jesusgj commited on
Commit
065eebf
Β·
1 Parent(s): c9e0cf1

Modified files

Browse files
Files changed (3) hide show
  1. agent.py +1715 -250
  2. app.py +185 -60
  3. requirements.txt +8 -1
agent.py CHANGED
@@ -5,23 +5,34 @@ import urllib.parse as urlparse
5
  import io
6
  import contextlib
7
  import re
 
8
  from functools import lru_cache, wraps
9
- from typing import Optional, Dict, Any
 
10
 
11
  from dotenv import load_dotenv
12
  from requests.exceptions import RequestException
 
13
  import serpapi
14
  from llama_index.core import VectorStoreIndex, download_loader
15
  from llama_index.core.schema import Document
16
  from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound
 
 
17
 
18
- from smolagents import (CodeAgent, InferenceClientModel, ToolCallingAgent,
19
- WebSearchTool, WikipediaTool, tool)
 
 
 
 
 
 
20
 
21
  # --- Configuration and Setup ---
22
 
23
  def configure_logging():
24
- """Sets up basic logging configuration."""
25
  logging.basicConfig(
26
  level=logging.INFO,
27
  format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
@@ -29,14 +40,24 @@ def configure_logging():
29
  )
30
 
31
  def load_api_keys():
32
- """Loads API keys from a .env file."""
33
  load_dotenv()
34
  keys = {
35
  'together': os.getenv('TOGETHER_API_KEY'),
36
  'serpapi': os.getenv('SERPAPI_API_KEY'),
 
37
  }
38
- if not all(keys.values()):
39
- raise ValueError("One or more API keys are missing. Please check your .env file.")
 
 
 
 
 
 
 
 
 
40
  return keys
41
 
42
  # --- Custom Exceptions ---
@@ -46,46 +67,67 @@ class SerpApiClientException(Exception):
46
  class YouTubeTranscriptApiError(Exception):
47
  pass
48
 
49
- # --- Decorators ---
 
 
 
50
 
51
  def retry(max_retries=3, initial_delay=1, backoff=2):
52
- """A robust retry decorator with exponential backoff."""
53
  def decorator(func):
54
  @wraps(func)
55
  def wrapper(*args, **kwargs):
56
  delay = initial_delay
57
- retryable_exceptions = (RequestException, SerpApiClientException, YouTubeTranscriptApiError, TranscriptsDisabled, NoTranscriptFound)
 
 
 
 
 
 
 
 
 
 
58
  for attempt in range(1, max_retries + 1):
59
  try:
60
  return func(*args, **kwargs)
61
  except retryable_exceptions as e:
 
62
  if attempt == max_retries:
63
  logging.error(f"{func.__name__} failed after {attempt} attempts: {e}")
64
- raise
65
  logging.warning(f"Attempt {attempt} for {func.__name__} failed: {e}. Retrying in {delay} seconds...")
66
  time.sleep(delay)
67
  delay *= backoff
68
  except Exception as e:
69
  logging.error(f"{func.__name__} failed with a non-retryable error: {e}")
70
  raise
 
 
 
71
  return wrapper
72
  return decorator
73
 
74
- # --- Helper Functions ---
75
 
76
  def extract_video_id(url_or_id: str) -> Optional[str]:
77
- """Extract YouTube video ID from various URL formats."""
78
  if not url_or_id:
79
  return None
80
 
81
- # If it's already just an ID (11 characters, alphanumeric + underscore/dash)
 
 
 
82
  if re.match(r'^[a-zA-Z0-9_-]{11}$', url_or_id):
83
  return url_or_id
84
 
85
- # Extract from various YouTube URL formats
86
  patterns = [
87
  r'(?:youtube\.com/watch\?v=|youtu\.be/|youtube\.com/embed/)([a-zA-Z0-9_-]{11})',
88
  r'youtube\.com/.*[?&]v=([a-zA-Z0-9_-]{11})',
 
89
  ]
90
 
91
  for pattern in patterns:
@@ -95,386 +137,1809 @@ def extract_video_id(url_or_id: str) -> Optional[str]:
95
 
96
  return None
97
 
98
- def clean_search_results(results: Dict[str, Any]) -> str:
99
- """Clean and format search results from SerpAPI."""
100
- if not results:
101
- return "No results found."
102
-
103
- formatted_results = []
104
-
105
- # Handle organic results
106
- if organic_results := results.get('organic_results', []):
107
- formatted_results.append("### Web Results")
108
- for i, res in enumerate(organic_results[:5], 1):
109
- title = res.get('title', 'N/A')
110
- snippet = res.get('snippet', 'No description available.')
111
- link = res.get('link', '#')
112
- formatted_results.append(f"{i}. **{title}**\n {snippet}\n Source: {link}")
113
-
114
- # Handle knowledge graph
115
- if knowledge_graph := results.get('knowledge_graph'):
116
- formatted_results.append("\n### Knowledge Graph")
117
- if title := knowledge_graph.get('title'):
118
- formatted_results.append(f"**{title}**")
119
- if description := knowledge_graph.get('description'):
120
- formatted_results.append(f"{description}")
121
-
122
- # Handle answer box
123
- if answer_box := results.get('answer_box'):
124
- formatted_results.append("\n### Direct Answer")
125
- if answer := answer_box.get('answer'):
126
- formatted_results.append(f"{answer}")
127
- elif snippet := answer_box.get('snippet'):
128
- formatted_results.append(f"{snippet}")
129
-
130
- return "\n\n".join(formatted_results) if formatted_results else "No relevant results found."
131
-
132
- # --- Main Agent Initialization ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
134
  def initialize_agent():
135
  """
136
- Initializes a multi-disciplinary agent optimized for GAIA benchmark questions.
137
  """
138
  configure_logging()
139
- api_keys = load_api_keys()
140
 
141
- # --- Caching Layer for LlamaIndex ---
142
- @lru_cache(maxsize=32)
143
- @retry()
 
 
 
 
 
 
144
  def get_webpage_index(url: str) -> VectorStoreIndex:
145
- """Create a searchable index from a webpage."""
146
- logging.info(f"Indexing webpage: {url}")
147
  try:
148
  loader_cls = download_loader("BeautifulSoupWebReader")
149
  loader = loader_cls()
150
  docs = loader.load_data(urls=[url])
151
  if not docs:
152
  raise ValueError(f"No content could be extracted from {url}")
153
- return VectorStoreIndex.from_documents(docs)
 
 
 
 
 
 
154
  except Exception as e:
155
- logging.error(f"Failed to index webpage {url}: {e}")
156
  raise
157
 
158
  @lru_cache(maxsize=32)
159
- @retry()
160
  def get_youtube_index(video_id: str) -> VectorStoreIndex:
161
- """Create a searchable index from a YouTube video transcript."""
162
- logging.info(f"Indexing YouTube video: {video_id}")
163
  try:
164
- # Try to get transcript in English first, then any available language
165
  try:
166
  transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['en'])
167
  except (TranscriptsDisabled, NoTranscriptFound):
168
- # Try to get any available transcript
169
  transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
170
- transcript = transcript_list.find_transcript(['en']).fetch()
 
 
 
 
 
 
 
171
 
172
  if not transcript:
173
  raise YouTubeTranscriptApiError(f"No transcript available for video {video_id}")
174
 
175
- text = ' '.join([entry['text'] for entry in transcript])
176
- if not text.strip():
 
 
 
 
 
 
 
 
177
  raise YouTubeTranscriptApiError(f"Empty transcript for video {video_id}")
178
 
179
- doc = Document(text=text, doc_id=f"youtube_{video_id}")
 
 
 
 
180
  return VectorStoreIndex.from_documents([doc])
 
181
  except Exception as e:
182
- logging.error(f"Failed to index YouTube video {video_id}: {e}")
183
- raise YouTubeTranscriptApiError(f"Could not process YouTube video {video_id}: {e}")
184
 
185
  # --- Enhanced Tool Definitions ---
186
 
187
  @tool
188
- @retry()
189
- def google_search(query: str) -> str:
190
- """
191
- Perform a comprehensive Google search with enhanced result formatting.
192
- Use for general knowledge questions, current events, or when you need factual information.
193
-
194
- Args:
195
- query (str): The search query
196
- """
197
- try:
198
- client = serpapi.Client(api_key=api_keys['serpapi'])
199
- results = client.search(q=query, engine="google", num=10)
200
- return clean_search_results(results)
201
- except Exception as e:
202
- logging.error(f"Google search failed for query '{query}': {e}")
203
- return f"Search failed: {e}"
204
-
205
- @tool
206
- def query_webpage(url: str, query: str) -> str:
207
  """
208
- Extract specific information from a webpage by asking a targeted question.
209
- Best for when you have a specific URL and need detailed information from it.
210
-
211
  Args:
212
- url (str): The complete URL of the webpage
213
- query (str): Specific question about the webpage content
214
  """
215
  try:
216
  if not url.startswith(('http://', 'https://')):
217
  url = 'https://' + url
218
 
 
219
  index = get_webpage_index(url)
220
  query_engine = index.as_query_engine(
221
- similarity_top_k=5,
222
- response_mode="tree_summarize"
 
223
  )
 
224
  response = query_engine.query(query)
225
- return str(response)
 
 
 
 
 
 
 
 
 
 
 
226
  except Exception as e:
227
  error_msg = f"Error querying webpage {url}: {e}"
228
  logging.error(error_msg)
229
  return error_msg
230
 
231
  @tool
232
- def query_youtube_video(video_url_or_id: str, query: str) -> str:
233
  """
234
- Extract information from YouTube video transcripts by asking specific questions.
235
- Handles various YouTube URL formats and video IDs.
236
-
237
  Args:
238
- video_url_or_id (str): YouTube URL or video ID
239
- query (str): Specific question about the video content
240
  """
241
  try:
242
  video_id = extract_video_id(video_url_or_id)
243
  if not video_id:
244
  return f"Error: Could not extract valid YouTube video ID from '{video_url_or_id}'"
245
 
 
246
  index = get_youtube_index(video_id)
247
  query_engine = index.as_query_engine(
248
- similarity_top_k=5,
249
- response_mode="tree_summarize"
 
250
  )
 
251
  response = query_engine.query(query)
252
- return str(response)
 
 
 
253
  except YouTubeTranscriptApiError as e:
254
- return f"YouTube transcript error for {video_url_or_id}: {e}"
 
 
255
  except Exception as e:
256
  error_msg = f"Error querying YouTube video {video_url_or_id}: {e}"
257
  logging.error(error_msg)
258
  return error_msg
259
 
260
  @tool
261
- def run_python_code(code: str) -> str:
262
  """
263
- Execute Python code in a safe environment and return the output.
264
- Perfect for calculations, data processing, and algorithmic problems.
265
- Available modules: math, datetime, json, re, collections, itertools, numpy, pandas
266
-
267
  Args:
268
- code (str): Python code to execute
269
- """
270
- # Create a safe execution environment with useful modules
271
- safe_globals = {
272
- '__builtins__': {
273
- 'print': print, 'len': len, 'range': range, 'enumerate': enumerate,
274
- 'zip': zip, 'map': map, 'filter': filter, 'sum': sum, 'max': max, 'min': min,
275
- 'abs': abs, 'round': round, 'sorted': sorted, 'reversed': reversed,
276
- 'int': int, 'float': float, 'str': str, 'bool': bool, 'list': list,
277
- 'dict': dict, 'set': set, 'tuple': tuple, 'type': type, 'isinstance': isinstance,
278
- }
279
- }
280
-
281
- # Add safe imports
282
  try:
283
- import math
284
- import datetime
285
- import json
286
- import re
287
- import collections
288
- import itertools
289
  safe_globals.update({
290
  'math': math, 'datetime': datetime, 'json': json, 're': re,
291
- 'collections': collections, 'itertools': itertools
 
292
  })
293
 
294
- # Try to import numpy and pandas if available
295
  try:
296
  import numpy as np
297
  safe_globals['np'] = np
298
  safe_globals['numpy'] = np
299
  except ImportError:
300
- pass
301
 
302
  try:
303
  import pandas as pd
304
  safe_globals['pd'] = pd
305
  safe_globals['pandas'] = pd
306
  except ImportError:
307
- pass
 
 
 
 
 
 
 
308
 
309
  except ImportError as e:
310
- logging.warning(f"Some modules not available for code execution: {e}")
 
 
 
 
311
 
312
- output = io.StringIO()
313
  try:
314
- with contextlib.redirect_stdout(output):
315
- exec(code, safe_globals)
316
- result = output.getvalue()
317
- return result if result else "Code executed successfully (no output)"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318
  except Exception as e:
319
- return f"Code execution error: {e}"
 
 
 
 
 
320
 
321
  @tool
322
- def advanced_search(query: str, search_type: str = "general") -> str:
323
  """
324
- Perform specialized searches for different types of information.
325
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326
  Args:
327
- query (str): Search query
328
- search_type (str): Type of search - "academic", "news", "images", "general"
329
  """
330
  try:
331
- client = serpapi.Client(api_key=api_keys['serpapi'])
332
 
333
- search_params = {"q": query, "num": 8}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334
 
335
- if search_type == "academic":
336
- results = client.search(engine="google_scholar", **search_params)
337
- elif search_type == "news":
338
- search_params["tbm"] = "nws"
339
- results = client.search(engine="google", **search_params)
340
- else: # general
341
- results = client.search(engine="google", **search_params)
342
 
343
- return clean_search_results(results)
344
  except Exception as e:
345
- return f"Advanced search failed: {e}"
 
 
346
 
347
  # --- Model and Agent Setup ---
348
 
349
  try:
 
350
  model = InferenceClientModel(
351
- model_id="Qwen/Qwen2.5-7B-Instruct",
352
  token=api_keys['together'],
353
  provider="together"
354
  )
355
- logging.info("Model loaded successfully.")
356
  except Exception as e:
357
- logging.error(f"Failed to load model: {e}")
358
- raise
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359
 
360
  # Specialized worker agent with comprehensive toolset
361
  worker_agent = ToolCallingAgent(
362
- tools=[
363
- google_search,
364
- advanced_search,
365
- query_webpage,
366
- query_youtube_video,
367
- run_python_code,
368
- WikipediaTool(),
369
- ],
370
  model=model,
371
- max_steps=6, # