File size: 10,872 Bytes
0f61832
903af12
8cf27dc
0f61832
065eebf
 
423cd4c
0f61832
 
 
 
b9ee2ea
 
065eebf
 
b9ee2ea
 
 
 
 
 
 
 
 
065eebf
b9ee2ea
065eebf
423cd4c
 
0f61832
065eebf
8cf27dc
0f61832
8cf27dc
0f61832
 
423cd4c
065eebf
423cd4c
0f61832
423cd4c
0f61832
423cd4c
0f61832
423cd4c
0f61832
423cd4c
 
0f61832
 
065eebf
 
0f61832
 
 
 
065eebf
0f61832
065eebf
0f61832
065eebf
 
b9ee2ea
 
065eebf
b9ee2ea
065eebf
 
 
 
 
 
 
 
 
 
 
 
0f61832
065eebf
b9ee2ea
065eebf
 
 
 
 
 
 
 
 
 
 
 
423cd4c
0f61832
423cd4c
 
 
065eebf
 
 
 
 
 
 
 
0f61832
 
 
423cd4c
0f61832
 
 
 
 
 
 
423cd4c
0f61832
423cd4c
8cf27dc
423cd4c
 
 
 
 
 
 
 
 
b9ee2ea
 
 
 
 
 
423cd4c
b9ee2ea
 
423cd4c
 
 
065eebf
b9ee2ea
423cd4c
 
 
 
b9ee2ea
423cd4c
 
b9ee2ea
423cd4c
 
b9ee2ea
 
423cd4c
 
 
 
b9ee2ea
423cd4c
 
 
065eebf
 
 
423cd4c
065eebf
 
423cd4c
 
0f61832
423cd4c
 
065eebf
 
b9ee2ea
8cf27dc
065eebf
b9ee2ea
423cd4c
0f61832
423cd4c
8cf27dc
423cd4c
065eebf
 
 
 
b9ee2ea
065eebf
 
 
 
 
b9ee2ea
 
 
065eebf
b9ee2ea
065eebf
b9ee2ea
065eebf
b9ee2ea
065eebf
 
 
b9ee2ea
 
065eebf
0f61832
065eebf
 
 
0f61832
065eebf
 
 
 
 
 
 
 
 
 
 
b9ee2ea
065eebf
8cf27dc
 
0f61832
 
8cf27dc
 
 
065eebf
b9ee2ea
065eebf
 
b9ee2ea
065eebf
 
 
 
 
 
b9ee2ea
0f61832
b9ee2ea
 
 
 
 
065eebf
b9ee2ea
 
 
0f61832
065eebf
b9ee2ea
065eebf
0f61832
b9ee2ea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
import gradio as gr
import requests
import pandas as pd
import re
import logging
from agent import initialize_agent # Import the agent initialization function

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Logging Configuration ---
logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] %(name)s: %(message)s")
logger = logging.getLogger(__name__)

# --- Global Agent Initialization ---
# The agent is initialized once when the Space starts up.
# This is critical for performance and to avoid reloading the model on every request.
logger.info("πŸš€ Application starting up! Initializing the GAIA agent...")
AGENT = initialize_agent()
if AGENT is None:
    logger.error("πŸ’₯ FATAL: Agent initialization failed. The application will not be able to process questions.")
else:
    logger.info("βœ… Agent initialized successfully.")

# --- Helper Functions ---

def _fetch_questions(api_url: str) -> list:
    """Fetches evaluation questions from the API."""
    questions_url = f"{api_url}/questions"
    logger.info(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            raise ValueError("Fetched questions list is empty or invalid format.")
        logger.info(f"Fetched {len(questions_data)} questions.")
        return questions_data
    except requests.exceptions.RequestException as e:
        raise RuntimeError(f"Error fetching questions: {e}") from e
    except requests.exceptions.JSONDecodeError as e:
        raise RuntimeError(f"Error decoding JSON response from questions endpoint: {e}. Response: {response.text[:500]}") from e
    except Exception as e:
        raise RuntimeError(f"An unexpected error occurred fetching questions: {e}") from e

def _run_agent_on_questions(agent, questions_data: list) -> tuple[list, list]:
    """Runs the agent on each question and collects answers and logs."""
    results_log = []
    answers_payload = []
    logger.info(f"Running agent on {len(questions_data)} questions...")
    
