degree [0,2 pi)
|
52 |
+
self.center = center
|
53 |
+
self.width = width
|
54 |
+
self.border = [(self.center - self.width / 2), (self.center + self.width / 2)]
|
55 |
+
|
56 |
+
def is_in_sector(self, H):
|
57 |
+
# True/False matrix if hue resides in the sector
|
58 |
+
return deg_distance(H, self.center) < self.width / 2
|
59 |
+
|
60 |
+
def distance_to_border(self, H):
|
61 |
+
H_1 = deg_distance(H, self.border[0])
|
62 |
+
H_2 = deg_distance(H, self.border[1])
|
63 |
+
H_dist2bdr = np.minimum(H_1, H_2)
|
64 |
+
return H_dist2bdr
|
65 |
+
|
66 |
+
def closest_border(self, H):
|
67 |
+
H_1 = deg_distance(H, self.border[0])
|
68 |
+
H_2 = deg_distance(H, self.border[1])
|
69 |
+
H_cls_bdr = np.argmin((H_1, H_2), axis=0)
|
70 |
+
H_cls_bdr = 2 * (H_cls_bdr - 0.5)
|
71 |
+
return H_cls_bdr
|
72 |
+
|
73 |
+
def distance_to_center(self, H):
|
74 |
+
H_dist2ctr = deg_distance(H, self.center)
|
75 |
+
return H_dist2ctr
|
76 |
+
|
77 |
+
|
78 |
+
class HarmonicScheme:
|
79 |
+
|
80 |
+
def __init__(self, m, alpha):
|
81 |
+
self.m = m
|
82 |
+
self.alpha = alpha
|
83 |
+
self.reset_sectors()
|
84 |
+
|
85 |
+
def reset_sectors(self):
|
86 |
+
self.sectors = []
|
87 |
+
for t in HueTemplates[self.m]:
|
88 |
+
center = t[0] * 360 + self.alpha
|
89 |
+
width = t[1] * 360
|
90 |
+
sector = HueSector(center, width)
|
91 |
+
self.sectors.append(sector)
|
92 |
+
|
93 |
+
def harmony_score(self, X):
|
94 |
+
# Opencv store H as [0, 180) --> [0, 360)
|
95 |
+
H = X[:, :, 0].astype(np.int32) * 2
|
96 |
+
# Opencv store S as [0, 255] --> [0, 1]
|
97 |
+
S = X[:, :, 1].astype(np.float32) / 255.0
|
98 |
+
|
99 |
+
H_dis = self.hue_distance(H)
|
100 |
+
H_dis = np.deg2rad(H_dis)
|
101 |
+
return np.sum(np.multiply(H_dis, S))
|
102 |
+
|
103 |
+
def hue_distance(self, H):
|
104 |
+
H_dis = []
|
105 |
+
for i in range(len(self.sectors)):
|
106 |
+
sector = self.sectors[i]
|
107 |
+
H_dis.append(sector.distance_to_border(H))
|
108 |
+
H_dis[i][sector.is_in_sector(H)] = 0
|
109 |
+
H_dis = np.asarray(H_dis)
|
110 |
+
H_dis = H_dis.min(axis=0)
|
111 |
+
return H_dis
|
112 |
+
|
113 |
+
def hue_shifted(self, X, num_superpixels=-1):
|
114 |
+
Y = X.copy()
|
115 |
+
H = X[:, :, 0].astype(np.int32) * 2
|
116 |
+
S = X[:, :, 1].astype(np.float32) / 255.0
|
117 |
+
|
118 |
+
H_d2b = [sector.distance_to_border(H) for sector in self.sectors]
|
119 |
+
H_d2b = np.asarray(H_d2b)
|
120 |
+
|
121 |
+
H_cls = np.argmin(H_d2b, axis=0)
|
122 |
+
if num_superpixels != -1:
|
123 |
+
SEEDS = cv2.ximgproc.createSuperpixelSEEDS(X.shape[1], X.shape[0], X.shape[2], num_superpixels, 10)
|
124 |
+
SEEDS.iterate(X, 4)
|
125 |
+
|
126 |
+
V = np.zeros(H.shape).reshape(-1)
|
127 |
+
N = V.shape[0]
|
128 |
+
|
129 |
+
H_ctr = np.zeros((H.shape))
|
130 |
+
grid_num = SEEDS.getNumberOfSuperpixels()
|
131 |
+
labels = SEEDS.getLabels()
|
132 |
+
for i in range(grid_num):
|
133 |
+
|
134 |
+
P = [[], []]
|
135 |
+
s = np.average(H_cls[labels == i])
|
136 |
+
if s > 0.5:
|
137 |
+
s = 1
|
138 |
+
else:
|
139 |
+
s = 0
|
140 |
+
H_cls[labels == i] = s
|
141 |
+
|
142 |
+
H_ctr = np.zeros((H.shape))
|
143 |
+
H_wid = np.zeros((H.shape))
|
144 |
+
H_d2c = np.zeros((H.shape))
|
145 |
+
H_dir = np.zeros((H.shape))
|
146 |
+
|
147 |
+
for i in range(len(self.sectors)):
|
148 |
+
sector = self.sectors[i]
|
149 |
+
mask = (H_cls == i)
|
150 |
+
H_ctr[mask] = sector.center
|
151 |
+
H_wid[mask] = sector.width
|
152 |
+
H_dir += sector.closest_border(H) * mask
|
153 |
+
H_dist2ctr = sector.distance_to_center(H)
|
154 |
+
H_d2c += H_dist2ctr * mask
|
155 |
+
|
156 |
+
H_sgm = H_wid / 2
|
157 |
+
H_gau = normalized_gaussian(H_d2c, 0, H_sgm)
|
158 |
+
H_tmp = np.multiply(H_wid / 2, 1 - H_gau)
|
