File size: 18,028 Bytes
b5983bd
d0e52bb
b5983bd
453eb24
061389d
a7f7a4d
 
81de4d2
453eb24
a7f7a4d
d0e52bb
b312806
11c6153
 
5fb3911
 
061389d
11c6153
 
d0e52bb
 
 
16d4314
5fb3911
 
 
 
d0e52bb
 
68cdf36
d0e52bb
 
 
 
 
 
 
 
 
 
e290816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0e52bb
e290816
d0e52bb
5fb3911
d0e52bb
b5983bd
d0e52bb
 
 
 
e290816
d0e52bb
 
b5983bd
 
 
 
d0e52bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5983bd
e290816
 
 
 
b5983bd
e290816
 
 
 
 
b5983bd
e290816
 
b5983bd
 
e290816
b5983bd
 
d0e52bb
e290816
d0e52bb
b5983bd
 
e290816
b5983bd
d0e52bb
b5983bd
d0e52bb
b5983bd
a7f7a4d
ee7c3ab
a7f7a4d
e290816
 
 
 
5fb3911
a7f7a4d
 
 
b5983bd
a7f7a4d
 
 
 
68cdf36
 
a7f7a4d
b5983bd
68cdf36
a7f7a4d
 
b5983bd
68cdf36
a7f7a4d
5fb3911
e290816
061389d
a7f7a4d
e290816
 
 
 
 
 
 
b5983bd
a7f7a4d
e290816
 
 
b5983bd
a7f7a4d
 
 
d0e52bb
b5983bd
81de4d2
 
a7f7a4d
061389d
5fb3911
ee7c3ab
5fb3911
ee7c3ab
a7f7a4d
5fb3911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c57374
5fb3911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9a2704
5fb3911
a9a2704
5fb3911
a9a2704
5fb3911
a9a2704
 
 
 
 
5fb3911
 
a9a2704
 
 
 
 
5fb3911
 
 
a9a2704
5fb3911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9a2704
 
 
 
 
5fb3911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9a2704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fb3911
 
061389d
81de4d2
061389d
81de4d2
5fb3911
 
81de4d2
061389d
81de4d2
5fb3911
453eb24
 
 
 
 
 
 
5fb3911
453eb24
 
 
 
 
 
 
 
 
 
5fb3911
453eb24
 
376f45a
453eb24
 
b312806
453eb24
376f45a
81de4d2
5fb3911
81de4d2
 
453eb24
376f45a
 
 
 
 
a9a2704
 
2c57374
 
a9a2704
 
 
 
2c57374
 
 
 
 
 
 
 
 
a9a2704
 
 
 
376f45a
 
453eb24
5fb3911
 
453eb24
5fb3911
453eb24
b312806
 
376f45a
b312806
376f45a
 
5fb3911
453eb24
81de4d2
453eb24
376f45a
81de4d2
376f45a
 
 
5fb3911
376f45a
 
 
 
a7f7a4d
453eb24
a7f7a4d
 
ee7c3ab
a7f7a4d
 
061389d
453eb24
a7f7a4d
061389d
 
 
 
a7f7a4d
061389d
453eb24
061389d
 
453eb24
061389d
 
 
b312806
453eb24
 
061389d
b312806
 
 
061389d
b312806
 
 
 
 
 
 
 
 
 
 
 
 
 
376f45a
ee7c3ab
 
 
 
453eb24
ee7c3ab
 
 
453eb24
81de4d2
453eb24
a7f7a4d
5fb3911
 
 
 
a9a2704
 
5fb3911
a9a2704
5fb3911
d0e52bb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
from plotly.subplots import make_subplots
from scipy.signal import find_peaks, butter, filtfilt
import plotly.graph_objects as go
from io import StringIO
import pandas as pd
import gradio as gr
import numpy as np
import itertools
import tempfile
import librosa
import random
import mdpd
import os