    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            logger.warning(f"Skipping item with missing task_id or question: {item}")
            continue
        
        try:
            logger.info(f"Processing task {task_id}: {question_text[:100]}...")
            
            # The agent wrapper returns the final, normalized answer directly.
            submitted_answer = agent(question_text)
            
            logger.info(f"Task {task_id} - Final answer from agent: {submitted_answer}")
            
            answers_payload.append({
                "task_id": task_id, 
                "submitted_answer": submitted_answer
            })
            
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text, 
                "Final Answer": submitted_answer
            })
            
        except Exception as e:
            error_msg = f"AGENT ERROR: {e}"
            logger.error(f"Error running agent on task {task_id}: {e}", exc_info=True)
            
            answers_payload.append({
                "task_id": task_id, 
                "submitted_answer": error_msg
            })
            
            results_log.append({
                "Task ID": task_id, 
                "Question": question_text, 
                "Final Answer": error_msg
            })
    
    return answers_payload, results_log

def _submit_answers(api_url: str, username: str, agent_code_url: str, answers_payload: list) -> dict:
    """Submits the agent's answers to the evaluation API."""
    submit_url = f"{api_url}/submit"
    submission_data = {
        "username": username.strip(), 
        "agent_code": agent_code_url, 
        "answers": answers_payload
    }
    
    logger.info(f"Submitting {len(answers_payload)} answers for user '{username}' to: {submit_url}")
    
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        return response.json()
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        raise RuntimeError(f"Submission Failed: {error_detail}") from e
    except requests.exceptions.Timeout:
        raise RuntimeError("Submission Failed: The request timed out.") from e
    except requests.exceptions.RequestException as e:
        raise RuntimeError(f"Submission Failed: Network error - {e}") from e
    except Exception as e:
        raise RuntimeError(f"An unexpected error occurred during submission: {e}") from e

# --- Main Gradio Function ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Orchestrates the fetching of questions, running the agent, and submitting answers.
    """
    if not profile:
        logger.warning("Attempted to run evaluation without being logged in.")
        return "Please Login to Hugging Face with the button above.", None
    
    username = profile.username
    logger.info(f"User '{username}' initiated evaluation.")

    if AGENT is None:
        return "❌ Error: The agent failed to initialize on startup. Please check the Space logs for details.", None

    space_id = os.getenv("SPACE_ID")
    if not space_id:
        logger.error("SPACE_ID environment variable not found. Cannot determine agent_code URL.")
        return "❌ Error: SPACE_ID not set. This is required for submission.", None
    agent_code_url = f"https://huggingface.co/spaces/{space_id}/tree/main"

    status_message = ""
    results_df = pd.DataFrame()
    results_log = []

    try:
        # 1. Fetch Questions
        questions_data = _fetch_questions(DEFAULT_API_URL)

        # 2. Run Agent on Questions (using the pre-initialized global agent)
        answers_payload, results_log = _run_agent_on_questions(AGENT, questions_data)
        if not answers_payload:
            status_message = "Agent did not produce any answers to submit."
            return status_message, pd.DataFrame(results_log)

