Spaces:
Build error
Build error
File size: 10,046 Bytes
4f4509d 363ce98 4f4509d d32adcb 8b300d9 6abad74 9850537 363ce98 bf9abdd 363ce98 1841b37 363ce98 1841b37 bf9abdd 363ce98 f1245a8 50aa841 6abad74 ba76dfd dc8c3f2 5103f57 ba76dfd f3e34b0 4f4509d f3e34b0 a03fe94 4f4509d d32e597 bd7215a f3e34b0 cce1831 bd7215a cce1831 55e476e bd7215a 55e476e f3e34b0 d32e597 f3e34b0 a03fe94 f3e34b0 bd7215a a03fe94 f3e34b0 4f4509d d32e597 eaba08d f3e34b0 c4a54a2 f3e34b0 c4a54a2 f3e34b0 819cc0a c4a54a2 819cc0a f3e34b0 d32e597 f3e34b0 12a8812 d32e597 f3e34b0 4f4509d f3e34b0 bd7215a f3e34b0 6abad74 dc8c3f2 94db86e dc8c3f2 6abad74 bd7215a ba76dfd f3e34b0 ba76dfd bf9abdd ba76dfd 9850537 ba76dfd 363ce98 777823b d2b2961 ba76dfd 2b66265 4f4509d ba76dfd 4f4509d c4a54a2 4f4509d bf9abdd 4f4509d ba76dfd 5b4ede2 f1245a8 f3e34b0 4f4509d 363ce98 a03fe94 4f4509d 363ce98 5b4ede2 f3e34b0 55e476e f3e34b0 6abad74 363ce98 6abad74 f3e34b0 ffe60c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import tempfile
from share_btn import community_icon_html, loading_icon_html, share_js, save_js
import huggingface_hub
import gradio as gr
from fromage import utils
from fromage import models
import matplotlib.pyplot as plt
from PIL import Image
import torch
import numpy as np
import os
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "False"
css = """
#chatbot { min-height: 300px; }
#save-btn {
background-image: linear-gradient(to right bottom, rgba(130,217,244, 0.9), rgba(158,231,214, 1.0));
}
#save-btn:hover {
background-image: linear-gradient(to right bottom, rgba(110,197,224, 0.9), rgba(138,211,194, 1.0));
}
#share-btn {
background-image: linear-gradient(to right bottom, rgba(130,217,244, 0.9), rgba(158,231,214, 1.0));
}
#share-btn:hover {
background-image: linear-gradient(to right bottom, rgba(110,197,224, 0.9), rgba(138,211,194, 1.0));
}
#gallery { z-index: 999999; }
#gallery img:hover {transform: scale(2.3); z-index: 999999; position: relative; padding-right: 30%; padding-bottom: 30%;}
#gallery button img:hover {transform: none; z-index: 999999; position: relative; padding-right: 0; padding-bottom: 0;}
@media (hover: none) {
#gallery img:hover {transform: none; z-index: 999999; position: relative; padding-right: 0; 0;}
}
"""
examples = [
'examples/sparrow.png',
'examples/beaver.png',
'examples/couch.png',
'examples/guac.png',
'examples/scraped_knee.png'
]
# Download model from HF Hub.
ckpt_path = huggingface_hub.hf_hub_download(
repo_id='jykoh/fromage', filename='pretrained_ckpt.pth.tar')
args_path = huggingface_hub.hf_hub_download(
repo_id='jykoh/fromage', filename='model_args.json')
model = models.load_fromage('./', args_path, ckpt_path)
def upload_image(state, image_input):
conversation = state[0]
chat_history = state[1]
input_image = Image.open(image_input.name).resize(
(224, 224)).convert('RGB')
input_image.save(image_input.name) # Overwrite with smaller image.
conversation += [(f'<img src="/file={image_input.name}" style="display: inline-block;">', "")]
return [conversation, chat_history + [input_image, ""]], conversation
def reset():
return [[], []], []
def reset_last(state):
conversation = state[0][:-1]
chat_history = state[1][:-2]
return [conversation, chat_history], conversation
def save_image_to_local(image: Image.Image):
# TODO(jykoh): Update so the url path is used, to prevent repeat saving.
filename = next(tempfile._get_candidate_names()) + '.png'
image.save(filename)
return filename
def generate_for_prompt(input_text, state, ret_scale_factor, max_num_rets, num_words, temperature):
# Ignore empty inputs.
if len(input_text) == 0:
return state, state[0], gr.update(visible=True)
input_prompt = 'Q: ' + input_text + '\nA:'
conversation = state[0]
chat_history = state[1]
print('Generating for', chat_history, flush=True)
