init
Browse files- .gitignore +135 -0
- app.py +67 -0
- arial.ttf +0 -0
- infer_model.py +202 -0
- utils.py +166 -0
.gitignore
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MacOS & PyCharm
|
2 |
+
.DS_store
|
3 |
+
.DS_Store
|
4 |
+
.idea/
|
5 |
+
sync.sh
|
6 |
+
|
7 |
+
# Byte-compiled / optimized / DLL files
|
8 |
+
__pycache__/
|
9 |
+
*.py[cod]
|
10 |
+
*$py.class
|
11 |
+
|
12 |
+
# C extensions
|
13 |
+
*.so
|
14 |
+
|
15 |
+
# Distribution / packaging
|
16 |
+
.Python
|
17 |
+
build/
|
18 |
+
develop-eggs/
|
19 |
+
dist/
|
20 |
+
downloads/
|
21 |
+
eggs/
|
22 |
+
.eggs/
|
23 |
+
lib/
|
24 |
+
lib64/
|
25 |
+
parts/
|
26 |
+
sdist/
|
27 |
+
var/
|
28 |
+
wheels/
|
29 |
+
pip-wheel-metadata/
|
30 |
+
share/python-wheels/
|
31 |
+
*.egg-info/
|
32 |
+
.installed.cfg
|
33 |
+
*.egg
|
34 |
+
MANIFEST
|
35 |
+
|
36 |
+
# PyInstaller
|
37 |
+
# Usually these files are written by a python script from a template
|
38 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
39 |
+
*.manifest
|
40 |
+
*.spec
|
41 |
+
|
42 |
+
# Installer logs
|
43 |
+
pip-log.txt
|
44 |
+
pip-delete-this-directory.txt
|
45 |
+
|
46 |
+
# Unit test / coverage reports
|
47 |
+
htmlcov/
|
48 |
+
.tox/
|
49 |
+
.nox/
|
50 |
+
.coverage
|
51 |
+
.coverage.*
|
52 |
+
.cache
|
53 |
+
nosetests.xml
|
54 |
+
coverage.xml
|
55 |
+
*.cover
|
56 |
+
*.py,cover
|
57 |
+
.hypothesis/
|
58 |
+
.pytest_cache/
|
59 |
+
|
60 |
+
# Translations
|
61 |
+
*.mo
|
62 |
+
*.pot
|
63 |
+
|
64 |
+
# Django stuff:
|
65 |
+
*.log
|
66 |
+
local_settings.py
|
67 |
+
db.sqlite3
|
68 |
+
db.sqlite3-journal
|
69 |
+
|
70 |
+
# Flask stuff:
|
71 |
+
instance/
|
72 |
+
.webassets-cache
|
73 |
+
|
74 |
+
# Scrapy stuff:
|
75 |
+
.scrapy
|
76 |
+
|
77 |
+
# Sphinx documentation
|
78 |
+
docs/_build/
|
79 |
+
|
80 |
+
# PyBuilder
|
81 |
+
target/
|
82 |
+
|
83 |
+
# Jupyter Notebook
|
84 |
+
.ipynb_checkpoints
|
85 |
+
|
86 |
+
# IPython
|
87 |
+
profile_default/
|
88 |
+
ipython_config.py
|
89 |
+
|
90 |
+
# pyenv
|
91 |
+
.python-version
|
92 |
+
|
93 |
+
# pipenv
|
94 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
95 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
96 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
97 |
+
# install all needed dependencies.
|
98 |
+
#Pipfile.lock
|
99 |
+
|
100 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
101 |
+
__pypackages__/
|
102 |
+
|
103 |
+
# Celery stuff
|
104 |
+
celerybeat-schedule
|
105 |
+
celerybeat.pid
|
106 |
+
|
107 |
+
# SageMath parsed files
|
108 |
+
*.sage.py
|
109 |
+
|
110 |
+
# Environments
|
111 |
+
.env
|
112 |
+
.venv
|
113 |
+
env/
|
114 |
+
venv/
|
115 |
+
ENV/
|
116 |
+
env.bak/
|
117 |
+
venv.bak/
|
118 |
+
|
119 |
+
# Spyder project settings
|
120 |
+
.spyderproject
|
121 |
+
.spyproject
|
122 |
+
|
123 |
+
# Rope project settings
|
124 |
+
.ropeproject
|
125 |
+
|
126 |
+
# mkdocs documentation
|
127 |
+
/site
|
128 |
+
|
129 |
+
# mypy
|
130 |
+
.mypy_cache/
|
131 |
+
.dmypy.json
|
132 |
+
dmypy.json
|
133 |
+
|
134 |
+
# Pyre type checker
|
135 |
+
.pyre/
|
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
from infer_model import CLIPpyModel
|
7 |
+
from utils import get_similarity, get_transform, ade_palette, get_cmap_image
