File size: 7,298 Bytes
1d7cddb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import abc
import math

import torch
import torch.nn.functional as F
from sentence_transformers import SentenceTransformer
from timm.models.vision_transformer import (
    VisionTransformer,
    build_model_with_cfg,
    checkpoint_filter_fn,
    checkpoint_seq,
    resolve_pretrained_cfg,
)
from torch import Tensor, nn


class BlankLayer(nn.Module):
    pass


class CustomViT(VisionTransformer):
    def __init__(
            self,
            *args,
            image_pooling="gmp",
            **kwargs,
    ):
        super(CustomViT, self).__init__(
            *args, **kwargs
        )
        self.image_pooling = image_pooling

    def forward_head(self, x, pre_logits: bool = False):
        if self.image_pooling:
            if self.image_pooling == "gap":
                x = x[:, self.num_prefix_tokens:].mean(dim=1)
            elif self.image_pooling == "gmp":
                x = x[:, self.num_prefix_tokens:].max(dim=-2)[0]
            elif self.image_pooling == "all":
                x = x[:, self.num_prefix_tokens:]
            else:  # cls by default
                x = x[:, 0]
        x = self.fc_norm(x)
        return x if pre_logits else self.head(x)

    def forward(self, x, get_pos_tokens=False):
        x = self.forward_features(x, get_pos_tokens=get_pos_tokens)
        if get_pos_tokens:
            return self.fc_norm(x[:, self.num_prefix_tokens:])
        x = self.forward_head(x)
        return x

    def forward_features(self, x, get_pos_tokens=False):
        _, nc, h, w = x.shape
        x = self.patch_embed(x)
        x = self._pos_embed(x, w, h)
        if self.grad_checkpointing and not torch.jit.is_scripting():
            x = checkpoint_seq(self.blocks, x)
        else:
            x = self.blocks(x)
        x = self.norm(x)
        return x

    def _pos_embed(self, x, w, h):
        if self.no_embed_class:
            # deit-3, updated JAX (big vision)
            # position embedding does not overlap with class token, add then concat
            x = x + self.pos_embed
            if self.cls_token is not None:
                x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
        else:
            # original timm, JAX, and deit vit impl
            # pos_embed has entry for class token, concat then add
            if self.cls_token is not None:
                x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
            x = x + self._interpolate_pos_encoding(x, w, h)
        return self.pos_drop(x)

    def _interpolate_pos_encoding(self, x, w, h):
        npatch = x.shape[1] - 1
        N = self.pos_embed.shape[1] - 1
        if npatch == N and w == h:
            return self.pos_embed
        class_pos_embed = self.pos_embed[:, 0]
        patch_pos_embed = self.pos_embed[:, 1:]
        dim = x.shape[-1]
        w0 = w // self.patch_embed.patch_size[0]
        h0 = h // self.patch_embed.patch_size[1]
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        w0, h0 = w0 + 0.1, h0 + 0.1
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(
                0, 3, 1, 2
            ),
            scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
            mode="bicubic",
        )
        assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)


def _create_vision_transformer(variant, pretrained=False, **kwargs):
    if kwargs.get("features_only", None):
        raise RuntimeError("features_only not implemented for Vision Transformer models.")

    pretrained_cfg = resolve_pretrained_cfg(
        variant, pretrained_cfg=kwargs.pop("pretrained_cfg", None)
    )
    model = build_model_with_cfg(
        CustomViT,
        variant,
        pretrained,
        pretrained_cfg=pretrained_cfg,
        pretrained_filter_fn=checkpoint_filter_fn,
        pretrained_custom_load="npz" in pretrained_cfg["url"],
        **kwargs,
    )
    return model


def vit_base_patch16_224(pretrained=False, variant="vit_base_patch16_224_dino", **kwargs):
    """ViT-Base (ViT-B/16) /w DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294"""
    model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
    model = _create_vision_transformer(variant, pretrained=pretrained, **model_kwargs)
    return model


class CLIPpyModel(abc.ABC, torch.nn.Module):
    """ Implements code for running inference with pre-trained CLIPpy model.

    NOTE: weights used are for a model trained with lower batch-size leading to results below those in paper.
    """

    def __init__(
            self,
            image_pooling: str = "cls",
            text_pooling: str = "gap",
    ):
        super().__init__()

        self.visual = BlankLayer()

        self.visual.trunk = vit_base_patch16_224(True, image_pooling=image_pooling)

        self.text = SentenceTransformer("sentence-transformers/sentence-t5-base")
        self.logit_scale = nn.Parameter(torch.ones([]) * math.log(1 / 0.07))
        self.set_text_pooling(text_pooling)

        self._divisor_eps = 1e-4
        self._image_pooling = image_pooling
        self._text_pooling = text_pooling

    def forward(
            self,
            images: Tensor,
            input_ids: Tensor,
            input_id_masks: Tensor,
            get_pos_tokens: bool = False,
            **kwargs,
    ):

        image_encodings = self.encode_image(images, get_pos_tokens=get_pos_tokens)

        if get_pos_tokens:
            return {
                image_encodings: image_encodings,
            }

        text_encodings = self.encode_text(input_ids, input_id_masks)

        return {
            image_encodings: image_encodings,
            text_encodings: text_encodings,
        }

    def encode_text(self, input_ids: Tensor, input_id_masks: Tensor = None, **kwargs):
        output = self.text({"input_ids": input_ids, "attention_mask": input_id_masks})[
            "sentence_embedding"
        ]
        return self.text_head(output)

    def text_head(self, hidden_states: Tensor, input_id_masks: Tensor = None, **kwargs):
        return F.normalize(hidden_states, dim=-1, eps=self._divisor_eps).float()

    def encode_image(self, images: Tensor, get_pos_tokens: bool = False, **kwargs):
        output = self.visual.trunk(images, get_pos_tokens)
        return self.image_head(output, get_pos_tokens=get_pos_tokens)

    def image_head(self, hidden_states: Tensor, get_pos_tokens: bool = False, **kwargs):
        return F.normalize(hidden_states, dim=-1, eps=self._divisor_eps).float()

    def set_text_pooling(self, pooling):
        """ Converts pooling in the Hugging Face model to be max or average pooling"""
        if pooling == "gmp":
            self.text[1].pooling_mode_mean_tokens = False
            self.text[1].pooling_mode_max_tokens = True
        elif pooling == "gap":
            pass
        else:
            raise NotImplementedError(f"{pooling} not implemented")