Spaces:
Sleeping
Sleeping
File size: 5,153 Bytes
50dfccc ea031ab 50dfccc 3f31fb9 50dfccc 0666fec 50dfccc 0666fec 50dfccc 0666fec 50dfccc 6595ab8 50dfccc 0666fec 50dfccc 6595ab8 a097b6c d1efbd2 a097b6c 50dfccc a097b6c d1efbd2 a097b6c 50dfccc a097b6c 50dfccc 676fe40 8a5e8bc 50dfccc 929c0af 50dfccc 929c0af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
from toolbox import CatchException, report_execption, write_results_to_file
from toolbox import update_ui
def get_meta_information(url, chatbot, history):
import requests
import arxiv
import difflib
from bs4 import BeautifulSoup
from toolbox import get_conf
proxies, = get_conf('proxies')
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/105.0.0.0 Safari/537.36',
}
# 发送 GET 请求
response = requests.get(url, proxies=proxies, headers=headers)
# 解析网页内容
soup = BeautifulSoup(response.text, "html.parser")
def string_similar(s1, s2):
return difflib.SequenceMatcher(None, s1, s2).quick_ratio()
profile = []
# 获取所有文章的标题和作者
for result in soup.select(".gs_ri"):
title = result.a.text.replace('\n', ' ').replace(' ', ' ')
author = result.select_one(".gs_a").text
try:
citation = result.select_one(".gs_fl > a[href*='cites']").text # 引用次数是链接中的文本,直接取出来
except:
citation = 'cited by 0'
abstract = result.select_one(".gs_rs").text.strip() # 摘要在 .gs_rs 中的文本,需要清除首尾空格
search = arxiv.Search(
query = title,
max_results = 1,
sort_by = arxiv.SortCriterion.Relevance,
)
try:
paper = next(search.results())
if string_similar(title, paper.title) > 0.90: # same paper
abstract = paper.summary.replace('\n', ' ')
is_paper_in_arxiv = True
else: # different paper
abstract = abstract
is_paper_in_arxiv = False
paper = next(search.results())
except:
abstract = abstract
is_paper_in_arxiv = False
print(title)
print(author)
print(citation)
profile.append({
'title':title,
'author':author,
'citation':citation,
'abstract':abstract,
'is_paper_in_arxiv':is_paper_in_arxiv,
})
chatbot[-1] = [chatbot[-1][0], title + f'\n\n是否在arxiv中(不在arxiv中无法获取完整摘要):{is_paper_in_arxiv}\n\n' + abstract]
yield from update_ui(chatbot=chatbot, history=[]) # 刷新界面
return profile
@CatchException
def 谷歌检索小助手(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
# 基本信息:功能、贡献者
chatbot.append([
"函数插件功能?",
"分析用户提供的谷歌学术(google scholar)搜索页面中,出现的所有文章: binary-husky,插件初始化中..."])
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
# 尝试导入依赖,如果缺少依赖,则给出安装建议
try:
import arxiv
import math
from bs4 import BeautifulSoup
except:
report_execption(chatbot, history,
a = f"解析项目: {txt}",
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade beautifulsoup4 arxiv```。")
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
return
# 清空历史,以免输入溢出
history = []
meta_paper_info_list = yield from get_meta_information(txt, chatbot, history)
batchsize = 5
for batch in range(math.ceil(len(meta_paper_info_list)/batchsize)):
if len(meta_paper_info_list[:batchsize]) > 0:
i_say = "下面是一些学术文献的数据,提取出以下内容:" + \
"1、英文题目;2、中文题目翻译;3、作者;4、arxiv公开(is_paper_in_arxiv);4、引用数量(cite);5、中文摘要翻译。" + \
f"以下是信息源:{str(meta_paper_info_list[:batchsize])}"
inputs_show_user = f"请分析此页面中出现的所有文章:{txt},这是第{batch+1}批"
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(
inputs=i_say, inputs_show_user=inputs_show_user,
llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
sys_prompt="你是一个学术翻译,请从数据中提取信息。你必须使用Markdown表格。你必须逐个文献进行处理。"
)
history.extend([ f"第{batch+1}批", gpt_say ])
meta_paper_info_list = meta_paper_info_list[batchsize:]
chatbot.append(["状态?",
"已经全部完成,您可以试试让AI写一个Related Works,例如您可以继续输入Write a \"Related Works\" section about \"你搜索的研究领域\" for me."])
msg = '正常'
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
res = write_results_to_file(history)
chatbot.append(("完成了吗?", res));
yield from update_ui(chatbot=chatbot, history=history, msg=msg) # 刷新界面
|