#from utils import getaudiodata, getBeats, plotBeattimes, find_s1s2
import utils as u

example_dir = "Examples"
example_files = [os.path.join(example_dir, f) for f in os.listdir(example_dir) if f.endswith(('.wav', '.mp3', '.ogg'))]
all_pairs = list(itertools.combinations(example_files, 2))
random.shuffle(all_pairs)
example_pairs = [list(pair) for pair in all_pairs[:25]]


#-----------------------------------------------
# PROCESSING FUNCTIONS
#-----------------------------------------------
def getHRV(beattimes: np.ndarray) -> np.ndarray:
    # Calculate instantaneous heart rate
    instantaneous_hr = 60 * np.diff(beattimes)
    
    # # Calculate moving average heart rate (e.g., over 10 beats)
    # window_size = 10
    # moving_avg_hr = np.convolve(instantaneous_hr, np.ones(window_size), 'valid') / window_size
    
    # # Calculate heart rate variability as the difference from the moving average
    # hrv = instantaneous_hr[window_size-1:] - moving_avg_hr
    
    return instantaneous_hr

def create_average_heartbeat(audiodata, sr):
    # 1. Detect individual heartbeats
    onset_env = librosa.onset.onset_strength(y=audiodata, sr=sr)
    peaks, _ = find_peaks(onset_env, distance=sr//2)  # Assume at least 0.5s between beats

    # 2. Extract individual heartbeats
    beat_length = sr  # Assume 1 second for each beat
    beats = []
    for peak in peaks:
        if peak + beat_length < len(audiodata):
            beat = audiodata[peak:peak+beat_length]
            beats.append(beat)

    # 3. Align and average the beats
    if beats:
        avg_beat = np.mean(beats, axis=0)
    else:
        avg_beat = np.array([])

    # 4. Create a Plotly figure of the average heartbeat
    time = np.arange(len(avg_beat)) / sr
    fig = go.Figure()
    fig.add_trace(go.Scatter(x=time, y=avg_beat, mode='lines', name='Average Beat'))
    fig.update_layout(
        title='Average Heartbeat',
        xaxis_title='Time (s)',
        yaxis_title='Amplitude'
    )

    return fig, avg_beat

# HELPER FUNCTIONS FOR SINGLE AUDIO ANALYSIS
def plotCombined(audiodata, sr, filename):
    # Get beat times
    tempo, beattimes = u.getBeats(audiodata, sr)
    
    # Create subplots
    fig = make_subplots(rows=3, cols=1, shared_xaxes=True, vertical_spacing=0.1,
                        subplot_titles=('Audio Waveform', 'Spectrogram', 'Heart Rate Variability'))
    
    # Time array for the full audio
    time = (np.arange(0, len(audiodata)) / sr) * 2
    
    # Waveform plot
    fig.add_trace(
        go.Scatter(x=time, y=audiodata, mode='lines', name='Waveform', line=dict(color='blue', width=1)),
        row=1, col=1
    )
    
    # Add beat markers
    beat_amplitudes = np.interp(beattimes, time, audiodata)
    fig.add_trace(
        go.Scatter(x=beattimes, y=beat_amplitudes, mode='markers', name='Beats',
                   marker=dict(color='red', size=8, symbol='circle')),
        row=1, col=1
    )
    
    # HRV plot
    hrv = getHRV(beattimes)
    hrv_time = beattimes[1:len(hrv)+1]
    fig.add_trace(
        go.Scatter(x=hrv_time, y=hrv, mode='lines', name='HRV', line=dict(color='green', width=1)),
        row=3, col=1
    )
    
    # Spectrogram plot
    n_fft = 2048  # You can adjust this value
    hop_length = n_fft // 4  # You can adjust this value

    D = librosa.stft(audiodata, n_fft=n_fft, hop_length=hop_length)
    S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)

    # Calculate the correct time array for the spectrogram
    spec_times = librosa.times_like(S_db, sr=sr, hop_length=hop_length)

    freqs = librosa.fft_frequencies(sr=sr, n_fft=n_fft)
    fig.add_trace(
        go.Heatmap(z=S_db, x=spec_times, y=freqs, colorscale='Viridis',
                zmin=S_db.min(), zmax=S_db.max(), colorbar=dict(title='Magnitude (dB)')),
        row=2, col=1
    )
        
