Spaces:
Sleeping
Sleeping
Commit
·
e290816
1
Parent(s):
68cdf36
spectogram has correct length, filename displayed, average beat
Browse files
app.py
CHANGED
@@ -15,9 +15,9 @@ random.shuffle(all_pairs)
|
|
15 |
example_pairs = [list(pair) for pair in all_pairs[:25]]
|
16 |
|
17 |
# GENERAL HELPER FUNCTIONS
|
18 |
-
def getaudiodata(
|
19 |
-
|
20 |
-
|
21 |
|
22 |
# Ensure audiodata is a numpy array
|
23 |
if not isinstance(audiodata, np.ndarray):
|
@@ -70,8 +70,39 @@ def getHRV(beattimes: np.ndarray) -> np.ndarray:
|
|
70 |
|
71 |
return instantaneous_hr
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
# HELPER FUNCTIONS FOR SINGLE AUDIO ANALYSIS
|
74 |
-
def plotCombined(audiodata, sr):
|
75 |
# Get beat times
|
76 |
tempo, beattimes = getBeats(audiodata, sr)
|
77 |
|
@@ -80,7 +111,7 @@ def plotCombined(audiodata, sr):
|
|
80 |
subplot_titles=('Audio Waveform', 'Spectrogram', 'Heart Rate Variability'))
|
81 |
|
82 |
# Time array for the full audio
|
83 |
-
time = (np.arange(0, len(audiodata)) / sr)*2
|
84 |
|
85 |
# Waveform plot
|
86 |
fig.add_trace(
|
@@ -105,23 +136,30 @@ def plotCombined(audiodata, sr):
|
|
105 |
)
|
106 |
|
107 |
# Spectrogram plot
|
108 |
-
|
|
|
|
|
|
|
109 |
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
112 |
fig.add_trace(
|
113 |
-
go.Heatmap(z=S_db, x=
|
114 |
-
|
115 |
row=2, col=1
|
116 |
)
|
117 |
-
|
118 |
# Update layout
|
119 |
fig.update_layout(
|
120 |
height=1000,
|
121 |
-
title_text=
|
122 |
showlegend=False
|
123 |
)
|
124 |
fig.update_xaxes(title_text="Time (s)", row=2, col=1)
|
|
|
125 |
fig.update_yaxes(title_text="Amplitude", row=1, col=1)
|
126 |
fig.update_yaxes(title_text="HRV", row=3, col=1)
|
127 |
fig.update_yaxes(title_text="Frequency (Hz)", type="log", row=2, col=1)
|
@@ -167,7 +205,11 @@ def plotbeatscatter(tempo, beattimes):
|
|
167 |
|
168 |
def analyze_single(audio:gr.Audio):
|
169 |
# Extract audio data and sample rate
|
170 |
-
|
|
|
|
|
|
|
|
|
171 |
|
172 |
|
173 |
# Now you have:
|
@@ -187,11 +229,21 @@ def analyze_single(audio:gr.Audio):
|
|
187 |
# print(f"Mean RMS Energy: {np.mean(rms):.4f}")
|
188 |
|
189 |
tempo, beattimes = getBeats(audiodata, sr)
|
190 |
-
spectogram_wave = plotCombined(audiodata, sr)
|
191 |
beats_histogram = plotbeatscatter(tempo[0], beattimes)
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
# Return your analysis results
|
194 |
results = f"""
|
|
|
|
|
|
|
195 |
- Audio length: {len(audiodata) / sr:.2f} seconds
|
196 |
- Sample rate: {sr} Hz
|
197 |
- Mean Zero Crossing Rate: {np.mean(zcr):.4f}
|
@@ -201,7 +253,7 @@ def analyze_single(audio:gr.Audio):
|
|
201 |
- Beat durations: {np.diff(beattimes)}
|
202 |
- Mean Beat Duration: {np.mean(np.diff(beattimes)):.4f}
|
203 |
"""
|
204 |
-
return results, spectogram_wave, beats_histogram
|
205 |
#-----------------------------------------------
|
206 |
#-----------------------------------------------
|
207 |
|
@@ -297,6 +349,7 @@ with gr.Blocks() as app:
|
|
297 |
with gr.Tab("Single Audio"):
|
298 |
|
299 |
audiofile = gr.Audio(
|
|
|
300 |
label="Audio of a Heartbeat",
|
301 |
sources="upload")
|
302 |
|
@@ -304,9 +357,10 @@ with gr.Blocks() as app:
|
|
304 |
|
305 |
results = gr.Markdown()
|
306 |
spectogram_wave = gr.Plot()
|
|
|
307 |
beats_histogram = gr.Plot()
|
308 |
|
309 |
-
analyzebtn.click(analyze_single, audiofile, [results, spectogram_wave, beats_histogram])
