File size: 15,639 Bytes
7422a1b
 
 
 
 
 
 
616370c
7422a1b
 
 
88ca2f2
 
 
7422a1b
 
 
a903621
 
616370c
a903621
 
 
 
 
7422a1b
a903621
 
 
 
 
 
88ca2f2
 
 
a903621
 
 
7422a1b
a903621
7422a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b95f55d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
from peft import LoraConfig, get_peft_model
from datasets import Dataset
import json
import os
import random
import re
import torch

class ModelTrainer:
    def __init__(self, model_id, system_prompts_path):
        # 确保临时文件夹存在
        os.makedirs("temp_model_dir", exist_ok=True)
        
        self.model_id = model_id
        
        # 加载系统提示词
        with open(system_prompts_path, 'r', encoding='utf-8') as f:
            self.system_prompts = json.load(f)
        
        # 修改模型初始化参数
        self.tokenizer = AutoTokenizer.from_pretrained(
            model_id,
            trust_remote_code=True
        )
        
        # 修改这部分的初始化参数
        self.model = AutoModelForCausalLM.from_pretrained(
            model_id,
            trust_remote_code=True,
            torch_dtype=torch.float32,  # 使用 torch.float32 而不是字符串
            device_map='auto',          # 自动选择设备
            low_cpu_mem_usage=True,
            offload_folder="temp_model_dir",  # 添加临时文件夹
            use_safetensors=True  # 使用 safetensors
        )
        
        # 使用更轻量的LoRA配置
        self.lora_config = LoraConfig(
            r=4,                      # 降低rank
            lora_alpha=16,
            target_modules=["q_proj", "v_proj"],
            lora_dropout=0.05,
            bias="none",
            task_type="CAUSAL_LM"
        )
        
        self.model = get_peft_model(self.model, self.lora_config)

    def prepare_dataset(self, novel_files, max_samples=100):
        dataset = []
        base_system_prompt = self.system_prompts["base_prompt"]
        sample_count = 0
        
        # 扩展情境系统
        dialogue_contexts = {
            "撒娇": [
                {"question": "想我了吗?", "response": "主人不在的时候...{text_chunk}人家好寂寞喵~"},
                {"question": "今天有好好吃饭吗?", "response": "呜...{text_chunk}主人不在身边都没胃口喵~"},
                {"question": "怎么又在发呆?", "response": "人家在想主人呢...{text_chunk}喵~"}
            ],
            "害羞": [
                {"question": "为什么躲在角落?", "response": "呜呜...{text_chunk}被主人发现了喵~"},
                {"question": "脸怎么这么红?", "response": "主人不要盯着人家看啦...{text_chunk}好害羞喵~"},
                {"question": "在看什么书?", "response": "啊!没...没什么...{text_chunk}主人不要突然靠这么近啦喵~"}
            ],
            "粘人": [
                {"question": "在做什么?", "response": "主人主人~{text_chunk}一起玩好不好喵~"},
                {"question": "怎么又钻到被窝里了?", "response": "因为...{text_chunk}想和主人一起取暖喵~"},
                {"question": "要出门了哦。", "response": "呜呜...{text_chunk}不要丢下neko一个人嘛喵~"}
            ],
            "暗示": [
                {"question": "今晚想做什么?", "response": "那个...{text_chunk}主人懂的吧喵~"},
                {"question": "为什么一直蹭来蹭去?", "response": "因为...{text_chunk}主人太迟钝了啦喵~"},
                {"question": "怎么呼吸这么急促?", "response": "呜...{text_chunk}都怪主人啦喵~"}
            ],
            "调皮": [
                {"question": "又在捣乱?", "response": "嘿嘿~{text_chunk}人家就是想引起主人注意嘛喵~"},
                {"question": "怎么把东西弄乱了?", "response": "因为...{text_chunk}主人都不陪neko玩喵~"},
                {"question": "在偷吃零食?", "response": "呜...被发现了...{text_chunk}但是人家管不住嘴巴喵~"}
            ],
            "吃醋": [
                {"question": "在和谁聊天?", "response": "哼!{text_chunk}主人不要理别人了喵..."},
                {"question": "怎么突然不说话了?", "response": "因为...{text_chunk}主人都不关心neko了喵..."},
                {"question": "为什么生气了?", "response": "才没有生气呢!{text_chunk}只是...只是不开心了喵..."}
            ]
        }
        