|
8 |
+
|
9 |
+
pretrained_ckpt = "https://github.com/kahnchana/clippy/releases/download/v1.0/clippy_5k.pt"
|
10 |
+
ckpt = torch.utils.model_zoo.load_url(pretrained_ckpt)
|
11 |
+
|
12 |
+
clippy = CLIPpyModel()
|
13 |
+
transform = get_transform((224, 224))
|
14 |
+
|
15 |
+
msg = clippy.load_state_dict(ckpt, strict=False)
|
16 |
+
|
17 |
+
palette = ade_palette()
|
18 |
+
|
19 |
+
|
20 |
+
def process_image(img, captions):
|
21 |
+
sample_text = [x.strip() for x in captions.split(",")]
|
22 |
+
sample_prompts = [f"a photo of a {x}" for x in sample_text]
|
23 |
+
|
24 |
+
image = Image.fromarray(img)
|
25 |
+
image_vector = clippy.encode_image(transform(image).unsqueeze(0), get_pos_tokens=True)
|
26 |
+
text_vector = clippy.text.encode(sample_prompts, convert_to_tensor=True)
|
27 |
+
|
28 |
+
similarity = get_similarity(image_vector, text_vector, (224, 224), do_argmax=True)[0, 0].numpy()
|
29 |
+
rgb_seg = np.zeros((similarity.shape[0], similarity.shape[1], 3), dtype=np.uint8)
|
30 |
+
for idx, _ in enumerate(sample_text):
|
31 |
+
rgb_seg[similarity == idx] = palette[idx]
|
32 |
+
|
33 |
+
joint = Image.blend(image, Image.fromarray(rgb_seg), 0.5)
|
34 |
+
cmap = get_cmap_image({label: tuple(palette[idx]) for idx, label in enumerate(sample_text)})
|
35 |
+
|
36 |
+
return cmap, rgb_seg, joint
|
37 |
+
|
38 |
+
|
39 |
+
title = 'CLIPpy'
|
40 |
+
|
41 |
+
description = """
|
42 |
+
Gradio Demo for CLIPpy: Perceptual Grouping in Contrastive Vision Language Models. \n \n
|
43 |
+
Upload an image and type in a set of comma separated labels (e.g.: "man, woman, background").
|
44 |
+
CLIPPy will segment the image, according to the set of class label you provide.
|
45 |
+
"""
|
46 |
+
|
47 |
+
article = """
|
48 |
+
<p style='text-align: center'>
|
49 |
+
<a href='https://arxiv.org/abs/2210.09996' target='_blank'>
|
50 |
+
Perceptual Grouping in Contrastive Vision Language Models
|
51 |
+
</a>
|
52 |
+
|
|
53 |
+
<a href='https://github.com/kahnchana/clippy' target='_blank'>Github Repository</a></p>
|
54 |
+
"""
|
55 |
+
|
56 |
+
demo = gr.Interface(
|
57 |
+
fn=process_image,
|
58 |
+
inputs=[gr.Image(shape=(224, 224)), "text"],
|
59 |
+
outputs=[gr.Image(shape=(224, 224)).style(height=150),
|
60 |
+
gr.Image(shape=(224, 224)).style(height=260),
|
61 |
+
gr.Image(shape=(224, 224)).style(height=260)],
|
62 |
+
title=title,
|
63 |
+
description=description,
|
64 |
+
article=article,
|
65 |
+
)
|
66 |
+
|
67 |
+
demo.launch()
|
arial.ttf
ADDED
Binary file (367 kB). View file
|
|
infer_model.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import abc
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from timm.models.vision_transformer import (
|
8 |
+
VisionTransformer,
|
9 |
+
build_model_with_cfg,
|
10 |
+
checkpoint_filter_fn,
|
11 |
+
checkpoint_seq,
|
12 |
+
resolve_pretrained_cfg,
|
13 |
+
)
|
14 |
+
from torch import Tensor, nn
|
15 |
+
|
16 |
+
|
17 |
+
class BlankLayer(nn.Module):
|
18 |
+
pass
|
19 |
+
|
20 |
+
|
21 |
+
class CustomViT(VisionTransformer):
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
*args,
|
25 |
+
image_pooling="gmp",
|
26 |
+
**kwargs,
|
27 |
+
):
|
28 |
+
super(CustomViT, self).__init__(
|
29 |
+
*args, **kwargs
|
30 |
+
)
|
31 |
+