    # Update layout
    fig.update_layout(
        height=1000,
        title_text=filename,
        showlegend=False
    )
    fig.update_xaxes(title_text="Time (s)", row=2, col=1)
    fig.update_xaxes(range=[0, len(audiodata)/sr], row=2, col=1)
    fig.update_yaxes(title_text="Amplitude", row=1, col=1)
    fig.update_yaxes(title_text="HRV", row=3, col=1)
    fig.update_yaxes(title_text="Frequency (Hz)", type="log", row=2, col=1)
    
    return fig

def analyze_single(audio:gr.Audio):
    # Extract audio data and sample rate
    filepath = audio
    filename = filepath.split("/")[-1]


    sr, audiodata = u.getaudiodata(filepath)


    # Now you have:
    # - audiodata: a 1D numpy array containing the audio samples
    # - sr: the sample rate of the audio

    # Your analysis code goes here
    # For example, you could print basic information:
    # print(f"Audio length: {len(audiodata) / sr:.2f} seconds")
    # print(f"Sample rate: {sr} Hz")

    zcr = librosa.feature.zero_crossing_rate(audiodata)[0]
    # print(f"Mean Zero Crossing Rate: {np.mean(zcr):.4f}")

    # Calculate RMS Energy
    rms = librosa.feature.rms(y=audiodata)[0]
    # print(f"Mean RMS Energy: {np.mean(rms):.4f}")

    tempo, beattimes = u.getBeats(audiodata, sr)
    spectogram_wave = plotCombined(audiodata, sr, filename)
    #beats_histogram = plotbeatscatter(tempo[0], beattimes)

    # Add the new average heartbeat analysis
    avg_beat_plot, avg_beat = create_average_heartbeat(audiodata, sr)

    # Calculate some statistics about the average beat
    avg_beat_duration = len(avg_beat) / sr
    avg_beat_energy = np.sum(np.square(avg_beat))

    # Return your analysis results
    results = f"""
    Average Heartbeat Analysis:
    - Duration: {avg_beat_duration:.3f} seconds
    - Energy: {avg_beat_energy:.3f}
    - Audio length: {len(audiodata) / sr:.2f} seconds
    - Sample rate: {sr} Hz
    - Mean Zero Crossing Rate: {np.mean(zcr):.4f}
    - Mean RMS Energy: {np.mean(rms):.4f}
    - Tempo: {tempo[0]:.4f}
    - Beats: {beattimes}
    - Beat durations: {np.diff(beattimes)}
    - Mean Beat Duration: {np.mean(np.diff(beattimes)):.4f}
    """
    return results, spectogram_wave, avg_beat_plot

#-----------------------------------------------
# ANALYSIS FUNCTIONS
#-----------------------------------------------

# - [ ]  Berechnungen Pro Segement:
#     - [ ]  RMS Energy
#     - [ ]  Frequenzen
#     - [ ]  Dauer
#     - [ ]  S2 - wenn möglich
#         - [ ]  Dauer S1 bis S2 (S1)
#         - [ ]  Dauer S2 bis S1 (S2)
# - [ ]  Visualisierungen pro Datei:
#     - [ ]  Waveform
#     - [ ]  Spectogram
#     - [ ]  HRV
#     - [ ]  Avg. Heartbeat Waveform (fixe y-achse)
#     - [ ]  Alle Segmente als Waveform übereinanderlegen (fixe y-achse +-0.05)
# - [ ]  Daten Exportierbar machen
# - [ ]  Einheiten für (RMS Energy, Energy)
# - [ ]  wichtige Einheiten (Energy, RMS Energy, Sample Rate, Audio length, Beats, Beats durations)


def get_visualizations(beattimes_table: str, cleanedaudio: gr.Audio):