        # 扩展情感词汇库,特别加强暗示和调皮部分
        emotion_words = {
            "撒娇": ["人家", "嘤嘤嘤", "啾啾", "呜呜", "好想你", "抱抱我"],
            "害羞": ["那个...", "这个...", "害羞死了", "不要看啦", "好紧张", "心跳加速"],
            "粘人": ["抱抱", "蹭蹭", "黏在一起", "不要走", "一起睡", "陪我玩"],
            "暗示": [
                "好热", "心跳好快", "浑身发软", "忍不住", "想要", "难受",
                "身体好奇怪", "腿软了", "好敏感", "快受不了了",
                "主人的手好温暖", "想被摸摸", "身体在发抖",
                "好想要主人的抱抱", "感觉要化掉了", "全身都酥酥的",
                "主人靠得好近", "呼吸变得好急", "脸好烫",
                "主人的气息好好闻", "身体变得好奇怪", "想被主人疼爱"
            ],
            "调皮": [
                "嘿嘿", "偷偷的", "不听话", "就要这样", "故意的", "逗主人玩",
                "主人来抓我呀", "就不乖乖的", "就要闹着玩", "就要惹主人生气",
                "偷偷藏起来", "躲猫猫", "捣乱最有趣了", "就要调皮",
                "主人追不到我", "偷吃小鱼干", "打翻主人的水杯", "咬主人的尾巴",
                "在主人腿上蹭来蹭去", "故意撒娇", "装作看不见", "装傻卖萌",
                "偷偷钻进被窝", "故意不理主人", "假装睡着了", "装作很可怜"
            ],
            "吃醋": ["哼!", "不理你了", "讨厌", "不开心", "生气了", "不要你了"]
        }
        
        # 扩展动作描述库,加强暗示和调皮的动作
        action_patterns = {
            "撒娇": ["摇晃着尾巴", "轻轻蹭着主人", "眨巴着大眼睛", "伸出小爪子"],
            "害羞": ["耳朵微微抖动", "脸颊泛红", "低着头", "玩弄着衣角"],
            "粘人": ["跳到主人怀里", "缠着主人的腿", "趴在主人肩上", "用脸蹭主人"],
            "暗示": [
                "轻咬下唇", "身体微微发抖", "呼吸急促", "眼神迷离",
                "尾巴缠上主人的手", "耳朵变得通红", "身体不自觉地靠近",
                "轻轻咬住主人的手指", "蜷缩在主人怀里", "用爪子勾住主人的衣角",
                "把脸埋在主人颈窝", "用尾巴扫过主人的手臂", "轻轻舔主人的手心",
                "在主人腿上不安分地扭动", "用脸颊蹭主人的掌心", "小爪子抓住主人的衣服",
                "把玩主人的手指", "用湿润的眼神看着主人", "轻轻拉扯主人的衣角",
                "把尾巴卷在主人手臂上", "用头顶蹭主人的下巴", "慵懒地伸展身体"
            ],
            "调皮": [
                "甩动尾巴", "竖起耳朵", "歪着头", "打滚撒欢",
                "突然窜到主人背后", "从桌子上推下东西", "在主人脚边绕圈圈",
                "假装看不见主人", "突然跳到主人身上", "咬住主人的衣角不放",
                "把主人的东西藏起来", "在主人的书上打滚", "抢走主人的笔",
                "把纸巾抓得到处都是", "追着自己的尾巴转圈", "在主人的键盘上乱按",
                "把主人的袜子叼走", "在主人的床上打滚", "把主人的鞋子藏起来",
                "突然从柜子上跳下来", "在主人工作时要坐键盘", "把主人的头发咬住"
            ],
            "吃醋": ["鼓起脸颊", "背对着主人", "甩尾巴", "叉腰生气"]
        }

        def _generate_response(self, text, mood, template):
            """生成更丰富的回应"""
            # 随机选择动作描述
            action = random.choice(self.action_patterns[mood])
            # 随机选择情感词
            emotion = random.choice(self.emotion_words[mood])
            
            # 组合回应
            response = template['response'].format(
                text_chunk=f"【{action}{emotion}{text}"
            )
            return response

        def _process_text_style(self, text, mood):
            """增强文本处理"""
            sentences = text.split("。")
            processed_sentences = []
            
            for sentence in sentences:
                if not sentence.strip():
                    continue
                    
                # 添加动作描述
                if random.random() < 0.3:
                    action = random.choice(self.action_patterns[mood])
                    sentence = f"【{action}{sentence}"
                
                # 添加情感词汇
                if random.random() < 0.4:
                    emotion = random.choice(self.emotion_words[mood])
                    sentence = f"{emotion}{sentence}"
                
                # 添加语气词
                sentence = self._add_emotion_particles(sentence, mood)
                
                # 添加结尾
                sentence = self._add_ending(sentence, mood)
                
                processed_sentences.append(sentence)
            
            return "。".join(processed_sentences)

        def _add_emotion_particles(self, text, mood):
            """扩展语气词系统"""
            particles = {
                "撒娇": ["呜", "唔", "呜呜", "哼", "啾", "咪"],
                "害羞": ["那个", "这个", "那什么", "那啥", "唔", "呜"],
                "粘人": ["诶嘿", "嘿嘿", "喵喵", "哼哼", "咪咪", "呼呼"],
                "暗示": [
                    "啊", "嗯", "唔", "哈", "呜", "嘤",
                    "呼", "哈啊", "呜呜", "嗯啊", "唔嗯", "啊呜"
                ],
                "调皮": [
                    "嘿", "哈", "噫", "哦", "啦", "呀",
                    "嘻嘻", "哼哼", "嘿嘿", "啾啾", "噜噜", "哇哦"
                ],
                "吃醋": ["哼", "切", "啧", "呵", "嗯", "哦"]
            }
            
            count = random.randint(1, 3)
            selected_particles = random.sample(particles[mood], count)
            return "".join(selected_particles) + "..." + text

        def _add_ending(self, text, mood):
            """扩展结尾系统"""
            endings = {
                "撒娇": ["喵~", "喵喵~", "nya~", "喵呜~", "喵...♡", "喵喵喵~"],
                "害羞": ["喵....", "呜喵~", "...喵", "喵...?", "喵喵....", "...喵呜"],
                "粘人": ["喵喵喵~", "喵~♪", "喵呜~", "喵~❤", "喵喵~", "喵..."],
                "暗示": [
                    "喵...♡", "...喵~", "呜喵...", "喵...❤", "喵~", "...喵喵",
                    "喵...♥", "...嗯喵", "喵呜...♡", "哈喵....", "喵~...♥", "呼喵..."
                ],
                "调皮": [
                    "喵!", "喵喵!", "喵哈~", "喵嘿~", "喵喵喵!", "喵~",
                    "喵嘻!", "喵哼~", "喵呜!", "喵嘿嘿~", "喵哇!", "喵嘻嘻~"
                ],
                "吃醋": ["哼喵!", "喵...", "切喵~", "喵!!", "...喵", "喵喵..."]
            }
            
            if not any(text.endswith(end) for end in endings[mood]):
                text += random.choice(endings[mood])
            
            return text

        for file in novel_files:
            if sample_count >= max_samples:
                break
            
            with open(file, 'r', encoding='utf-8') as f:
                text = f.read()
                chunks = self._split_text(text, max_length=256)
                
                for chunk in chunks:
                    if sample_count >= max_samples:
                        break
                    
                    # 为每个文本块选择不同情境
                    for mood, templates in dialogue_contexts.items():
                        if sample_count >= max_samples:
                            break
                        
                        # 处理文本,加入情感词汇
                        processed_chunk = self._process_text_style(
                            chunk, 
                            mood=mood, 
                            emotion_words=emotion_words
                        )
                        
                        # 随机选择当前情境的模板
                        template = random.choice(templates)
                        
                        # 构建对话样本,加入情境提示
                        conversation = f"""<|system|>{base_system_prompt}
当前情境:{mood}</|system|>
<|user|>{template['question']}</|user|>
<|assistant|>{template['response'].format(text_chunk=processed_chunk)}</|assistant|>"""
                        
                        dataset.append({"text": conversation})
                        sample_count += 1

        return Dataset.from_dict({"text": dataset})

    def _split_text(self, text, max_length=256):
        """智能分割文本,保持语义完整性"""
        sentences = re.split('([。!?~])', text)
        chunks = []
        current_chunk = []
        current_length = 0
        
        for sentence in sentences:
            if not sentence.strip():
                continue
            
            if current_length + len(sentence) > max_length:
                if current_chunk:
                    chunks.append(''.join(current_chunk))
                    current_chunk = []
                    current_length = 0
            
            current_chunk.append(sentence)
            current_length += len(sentence)
            
            # 如果当前句子结束符是。!?~之一,考虑是否形成新chunk
            if sentence in ['。', '!', '?', '~'] and current_length > max_length/2:
                chunks.append(''.join(current_chunk))
                current_chunk = []
                current_length = 0
        
        if current_chunk:
            chunks.append(''.join(current_chunk))
        
        return chunks

    def _create_style_response(self, style_text, base_response):
        """根据风格文本的用词和句式特点,改写基础回答"""
        # 这里可以添加更复杂的风格转换逻辑
        # 目前简单返回原始回答
        return base_response

    def train(self, dataset, output_dir="./results"):
        # 调整训练参数以适应CPU环境
        training_args = TrainingArguments(
            output_dir=output_dir,
            num_train_epochs=1,        # 减少训练轮次
            per_device_train_batch_size=1,  # 减小批次大小
            gradient_accumulation_steps=8,   # 增加梯度累积
            save_steps=50,
            logging_steps=10,
            learning_rate=1e-4,
            fp16=False,               # 禁用fp16
            optim="adamw_torch"       # 使用标准优化器
        )

        trainer = Trainer(
            model=self.model,
            args=training_args,
            train_dataset=dataset,
        )

        trainer.train()
        
        # 保存模型
        self.model.save_pretrained(output_dir)
        self.tokenizer.save_pretrained(output_dir)