159 |
+
H_shf = np.multiply(H_dir, H_tmp)
|
160 |
+
H_new = (H_ctr + H_shf).astype(np.int32)
|
161 |
+
|
162 |
+
for i in range(len(self.sectors)):
|
163 |
+
sector = self.sectors[i]
|
164 |
+
mask = sector.is_in_sector(H)
|
165 |
+
np.copyto(H_new, H, where=sector.is_in_sector(H))
|
166 |
+
|
167 |
+
H_new = np.remainder(H_new, 360)
|
168 |
+
H_new = (H_new / 2).astype(np.uint8)
|
169 |
+
Y[:, :, 0] = H_new
|
170 |
+
return Y
|
171 |
+
|
172 |
+
|
173 |
+
def count_hue_histogram(X):
|
174 |
+
N = 360
|
175 |
+
H = X[:, :, 0].astype(np.int32) * 2
|
176 |
+
S = X[:, :, 1].astype(np.float64) / 255.0
|
177 |
+
H_flat = H.flatten()
|
178 |
+
S_flat = S.flatten()
|
179 |
+
|
180 |
+
histo = np.zeros(N)
|
181 |
+
for i in range(len(H_flat)):
|
182 |
+
histo[H_flat[i]] += S_flat[i]
|
183 |
+
return histo
|
184 |
+
|
185 |
+
|
186 |
+
def plothis(hue_histo, harmonic_scheme, caption: str):
|
187 |
+
N = 360
|
188 |
+
|
189 |
+
# Compute pie slices
|
190 |
+
theta = np.linspace(0.0, 2 * np.pi, N, endpoint=False)
|
191 |
+
width = np.pi / 180
|
192 |
+
|
193 |
+
# Compute colors, RGB values for the hue
|
194 |
+
hue_colors = np.zeros((N, 4))
|
195 |
+
for i in range(hue_colors.shape[0]):
|
196 |
+
color_HSV = np.zeros((1, 1, 3), dtype=np.uint8)
|
197 |
+
color_HSV[0, 0, :] = [int(i / 2), 255, 255]
|
198 |
+
color_BGR = cv2.cvtColor(color_HSV, cv2.COLOR_HSV2BGR)
|
199 |
+
B = int(color_BGR[0, 0, 0]) / 255.0
|
200 |
+
G = int(color_BGR[0, 0, 1]) / 255.0
|
201 |
+
R = int(color_BGR[0, 0, 2]) / 255.0
|
202 |
+
hue_colors[i] = (R, G, B, 1.0)
|
203 |
+
|
204 |
+
# Compute colors, for the shadow
|
205 |
+
shadow_colors = np.zeros((N, 4))
|
206 |
+
for i in range(shadow_colors.shape[0]):
|
207 |
+
shadow_colors[i] = (0.0, 0.0, 0.0, 1.0)
|
208 |
+
|
209 |
+
# Create hue, guidline and shadow arrays
|
210 |
+
hue_histo = hue_histo.astype(float)
|
211 |
+
|
212 |
+
hue_histo_msx = float(np.max(hue_histo))
|
213 |
+
if hue_histo_msx != 0.0:
|
214 |
+
hue_histo /= np.max(hue_histo)
|
215 |
+
guide_histo = np.array([0.05] * N)
|
216 |
+
shadow_histo = np.array([0.0] * N)
|
217 |
+
|
218 |
+
# Compute angels of shadow, template types
|
219 |
+
for sector in harmonic_scheme.sectors:
|
220 |
+
sector_center = sector.center
|
221 |
+
sector_width = sector.width
|
222 |
+
end = int((sector_center + sector_width / 2) % 360)
|
223 |
+
start = int((sector_center - sector_width / 2) % 360)
|
224 |
+
|
225 |
+
if start < end:
|
226 |
+
shadow_histo[start: end] = 1.0
|
227 |
+
else:
|
228 |
+
shadow_histo[start: 360] = 1.0
|
229 |
+
shadow_histo[0: end] = 1.0
|
230 |
+
|
231 |
+
# Plot, 1280 * 800
|
232 |
+
fig = plt.figure(figsize=(3.2, 4))
|
233 |
+
ax = fig.add_subplot(111, projection='polar')
|
234 |
+
# add hue histogram
|
235 |
+
ax.bar(theta, hue_histo, width=width, bottom=0.0, color=hue_colors, alpha=1.0)
|
236 |
+
# add guidline
|
237 |
+
ax.bar(theta, guide_histo, width=width, bottom=1.0, color=hue_colors, alpha=1.0)
|
238 |
+
# add shadow angels for the template types
|
239 |
+
ax.bar(theta, shadow_histo, width=width, bottom=0.0, color=shadow_colors, alpha=0.1)
|
240 |
+
ax.set_title(caption, pad=15)
|
241 |
+
|
242 |
+
plt.close()
|
243 |
+
|
244 |
+
return fig
|
245 |
+
|
246 |
+
|
247 |
+
# https://stackoverflow.com/questions/7821518/matplotlib-save-plot-to-numpy-array
|
248 |
+
def get_img_from_fig(fig, dpi=100):
|
249 |
+
"""
|
250 |
+
a function which returns an image as numpy array from figure
|
251 |
+
"""
|
252 |
+
buf = io.BytesIO()
|
253 |
+
fig.savefig(buf, format="png", dpi=dpi)
|
254 |
+
buf.seek(0)
|
255 |
+
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
|
256 |
+
buf.close()
|
257 |
+
img = cv2.imdecode(img_arr, 1)
|
258 |
+
return img
|