        # 3. Submit Answers
        submission_result = _submit_answers(DEFAULT_API_URL, username, agent_code_url, answers_payload)

        final_status = (
            f"πŸŽ‰ Submission Successful!\n"
            f"πŸ‘€ User: {submission_result.get('username')}\n"
            f"πŸ“Š Overall Score: {submission_result.get('score', 'N/A')}% "
            f"({submission_result.get('correct_count', '?')}/{submission_result.get('total_attempted', '?')} correct)\n"
            f"πŸ’¬ Message: {submission_result.get('message', 'No message received.')}\n"
            f"πŸ”— Agent Code: {agent_code_url}"
        )
        status_message = final_status
        results_df = pd.DataFrame(results_log)

    except RuntimeError as e:
        status_message = f"❌ Operation Failed: {e}"
        logger.error(status_message)
        results_df = pd.DataFrame(results_log) if results_log else pd.DataFrame([{"Status": "Error", "Details": str(e)}])
    except Exception as e:
        status_message = f"πŸ’₯ Critical Error: {e}"
        logger.error(status_message, exc_info=True)
        results_df = pd.DataFrame([{"Status": "Critical Error", "Details": str(e)}])

    return status_message, results_df

# --- Gradio Interface Definition ---
with gr.Blocks(title="GAIA Benchmark Agent", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🧠 GAIA Benchmark Evaluation Agent
    
    **An advanced agent designed to tackle the General AI Assistant (GAIA) benchmark.**
    """)
    
    gr.Markdown("""
    ## πŸ“‹ Instructions:
    
    1.  **Add Secrets**: If you have cloned this Space, go to the **Settings** tab and add your API keys as **Secrets**.
        *   `TOGETHER_API_KEY`: Your key from Together AI.
        *   `SERPAPI_API_KEY`: Your key from SerpApi for Google Search (optional but recommended).
    
    2.  **Login**: Use the button below to log in with your Hugging Face account. Your username is required for submission.
    
    3.  **Run**: Click 'Run Evaluation & Submit' to start the process. The agent will fetch all questions, solve them, and submit the answers automatically.
    
    4.  **Wait**: The process can take several minutes. You can monitor the progress in the status box and see detailed results in the table below.
    
    ---
    
    ### 🎯 GAIA Answer Formatting
    The agent is designed to automatically format answers according to GAIA's strict requirements (e.g., no commas in numbers, no articles in strings).
    """)

    with gr.Row():
        gr.LoginButton(scale=1)
        run_button = gr.Button("πŸš€ Run Evaluation & Submit All Answers", variant="primary", scale=2)

    status_output = gr.Textbox(
        label="πŸ“Š Evaluation Status & Results", 
        lines=8, 
        interactive=False,
        placeholder="Click 'Run Evaluation' to start the process..."
    )
    
    results_table = gr.DataFrame(
        label="πŸ“ Detailed Question Results", 
        wrap=True,
        interactive=False,
        column_widths=["10%", "60%", "30%"]
    )

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "="*70)
    print("πŸš€ GAIA BENCHMARK AGENT STARTING UP")
    print("="*70)
    
    # Check environment variables loaded from HF Secrets
    space_id = os.getenv("SPACE_ID")
    together_key = os.getenv("TOGETHER_API_KEY")
    serpapi_key = os.getenv("SERPAPI_API_KEY")

    if space_id:
        print(f"βœ… SPACE_ID: {space_id}")
        print(f"   - Submission URL will be: https://huggingface.co/spaces/{space_id}")
    else:
        print("⚠️  SPACE_ID not found - submissions will fail. This is normal for local dev.")

    print(f"πŸ”‘ API Keys Status (from Secrets):")
    print(f"   - Together AI: {'βœ… Set' if together_key else '❌ Missing - Agent will fail to initialize!'}")
    print(f"   - SerpAPI:     {'βœ… Set' if serpapi_key else '⚠️ Missing - Google Search tool will be disabled.'}")

    if not together_key:
        print("\n‼️ CRITICAL: TOGETHER_API_KEY is not set in the Space Secrets.")
        print("   Please add it in the 'Settings' tab of your Space.")

    print("="*70)
    print("🎯 Launching Gradio Interface...")
    print("="*70 + "\n")

    demo.launch(debug=False, share=False)