# If an image was uploaded, prepend it to the model.
model_inputs = chat_history
model_inputs.append(input_prompt)
top_p = 1.0
if temperature != 0.0:
top_p = 0.95
print('Running model.generate_for_images_and_texts with',
model_inputs, flush=True)
model_outputs = model.generate_for_images_and_texts(model_inputs,
num_words=max(num_words, 1), ret_scale_factor=ret_scale_factor, top_p=top_p,
temperature=temperature, max_num_rets=max_num_rets)
print('model_outputs', model_outputs, ret_scale_factor, flush=True)
im_names = []
response = ''
text_outputs = []
for output_i, output in enumerate(model_outputs):
if type(output) == str:
if output_i > 0:
response += '<br/>'
text_outputs.append(output)
response += output
if len(model_outputs) > 1:
response += '<br/>'
elif type(output) == list:
for image in output:
filename = save_image_to_local(image)
response += f'<img src="/file={filename}" style="display: inline-block;">'
elif type(output) == Image.Image:
filename = save_image_to_local(output)
response += f'<img src="/file={filename}" style="display: inline-block;">'
chat_history = model_inputs + \
[' '.join([s for s in model_outputs if type(s) == str]) + '\n']
# Remove [RET] from outputs.
conversation.append((input_text, response.replace('[RET]', '')))
# Set input image to None.
print('state', state, flush=True)
print('updated state', [conversation, chat_history], flush=True)
return [conversation, chat_history], conversation, gr.update(visible=True), gr.update(visible=True)
with gr.Blocks(css=css) as demo:
gr.HTML("""
<h1>🧀 FROMAGe</h1>
<p>This is the official Gradio demo for the FROMAGe model, a model that can process arbitrarily interleaved image and text inputs, and produce image and text outputs.</p>
<strong>Paper:</strong> <a href="https://arxiv.org/abs/2301.13823" target="_blank">Grounding Language Models to Images for Multimodal Generation</a>
<br/>
<strong>Project Website:</strong> <a href="https://jykoh.com/fromage" target="_blank">FROMAGe Website</a>
<br/>
<strong>Code and Models:</strong> <a href="https://github.com/kohjingyu/fromage" target="_blank">GitHub</a>
<br/>
<br/>
<strong>Tips:</strong>
<ul>
<li>Start by inputting either image or text prompts (or both) and chat with FROMAGe to get image-and-text replies.</li>
<li>Tweak the level of sensitivity to images and text using the parameters on the right.</li>
<li>FROMAGe <i>retrieves</i> images from a database, and doesn't generate novel images, and will not be able to return images outside those in Conceptual Captions.</li>
<li>Check out cool conversations in the examples or community tab for inspiration and share your own!</li>
<li>For faster inference without waiting in queue, you may duplicate the space and use your own GPU: <a href="https://huggingface.co/spaces/jykoh/fromage?duplicate=true"><img style="display: inline-block; margin-top: 0em; margin-bottom: 0em" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></li>
</ul>
""")
gr_state = gr.State([[], []]) # conversation, chat_history
with gr.Row():
with gr.Column(scale=0.7, min_width=500):
with gr.Row():
chatbot = gr.Chatbot(elem_id="chatbot", label="🧀 FROMAGe Chatbot")
with gr.Row():
image_btn = gr.UploadButton("🖼️ Upload Image", file_types=["image"])
text_input = gr.Textbox(label="Message", placeholder="Type a message")
with gr.Column():
submit_btn = gr.Button(
"Submit", interactive=True, variant="primary")
clear_last_btn = gr.Button("Undo")
clear_btn = gr.Button("Reset All")
with gr.Row(visible=False) as save_group:
save_button = gr.Button("💾 Save Conversation as .png", elem_id="save-btn")
with gr.Row(visible=False) as share_group:
share_button = gr.Button("🤗 Share to Community (opens new window)", elem_id="share-btn")
with gr.Column(scale=0.3, min_width=400):
ret_scale_factor = gr.Slider(minimum=0.0, maximum=3.0, value=1.0, step=0.1, interactive=True,
label="Frequency multiplier for returning images (higher means more frequent)")
max_ret_images = gr.Number(
minimum=0, maximum=3, value=2, precision=1, interactive=True, label="Max images to return")
gr_max_len = gr.Slider(minimum=1, maximum=64, value=32,
step=1, interactive=True, label="Max # of words")
gr_temperature = gr.Slider(
minimum=0.0, maximum=1.0, value=0.0, interactive=True, label="Temperature (0 for deterministic, higher for more randomness)")
gallery = gr.Gallery(
value=[Image.open(e) for e in examples], label="Example Conversations", show_label=True, elem_id="gallery",
).style(grid=[2], height="auto")
text_input.submit(generate_for_prompt, [text_input, gr_state, ret_scale_factor,
max_ret_images, gr_max_len, gr_temperature], [gr_state, chatbot, share_group, save_group])
text_input.submit(lambda: "", None, text_input) # Reset chatbox.
submit_btn.click(generate_for_prompt, [text_input, gr_state, ret_scale_factor,
max_ret_images, gr_max_len, gr_temperature], [gr_state, chatbot, share_group, save_group])
submit_btn.click(lambda: "", None, text_input) # Reset chatbox.
image_btn.upload(upload_image, [gr_state, image_btn], [gr_state, chatbot])
clear_last_btn.click(reset_last, [gr_state], [gr_state, chatbot])
clear_btn.click(reset, [], [gr_state, chatbot])
share_button.click(None, [], [], _js=share_js)
save_button.click(None, [], [], _js=save_js)
demo.queue(concurrency_count=1, api_open=False, max_size=16)
demo.launch(debug=True, server_name="0.0.0.0")
# demo.launch(debug=True, server_name="127.0.0.1")
|