self.image_pooling = image_pooling
|
32 |
+
|
33 |
+
def forward_head(self, x, pre_logits: bool = False):
|
34 |
+
if self.image_pooling:
|
35 |
+
if self.image_pooling == "gap":
|
36 |
+
x = x[:, self.num_prefix_tokens:].mean(dim=1)
|
37 |
+
elif self.image_pooling == "gmp":
|
38 |
+
x = x[:, self.num_prefix_tokens:].max(dim=-2)[0]
|
39 |
+
elif self.image_pooling == "all":
|
40 |
+
x = x[:, self.num_prefix_tokens:]
|
41 |
+
else: # cls by default
|
42 |
+
x = x[:, 0]
|
43 |
+
x = self.fc_norm(x)
|
44 |
+
return x if pre_logits else self.head(x)
|
45 |
+
|
46 |
+
def forward(self, x, get_pos_tokens=False):
|
47 |
+
x = self.forward_features(x, get_pos_tokens=get_pos_tokens)
|
48 |
+
if get_pos_tokens:
|
49 |
+
return self.fc_norm(x[:, self.num_prefix_tokens:])
|
50 |
+
x = self.forward_head(x)
|
51 |
+
return x
|
52 |
+
|
53 |
+
def forward_features(self, x, get_pos_tokens=False):
|
54 |
+
_, nc, h, w = x.shape
|
55 |
+
x = self.patch_embed(x)
|
56 |
+
x = self._pos_embed(x, w, h)
|
57 |
+
if self.grad_checkpointing and not torch.jit.is_scripting():
|
58 |
+
x = checkpoint_seq(self.blocks, x)
|
59 |
+
else:
|
60 |
+
x = self.blocks(x)
|
61 |
+
x = self.norm(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
def _pos_embed(self, x, w, h):
|
65 |
+
if self.no_embed_class:
|
66 |
+
# deit-3, updated JAX (big vision)
|
67 |
+
# position embedding does not overlap with class token, add then concat
|
68 |
+
x = x + self.pos_embed
|
69 |
+
if self.cls_token is not None:
|
70 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
71 |
+
else:
|
72 |
+
# original timm, JAX, and deit vit impl
|
73 |
+
# pos_embed has entry for class token, concat then add
|
74 |
+
if self.cls_token is not None:
|
75 |
+
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
76 |
+
x = x + self._interpolate_pos_encoding(x, w, h)
|
77 |
+
return self.pos_drop(x)
|
78 |
+
|
79 |
+
def _interpolate_pos_encoding(self, x, w, h):
|
80 |
+
npatch = x.shape[1] - 1
|
81 |
+
N = self.pos_embed.shape[1] - 1
|
82 |
+
if npatch == N and w == h:
|
83 |
+
return self.pos_embed
|
84 |
+
class_pos_embed = self.pos_embed[:, 0]
|
85 |
+
patch_pos_embed = self.pos_embed[:, 1:]
|
86 |
+
dim = x.shape[-1]
|
87 |
+
w0 = w // self.patch_embed.patch_size[0]
|
88 |
+
h0 = h // self.patch_embed.patch_size[1]
|
89 |
+
# we add a small number to avoid floating point error in the interpolation
|
90 |
+
# see discussion at https://github.com/facebookresearch/dino/issues/8
|
91 |
+
w0, h0 = w0 + 0.1, h0 + 0.1
|
92 |
+
patch_pos_embed = nn.functional.interpolate(
|
93 |
+
patch_pos_embed.reshape(1, int(math.sqrt(N)), int(math.sqrt(N)), dim).permute(
|
94 |
+
0, 3, 1, 2
|
95 |
+
),
|
96 |
+
scale_factor=(w0 / math.sqrt(N), h0 / math.sqrt(N)),
|
97 |
+
mode="bicubic",
|
98 |
+
)
|
99 |
+
assert int(w0) == patch_pos_embed.shape[-2] and int(h0) == patch_pos_embed.shape[-1]
|
100 |
+
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
101 |
+
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
|
102 |
+
|
103 |
+
|
104 |
+
def _create_vision_transformer(variant, pretrained=False, **kwargs):
|
105 |
+
if kwargs.get("features_only", None):
|
106 |
+
raise RuntimeError("features_only not implemented for Vision Transformer models.")
