Update train.py
Browse files
train.py
CHANGED
@@ -12,118 +12,27 @@ class ModelTrainer:
|
|
12 |
self.model_id = model_id
|
13 |
|
14 |
# 加载系统提示词
|
15 |
-
|
16 |
-
|
17 |
-
self.system_prompts = json.load(f)
|
18 |
-
except Exception as e:
|
19 |
-
print(f"加载系统提示词失败: {e}")
|
20 |
-
self.system_prompts = {"base_prompt": "默认系统提示词"}
|
21 |
-
|
22 |
-
# 首先尝试检测可用资源
|
23 |
-
self.device = self._detect_device()
|
24 |
-
self.dtype = self._detect_optimal_dtype()
|
25 |
|
26 |
-
#
|
27 |
-
self.
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
try:
|
32 |
-
if torch.cuda.is_available():
|
33 |
-
print("检测到 CUDA 设备")
|
34 |
-
return "cuda"
|
35 |
-
elif torch.backends.mps.is_available():
|
36 |
-
print("检测到 MPS 设备")
|
37 |
-
return "mps"
|
38 |
-
else:
|
39 |
-
print("使用 CPU 设备")
|
40 |
-
return "cpu"
|
41 |
-
except:
|
42 |
-
print("设备检测失败,默认使用 CPU")
|
43 |
-
return "cpu"
|
44 |
-
|
45 |
-
def _detect_optimal_dtype(self):
|
46 |
-
"""检测并返回最优数据类型"""
|
47 |
-
try:
|
48 |
-
if self.device == "cuda":
|
49 |
-
if torch.cuda.get_device_capability()[0] >= 7:
|
50 |
-
print("使用 float16 精度")
|
51 |
-
return torch.float16
|
52 |
-
print("使用 float32 精度")
|
53 |
-
return torch.float32
|
54 |
-
except:
|
55 |
-
print("数据类型检测失败,默认使用 float32")
|
56 |
-
return torch.float32
|
57 |
-
|
58 |
-
def _initialize_model_and_tokenizer(self):
|
59 |
-
"""初始化模型和分词器,包含多个备选方案"""
|
60 |
-
print(f"开始初始化模型,使用设备: {self.device},数据类型: {self.dtype}")
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
# 尝试不同的模型加载配置
|
73 |
-
loading_configs = [
|
74 |
-
# 配置1:标准加载
|
75 |
-
{
|
76 |
-
"trust_remote_code": True,
|
77 |
-
"torch_dtype": self.dtype,
|
78 |
-
"device_map": "auto",
|
79 |
-
"low_cpu_mem_usage": True
|
80 |
-
},
|
81 |
-
# 配置2:8bit量化加载
|
82 |
-
{
|
83 |
-
"trust_remote_code": True,
|
84 |
-
"load_in_8bit": True,
|
85 |
-
"device_map": "auto",
|
86 |
-
},
|
87 |
-
# 配置3:CPU加载
|
88 |
-
{
|
89 |
-
"trust_remote_code": True,
|
90 |
-
"torch_dtype": torch.float32,
|
91 |
-
"device_map": "cpu",
|
92 |
-
"low_cpu_mem_usage": True
|
93 |
-
}
|
94 |
-
]
|
95 |
-
|
96 |
-
last_exception = None
|
97 |
-
for config in loading_configs:
|
98 |
-
try:
|
99 |
-
print(f"尝试加载模型,配置: {config}")
|
100 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
101 |
-
self.model_id,
|
102 |
-
**config
|
103 |
-
)
|
104 |
-
print("模型加载成功")
|
105 |
-
|
106 |
-
# 配置 LoRA
|
107 |
-
try:
|
108 |
-
self._setup_lora()
|
109 |
-
print("LoRA 配置成功")
|
110 |
-
except Exception as e:
|
111 |
-
print(f"LoRA 配置失败: {e}")
|
112 |
-
raise
|
113 |
-
|
114 |
-
return # 成功加载后退出
|
115 |
-
except Exception as e:
|
116 |
-
last_exception = e
|
117 |
-
print(f"当前配置加载失败: {e}")
|
118 |
-
continue
|
119 |
-
|
120 |
-
# 如果所有配置都失败
|
121 |
-
raise RuntimeError(f"所有模型加载配置均失败,最后的错误: {last_exception}")
|
122 |
-
|
123 |
-
def _setup_lora(self):
|
124 |
-
"""配置 LoRA"""
|
125 |
self.lora_config = LoraConfig(
|
126 |
-
r=4,
|
127 |
lora_alpha=16,
|
128 |
target_modules=["q_proj", "v_proj"],
|
129 |
lora_dropout=0.05,
|
|
|
12 |
self.model_id = model_id
|
13 |
|
14 |
# 加载系统提示词
|
15 |
+
with open(system_prompts_path, 'r', encoding='utf-8') as f:
|
16 |
+
self.system_prompts = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# 修改模型初始化参数
|
19 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
20 |
+
model_id,
|
21 |
+
trust_remote_code=True
|
22 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# 修改这部分的初始化参数
|
25 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_id,
|
27 |
+
trust_remote_code=True,
|
28 |
+
torch_dtype=torch.float32, # 使用 torch.float32 而不是字符串
|
29 |
+
device_map='auto', # 自动选择设备
|
30 |
+
low_cpu_mem_usage=True
|
31 |
+
)
|
32 |
+
|
33 |
+
# 使用更轻量的LoRA配置
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
self.lora_config = LoraConfig(
|
35 |
+
r=4, # 降低rank
|
36 |
lora_alpha=16,
|
37 |
target_modules=["q_proj", "v_proj"],
|
38 |
lora_dropout=0.05,
|