    df = mdpd.from_md(beattimes_table)
    df['Beattimes'] = df['Beattimes'].astype(float)
    df['Label (S1=1/S2=0)'] = df['Label (S1=1/S2=0)'].astype(int)

    sr, audiodata = cleanedaudio
    

    segment_metrics = u.compute_segment_metrics(df, sr, audiodata)


    audiodata = audiodata.astype(np.float32) / 32768.0

    # Create figure with secondary y-axes
    fig = make_subplots(
        rows=5, cols=1,
        subplot_titles=('Waveform', 'Spectrogram', 'Heart Rate Variability', 
                       'Average Heartbeat Waveform', 'Overlaid Segments'),
        vertical_spacing=0.1,
        row_heights=[0.2, 0.2, 0.2, 0.2, 0.2]
    )

    # 1. Waveform
    time = np.arange(len(audiodata)) / sr
    fig.add_trace(
        go.Scatter(x=time, y=audiodata, name='Waveform', line=dict(color='blue', width=1)),
        row=1, col=1
    )


    # 2. Spectrogram
    D = librosa.stft(audiodata)
    frequencies = librosa.fft_frequencies(sr=sr)  # Get frequency values for y-axis
    S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
    times = librosa.times_like(S_db, sr=sr)  # Get time values for x-axis

    # Find index corresponding to 200 Hz
    freq_mask = frequencies <= 1000
    S_db_cropped = S_db[freq_mask]
    frequencies_cropped = frequencies[freq_mask]

    fig.add_trace(
        go.Heatmap(
            z=S_db_cropped,
            x=times,
            y=frequencies_cropped,  # Add frequencies to y-axis
            colorscale='Viridis',
            name='Spectrogram'
        ),
        row=2, col=1
    )

    # 3. HRV (Heart Rate Variability)
    s1_durations = []
    s2_durations = []
    
    for segment in segment_metrics:
        if segment['s1_to_s2_duration']:
            s1_durations.extend(segment['s1_to_s2_duration'])
        if segment['s2_to_s1_duration']:
            s2_durations.extend(segment['s2_to_s1_duration'])
    
    # Compute HRV metrics
    time, hrv_values, _ = u.compute_hrv(s1_durations, s2_durations, sr)
       
    # Add HRV trace to the third subplot
    fig.add_trace(
        go.Scatter(
            x=time,
            y=hrv_values,
            name='HRV (RMSSD)',
            line=dict(color='blue', width=1.5),
            hovertemplate='Time: %{x:.1f}s<br>HRV: %{y:.1f}ms<extra></extra>'
        ),
        row=3, col=1
    )
    

    # 4. Average Heartbeat Waveform
    max_len = max(len(metric['segment']) for metric in segment_metrics)
    aligned_segments = []
    
    for metric in segment_metrics:
        segment = metric['segment']
        segment = segment.astype(np.float32) / 32768.0
        padded = np.pad(segment, (0, max_len - len(segment)))
        aligned_segments.append(padded)
    
    avg_waveform = np.mean(aligned_segments, axis=0)
    time_avg = np.arange(len(avg_waveform)) / sr

    fig.add_trace(
        go.Scatter(x=time_avg, y=avg_waveform, name='Average Heartbeat', 
                  line=dict(color='green', width=1)),
        row=4, col=1
    )

    # 5. Overlaid Segments
    colors = [
        '#8dd3c7', '#ffffb3', '#bebada', '#fb8072', '#80b1d3', 
        '#fdb462', '#b3de69', '#fccde5', '#d9d9d9', '#bc80bd'
    ]

    # Then in the loop for overlaid segments:
    for i, metric in enumerate(segment_metrics):
        segment = metric['segment']
        segment = segment.astype(np.float32) / 32768.0
        time_segment = np.arange(len(segment)) / sr
        
        fig.add_trace(
            go.Scatter(
                x=time_segment,
                y=segment,
                name=f'Segment {i+1}',
                opacity=0.3,
                line=dict(color=colors[i % len(colors)], width=1)
            ),
            row=5, col=1
        )

    # Update layout
    fig.update_layout(
        height=1500,
        showlegend=False,
        title_text="",
        plot_bgcolor='white',
        paper_bgcolor='white'
    )
    # # Update layout for the HRV subplot
    # fig.update_yaxes(title_text="Heart Rate (BPM)", 
    #                  overlaying='y', 
    #                  side='right',
    #                  row=3, col=1)

    # Update y-axes for fixed scales where needed
    # fig.update_yaxes(range=[-0.05, 0.05], row=5, col=1)  # Fixed y-axis for overlaid segments
    fig.update_yaxes(title_text="Amplitude", row=1, col=1, gridcolor='lightgray')
    fig.update_yaxes(title_text="Frequency (Hz)", row=2, col=1)
    fig.update_yaxes(title_text="Duration (s)", row=3, col=1, gridcolor='lightgray')
    fig.update_yaxes(title_text="Amplitude", row=4, col=1, gridcolor='lightgray')
    fig.update_yaxes(title_text="Amplitude", row=5, col=1, gridcolor='lightgray')

    # Update x-axes
    fig.update_xaxes(title_text="Time (s)", row=1, col=1, gridcolor='lightgray')
    fig.update_xaxes(title_text="Time (s)", row=2, col=1)
    fig.update_xaxes(title_text="Time (s)", row=3, col=1, gridcolor='lightgray')
    fig.update_xaxes(title_text="Time (s)", row=4, col=1, gridcolor='lightgray')
    fig.update_xaxes(title_text="Time (s)", row=5, col=1, gridcolor='lightgray')

    return fig

def download_all(beattimes_table:str, cleanedaudio:gr.Audio):

    df = mdpd.from_md(beattimes_table)
    df['Beattimes'] = df['Beattimes'].astype(float)
    df['Label (S1=1/S2=0)'] = df['Label (S1=1/S2=0)'].astype(int)

    sr, audiodata = cleanedaudio

    segment_metrics = u.compute_segment_metrics(df, sr, audiodata)

    downloaddf = pd.DataFrame(segment_metrics)

    
    # Convert numpy floats to regular floats
    downloaddf['rms_energy'] = downloaddf['rms_energy'].astype(float)
    downloaddf['mean_frequency'] = downloaddf['mean_frequency'].astype(float)

    temp_dir = tempfile.gettempdir()
    temp_path = os.path.join(temp_dir, "segment_metrics.csv")

    downloaddf.to_csv(temp_path, index=False)

    return temp_path



#-----------------------------------------------
#-----------------------------------------------
# HELPER FUNCTIONS FOR SINGLE AUDIO ANALYSIS V2

def getBeatsv2(audio:gr.Audio):

    sr, audiodata = u.getaudiodata(audio)
    _, beattimes, audiodata = u.getBeats(audiodata, sr)

    beattimes_table = pd.DataFrame(data={"Beattimes":beattimes})

    feature_array = u.find_s1s2(beattimes_table)

    featuredf = pd.DataFrame(
        data=feature_array,
        columns=[
        "Beattimes",
        "S1 to S2",
        "S2 to S1",
        "Label (S1=1/S2=0)"]
    )

    # Create boolean masks for each label
    mask_ones = feature_array[:, 3] == 1
    mask_zeros = feature_array[:, 3] == 0
    
    # Extract time/positions using the masks
    times_label_one = feature_array[mask_ones, 0]
    times_label_zero = feature_array[mask_zeros, 0]

    fig = u.plotBeattimes(times_label_one, audiodata, sr, times_label_zero)


    featuredf = featuredf.drop(columns=["S1 to S2", "S2 to S1"])


    return fig, featuredf.to_markdown(), (sr, audiodata)

def updateBeatsv2(audio:gr.Audio, uploadeddf:gr.File=None)-> go.Figure:

    sr, audiodata = u.getaudiodata(audio)


    if uploadeddf != None:
        beattimes_table = pd.read_csv(
            filepath_or_buffer=uploadeddf,
            sep=";",
            decimal=",",
            encoding="utf-8-sig")
        