|
107 |
+
|
108 |
+
pretrained_cfg = resolve_pretrained_cfg(
|
109 |
+
variant, pretrained_cfg=kwargs.pop("pretrained_cfg", None)
|
110 |
+
)
|
111 |
+
model = build_model_with_cfg(
|
112 |
+
CustomViT,
|
113 |
+
variant,
|
114 |
+
pretrained,
|
115 |
+
pretrained_cfg=pretrained_cfg,
|
116 |
+
pretrained_filter_fn=checkpoint_filter_fn,
|
117 |
+
pretrained_custom_load="npz" in pretrained_cfg["url"],
|
118 |
+
**kwargs,
|
119 |
+
)
|
120 |
+
return model
|
121 |
+
|
122 |
+
|
123 |
+
def vit_base_patch16_224(pretrained=False, variant="vit_base_patch16_224_dino", **kwargs):
|
124 |
+
"""ViT-Base (ViT-B/16) /w DINO pretrained weights (no head) - https://arxiv.org/abs/2104.14294"""
|
125 |
+
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
|
126 |
+
model = _create_vision_transformer(variant, pretrained=pretrained, **model_kwargs)
|
127 |
+
return model
|
128 |
+
|
129 |
+
|
130 |
+
class CLIPpyModel(abc.ABC, torch.nn.Module):
|
131 |
+
""" Implements code for running inference with pre-trained CLIPpy model.
|
132 |
+
|
133 |
+
NOTE: weights used are for a model trained with lower batch-size leading to results below those in paper.
|
134 |
+
"""
|
135 |
+
|
136 |
+
def __init__(
|
137 |
+
self,
|
138 |
+
image_pooling: str = "cls",
|
139 |
+
text_pooling: str = "gap",
|
140 |
+
):
|
141 |
+
super().__init__()
|
142 |
+
|
143 |
+
self.visual = BlankLayer()
|
144 |
+
|
145 |
+
self.visual.trunk = vit_base_patch16_224(True, image_pooling=image_pooling)
|
146 |
+
|
147 |
+
self.text = SentenceTransformer("sentence-transformers/sentence-t5-base")
|
148 |
+
self.logit_scale = nn.Parameter(torch.ones([]) * math.log(1 / 0.07))
|
149 |
+
self.set_text_pooling(text_pooling)
|
150 |
+
|
151 |
+
self._divisor_eps = 1e-4
|
152 |
+
self._image_pooling = image_pooling
|
153 |
+
self._text_pooling = text_pooling
|
154 |
+
|
155 |
+
def forward(
|
156 |
+
self,
|
157 |
+
images: Tensor,
|
158 |
+
input_ids: Tensor,
|
159 |
+
input_id_masks: Tensor,
|
160 |
+
get_pos_tokens: bool = False,
|
161 |
+
**kwargs,
|
162 |
+
):
|
163 |
+
|
164 |
+
image_encodings = self.encode_image(images, get_pos_tokens=get_pos_tokens)
|
165 |
+
|
166 |
+
if get_pos_tokens:
|
167 |
+
return {
|
168 |
+
image_encodings: image_encodings,
|
169 |
+
}
|
170 |
+
|
171 |
+
text_encodings = self.encode_text(input_ids, input_id_masks)
|
172 |
+
|
173 |
+
return {
|
174 |
+
image_encodings: image_encodings,
|
175 |
+
text_encodings: text_encodings,
|
176 |
+
}
|
177 |
+
|
178 |
+
def encode_text(self, input_ids: Tensor, input_id_masks: Tensor = None, **kwargs):
|
179 |
+
output = self.text({"input_ids": input_ids, "attention_mask": input_id_masks})[
|
180 |
+
"sentence_embedding"
|
181 |
+
]
|
182 |
+
return self.text_head(output)
|
183 |
+
|
184 |
+
def text_head(self, hidden_states: Tensor, input_id_masks: Tensor = None, **kwargs):
|
185 |
+
return F.normalize(hidden_states, dim=-1, eps=self._divisor_eps).float()
|
186 |
+
|
187 |
+
def encode_image(self, images: Tensor, get_pos_tokens: bool = False, **kwargs):
|
188 |
+
output = self.visual.trunk(images, get_pos_tokens)
|
189 |
+
return self.image_head(output, get_pos_tokens=get_pos_tokens)
|
190 |
+
|
191 |
+
def image_head(self, hidden_states: Tensor, get_pos_tokens: bool = False, **kwargs):
|
192 |
+
return F.normalize(hidden_states, dim=-1, eps=self._divisor_eps).float()
|
193 |
+
|
194 |
+
def set_text_pooling(self, pooling):
|
195 |
+
""" Converts pooling in the Hugging Face model to be max or average pooling"""
|
196 |
+
if pooling == "gmp":