|
310 |
|
311 |
gr.Examples(
|
312 |
examples=example_files,
|
@@ -321,32 +375,34 @@ with gr.Blocks() as app:
|
|
321 |
- classify Beat's into S1 and S2
|
322 |
- synthesise the mean Beat S1 & S2""")
|
323 |
|
324 |
-
with gr.Tab("Two Audios"):
|
325 |
|
326 |
-
|
327 |
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
|
|
|
|
334 |
|
335 |
-
|
336 |
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
|
341 |
-
|
342 |
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
|
351 |
|
352 |
app.launch()
|
|
|
15 |
example_pairs = [list(pair) for pair in all_pairs[:25]]
|
16 |
|
17 |
# GENERAL HELPER FUNCTIONS
|
18 |
+
def getaudiodata(filepath)->tuple[int,np.ndarray]:
|
19 |
+
|
20 |
+
audiodata, sr = librosa.load(filepath, sr=None)
|
21 |
|
22 |
# Ensure audiodata is a numpy array
|
23 |
if not isinstance(audiodata, np.ndarray):
|
|
|
70 |
|
71 |
return instantaneous_hr
|
72 |
|
73 |
+
def create_average_heartbeat(audiodata, sr):
|
74 |
+
# 1. Detect individual heartbeats
|
75 |
+
onset_env = librosa.onset.onset_strength(y=audiodata, sr=sr)
|
76 |
+
peaks, _ = find_peaks(onset_env, distance=sr//2) # Assume at least 0.5s between beats
|
77 |
+
|
78 |
+
# 2. Extract individual heartbeats
|
79 |
+
beat_length = sr # Assume 1 second for each beat
|
80 |
+
beats = []
|
81 |
+
for peak in peaks:
|
82 |
+
if peak + beat_length < len(audiodata):
|
83 |
+
beat = audiodata[peak:peak+beat_length]
|
84 |
+
beats.append(beat)
|
85 |
+
|
86 |
+
# 3. Align and average the beats
|
87 |
+
if beats:
|
88 |
+
avg_beat = np.mean(beats, axis=0)
|
89 |
+
else:
|
90 |
+
avg_beat = np.array([])
|
91 |
+
|
92 |
+
# 4. Create a Plotly figure of the average heartbeat
|
93 |
+
time = np.arange(len(avg_beat)) / sr
|
94 |
+
fig = go.Figure()
|
95 |
+
fig.add_trace(go.Scatter(x=time, y=avg_beat, mode='lines', name='Average Beat'))
|
96 |
+
fig.update_layout(
|
97 |
+
title='Average Heartbeat',
|
98 |
+
xaxis_title='Time (s)',
|
99 |
+
yaxis_title='Amplitude'
|
100 |
+
)
|
101 |
+
|
102 |
+
return fig, avg_beat
|
103 |
+
|
104 |
# HELPER FUNCTIONS FOR SINGLE AUDIO ANALYSIS
|
105 |
+
def plotCombined(audiodata, sr, filename):
|
106 |
# Get beat times
|
107 |
tempo, beattimes = getBeats(audiodata, sr)
|
108 |
|
|
|
111 |
subplot_titles=('Audio Waveform', 'Spectrogram', 'Heart Rate Variability'))
|
112 |
|
113 |
# Time array for the full audio
|
114 |
+
time = (np.arange(0, len(audiodata)) / sr) * 2
|
115 |
|
116 |
# Waveform plot
|
117 |
fig.add_trace(
|
|
|
136 |
)
|
137 |
|
138 |
# Spectrogram plot
|
139 |
+
n_fft = 2048 # You can adjust this value
|
140 |
+
hop_length = n_fft // 4 # You can adjust this value
|
141 |
+
|
142 |
+
D = librosa.stft(audiodata, n_fft=n_fft, hop_length=hop_length)
|
143 |
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
|
144 |
+
|
145 |
+
# Calculate the correct time array for the spectrogram
|
146 |
+
spec_times = librosa.times_like(S_db, sr=sr, hop_length=hop_length)
|
147 |
+
|
148 |
+
freqs = librosa.fft_frequencies(sr=sr, n_fft=n_fft)
|
149 |
fig.add_trace(
|
150 |
+
go.Heatmap(z=S_db, x=spec_times, y=freqs, colorscale='Viridis',
|
151 |
+
zmin=S_db.min(), zmax=S_db.max(), colorbar=dict(title='Magnitude (dB)')),
|
152 |
row=2, col=1
|
153 |
)
|
154 |
+
|
155 |
# Update layout
|
156 |
fig.update_layout(
|
157 |
height=1000,
|
158 |
+
title_text=filename,
|
159 |
showlegend=False
|
160 |
)
|
161 |
fig.update_xaxes(title_text="Time (s)", row=2, col=1)
|
162 |
+
fig.update_xaxes(range=[0, len(audiodata)/sr], row=2, col=1)
|
163 |
fig.update_yaxes(title_text="Amplitude", row=1, col=1)
|
164 |
fig.update_yaxes(title_text="HRV", row=3, col=1)
|
165 |
fig.update_yaxes(title_text="Frequency (Hz)", type="log", row=2, col=1)
|
|
|
205 |
|
206 |
def analyze_single(audio:gr.Audio):
|
207 |
# Extract audio data and sample rate
|
208 |
+
filepath = audio
|
209 |
+
filename = filepath.split("/")[-1]
|
210 |
+
|
211 |
+
|
212 |
+
sr, audiodata = getaudiodata(filepath)
|
213 |
|
214 |
|
215 |
# Now you have:
|
|
|
229 |
# print(f"Mean RMS Energy: {np.mean(rms):.4f}")
|
230 |
|
231 |
tempo, beattimes = getBeats(audiodata, sr)
|
232 |
+
spectogram_wave = plotCombined(audiodata, sr, filename)
|
233 |
beats_histogram = plotbeatscatter(tempo[0], beattimes)
|
234 |
|
235 |
+
# Add the new average heartbeat analysis
|
236 |
+
avg_beat_plot, avg_beat = create_average_heartbeat(audiodata, sr)
|
237 |
+
|
238 |
+
# Calculate some statistics about the average beat
|
239 |
+
avg_beat_duration = len(avg_beat) / sr
|
240 |
+
avg_beat_energy = np.sum(np.square(avg_beat))
|
241 |
+
|
242 |
# Return your analysis results
|
243 |
results = f"""
|
244 |
+
Average Heartbeat Analysis:
|
245 |
+
- Duration: {avg_beat_duration:.3f} seconds
|
246 |
+
- Energy: {avg_beat_energy:.3f}
|
247 |
- Audio length: {len(audiodata) / sr:.2f} seconds
|
248 |
- Sample rate: {sr} Hz
|
249 |
- Mean Zero Crossing Rate: {np.mean(zcr):.4f}
|
|
|
253 |
- Beat durations: {np.diff(beattimes)}
|
254 |
- Mean Beat Duration: {np.mean(np.diff(beattimes)):.4f}
|
255 |
"""
|
256 |
+
return results, spectogram_wave, avg_beat_plot, beats_histogram
|
257 |
#-----------------------------------------------
|
258 |
#-----------------------------------------------
|
259 |
|
|
|
349 |
with gr.Tab("Single Audio"):
|
350 |
|
351 |
audiofile = gr.Audio(
|
352 |
+
type="filepath",
|
353 |
label="Audio of a Heartbeat",
|
354 |
sources="upload")
|
355 |
|
|
|
357 |
|
358 |
results = gr.Markdown()
|
359 |
spectogram_wave = gr.Plot()
|
360 |
+
avg_beat_plot = gr.Plot()
|
361 |
beats_histogram = gr.Plot()
|
362 |
|
363 |
+
analyzebtn.click(analyze_single, audiofile, [results, spectogram_wave, avg_beat_plot, beats_histogram])
|
364 |
|
365 |
gr.Examples(
|
366 |
examples=example_files,
|
|
|
375 |
- classify Beat's into S1 and S2
|
376 |
- synthesise the mean Beat S1 & S2""")
|
377 |
|
378 |
+
# with gr.Tab("Two Audios"):
|
379 |
|
380 |
+
# with gr.Row():
|
381 |
|
382 |
+
# audioone = gr.Audio(
|
383 |
+
# type="filepath",
|
384 |
+
# label="Audio of a Heartbeat",
|
385 |
+
# sources="upload")
|
386 |
+
# audiotwo = gr.Audio(
|
387 |
+
# type="filepath",
|
388 |
+
# label="Audio of a Heartbeat",
|
389 |
+
# sources="upload")
|
390 |
|
391 |
+
# analyzebtn2 = gr.Button("analyze & compare")
|
392 |
|
393 |
+
# with gr.Accordion("Results",open=False):
|
394 |
+
# results2 = gr.Markdown()
|
395 |
+
# spectogram_wave2 = gr.Plot()
|
396 |
|
397 |
+
# analyzebtn2.click(analyze_double, inputs=[audioone,audiotwo], outputs=spectogram_wave2)
|
398 |
|
399 |
+
# gr.Examples(
|
400 |
+
# examples=example_pairs,
|
401 |
+
# inputs=[audioone, audiotwo],
|
402 |
+
# outputs=spectogram_wave2,
|
403 |
+
# fn=analyze_double,
|
404 |
+
# cache_examples=False
|
405 |
+
# )
|
406 |
|
407 |
|
408 |
app.launch()
|