        # Drop rows where all columns are NaN (empty)
        beattimes_table = beattimes_table.dropna()
        
    
        # Reset the index after dropping rows
        beattimes_table = beattimes_table.reset_index(drop=True)

        # Convert the 'Beattimes' column to float
        # Handle both string and numeric values in the Beattimes column
        if beattimes_table['Beattimes'].dtype == 'object':
            # If strings, replace commas with dots
            beattimes_table['Beattimes'] = beattimes_table['Beattimes'].str.replace(',', '.').astype(float)
        else:
            # If already numeric, just ensure float type
            beattimes_table['Beattimes'] = beattimes_table['Beattimes'].astype(float)

        # Check if the column "Label (S1=0/S2=1)" exists and rename it
        if "Label (S1=0/S2=1)" in beattimes_table.columns:
            beattimes_table = beattimes_table.rename(columns={"Label (S1=0/S2=1)": "Label (S1=1/S2=0)"})

    else:
        raise FileNotFoundError("No file uploaded")

    s1_times = beattimes_table[beattimes_table["Label (S1=1/S2=0)"] == 0]["Beattimes"].to_numpy()
    s2_times = beattimes_table[beattimes_table["Label (S1=1/S2=0)"] == 1]["Beattimes"].to_numpy()

    fig = u.plotBeattimes(s1_times, audiodata, sr, s2_times)

    return fig, beattimes_table.to_markdown()

def download_df (beattimes_table: str):

    df = mdpd.from_md(beattimes_table)
    df['Beattimes'] = df['Beattimes'].astype(float)
    df['Label (S1=1/S2=0)'] = df['Label (S1=1/S2=0)'].astype(int)


    temp_dir = tempfile.gettempdir()
    temp_path = os.path.join(temp_dir, "beattimes.csv")

    
    df.to_csv(
        index=False,
        columns=["Beattimes", "Label (S1=1/S2=0)"],
        path_or_buf=temp_path, 
        sep=";",
        decimal=",",
        encoding="utf-8-sig")

    return temp_path


with gr.Blocks() as app:

    gr.Markdown("# Heartbeat")
    gr.Markdown("This App helps to analyze and extract Information from Heartbeat Audios")


    audiofile = gr.Audio(
                type="filepath",
                label="Upload the Audio of a Heartbeat",
                sources="upload")


    with gr.Tab("Preprocessing"):
        
        getBeatsbtn = gr.Button("get Beats")
        cleanedaudio = gr.Audio(label="Cleaned Audio",show_download_button=True)

        beats_wave_plot = gr.Plot()

        
        
        with gr.Row():

            with gr.Column():

                beattimes_table = gr.Markdown()

            with gr.Column():

                csv_download = gr.DownloadButton()
                updateBeatsbtn = gr.Button("update Beats")
        
                uploadDF = gr.File(
                    file_count="single",
                    file_types=[".csv"],
                    label="upload a csv",
                    height=25
                )

        csv_download.click(download_df, inputs=[beattimes_table], outputs=[csv_download])
        getBeatsbtn.click(getBeatsv2, inputs=audiofile, outputs=[beats_wave_plot, beattimes_table, cleanedaudio])
        updateBeatsbtn.click(updateBeatsv2, inputs=[audiofile, uploadDF], outputs=[beats_wave_plot, beattimes_table])

        gr.Examples(
            examples=example_files,
            inputs=audiofile,
            fn=getBeatsv2,
            cache_examples=False
        )

    with gr.Tab("Analysis"):

        gr.Markdown("🚨 Please make sure to first run the 'Preprocessing'")

        analyzebtn = gr.Button("Analyze Audio")

        plot = gr.Plot()

        download_btn = gr.DownloadButton()

        analyzebtn.click(get_visualizations, inputs=[beattimes_table, cleanedaudio], outputs=[plot])
        download_btn.click(download_all, inputs=[beattimes_table, cleanedaudio], outputs=[download_btn])


app.launch()