|
197 |
+
self.text[1].pooling_mode_mean_tokens = False
|
198 |
+
self.text[1].pooling_mode_max_tokens = True
|
199 |
+
elif pooling == "gap":
|
200 |
+
pass
|
201 |
+
else:
|
202 |
+
raise NotImplementedError(f"{pooling} not implemented")
|
utils.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib
|
2 |
+
import matplotlib.cm as cm
|
3 |
+
import matplotlib.colors as mcolors
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torchvision
|
7 |
+
from PIL import Image, ImageDraw, ImageFont
|
8 |
+
from einops import rearrange
|
9 |
+
from matplotlib import pyplot as plt
|
10 |
+
|
11 |
+
|
12 |
+
def get_similarity(image_encodings, label_encodings, target_shape, interpolation="bilinear", do_argmax=False):
|
13 |
+
"""
|
14 |
+
|
15 |
+
Args:
|
16 |
+
image_encodings:
|
17 |
+
label_encodings:
|
18 |
+
target_shape:
|
19 |
+
interpolation: nearest, bilinear
|
20 |
+
do_argmax:
|
21 |
+
|
22 |
+
Returns:
|
23 |
+
|
24 |
+
"""
|
25 |
+
|
26 |
+
image_encodings = image_encodings.cpu()
|
27 |
+
label_encodings = label_encodings.cpu()
|
28 |
+
|
29 |
+
image_encodings = rearrange(
|
30 |
+
image_encodings, "b (h w) d -> d b h w", h=int(np.sqrt(image_encodings.shape[-2]))
|
31 |
+
)
|
32 |
+
# assuming square inputs & targets
|
33 |
+
scale_ratio = (target_shape[-2] / image_encodings.shape[-2],
|
34 |
+
target_shape[-1] / image_encodings.shape[-1],)
|
35 |
+
temp_list = []
|
36 |
+
for i in image_encodings:
|
37 |
+
i = i.unsqueeze(1)
|
38 |
+
i = torch.nn.functional.interpolate(
|
39 |
+
i, scale_factor=scale_ratio, mode=interpolation
|
40 |
+
)
|
41 |
+
temp_list.append(i)
|
42 |
+
image_encodings = torch.cat(temp_list, dim=1)
|
43 |
+
|
44 |
+
image_encodings = rearrange(image_encodings, "b d h w -> b h w d")
|
45 |
+
similarity = image_encodings @ label_encodings.T
|
46 |
+
similarity = rearrange(similarity, "b h w d-> b d h w")
|
47 |
+
if do_argmax:
|
48 |
+
similarity = torch.argmax(similarity, dim=1, keepdim=True).to(torch.float64)
|
49 |
+
return similarity
|
50 |
+
|
51 |
+
|
52 |
+
def get_cmap(ncolors):
|
53 |
+
if ncolors > 9:
|
54 |
+
cmap = plt.cm.tab20
|
55 |
+
else:
|
56 |
+
cmap = plt.cm.tab10
|
57 |
+
cmaplist = [cmap(i) for i in range(ncolors)]
|
58 |
+
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("custom", cmaplist, ncolors)
|
59 |
+
|
60 |
+
mappable = cm.ScalarMappable(cmap=cmap)
|
61 |
+
mappable.set_array([])
|
62 |
+
mappable.set_clim(-0.5, ncolors + 0.5)
|
63 |
+
|
64 |
+
return cmap, mappable
|
65 |
+
|
66 |
+
|
67 |
+
def vis_prediction(sample_text, img_arr, similarity):
|
68 |
+
N = len(sample_text)
|
69 |
+
cmap, mappable = get_cmap(N)
|
70 |
+
|
71 |
+
fig, axs = plt.subplots(1, 2)
|
72 |
+
|
73 |
+
_ = axs[0].imshow(img_arr)
|
74 |
+
_ = axs[1].imshow(img_arr)
|
75 |
+
_ = axs[1].imshow(similarity, cmap=cmap, interpolation="nearest", vmin=0, vmax=N, alpha=0.5)
|
76 |
+
axs[0].axis("off")
|
77 |
+
axs[1].axis("off")
|
78 |
+
|
79 |
+
fig.subplots_adjust(bottom=0.2)
|
80 |
+
cbar_ax = fig.add_axes([0.0, 0.85, 1.0, 0.05])
|
81 |
+
colorbar = plt.colorbar(mappable, cax=cbar_ax, cmap=cmap, orientation="horizontal")
|
82 |
+
colorbar.set_ticks(np.linspace(0, N, N))
|
83 |
+
colorbar.set_ticklabels(sample_text)
|
84 |
+
|
85 |
+
return fig
|
86 |
+
|
87 |
+
|
88 |
+
class DummyArgs:
|
89 |
+
def __init__(self, **kwargs):
|
90 |
+
self.__dict__.update(kwargs)
|
91 |
+
|
92 |
+
|
93 |
+
def get_transform(size=(224, 224)):
|
94 |
+
transform = torchvision.transforms.Compose([
|
95 |
+
torchvision.transforms.Resize(size),
|
96 |
+
torchvision.transforms.ToTensor(),
|
97 |
+
torchvision.transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073),
|
98 |
+
std=(0.26862954, 0.26130258, 0.27577711))
|
99 |
+
])
|
100 |
+
return transform
|
101 |
+
|
102 |
+
|
103 |
+
def ade_palette():
|
104 |
+
"""ADE20K palette that maps each class to RGB values."""
|
105 |
+
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
106 |
+
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
107 |
+
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
108 |
+
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
109 |
+
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
110 |
+
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
111 |
+
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
112 |
+
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
113 |
+
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
114 |
+
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
115 |
+
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
116 |
+
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
117 |
+
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
118 |
+
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
119 |
+
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
120 |
+
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
121 |
+
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
122 |
+
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
123 |
+
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
124 |
+
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
125 |
+
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
126 |
+
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
127 |
+
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
128 |
+
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
129 |
+
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
130 |
+
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
131 |
+
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
132 |
+
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
133 |
+
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
134 |
+
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
135 |
+
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
136 |
+
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
137 |
+
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
138 |
+
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
139 |
+
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
140 |
+
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
141 |
+
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
142 |
+
[102, 255, 0], [92, 0, 255]]
|
143 |
+
|
144 |
+
|
145 |
+
def get_cmap_image(legend):
|
146 |
+
# Define the size of the legend image
|
147 |
+
width = 200
|
148 |
+
height = len(legend) * 20
|
149 |
+
|
150 |
+
# Create a new image with the desired size and background color
|
151 |
+
img = Image.new('RGB', (width, height), (255, 255, 255))
|
152 |
+
|
153 |
+
# Create a drawing context
|
154 |
+
draw = ImageDraw.Draw(img)
|
155 |
+
|
156 |
+
# Define the font to use for the legend labels
|
157 |
+
font = ImageFont.truetype('arial.ttf', 16)
|
158 |
+
|
159 |
+
# Loop through the items in legend and draw a rectangle and label for each
|
160 |
+
y = 0
|
161 |
+
for label, color in legend.items():
|
162 |
+
draw.rectangle((0, y, 20, y + 20), fill=color)
|
163 |
+
draw.text((30, y), label, font=font, fill=(0, 0, 0))
|
164 |
+
y += 20
|
165 |
+
|
166 |
+
return img
|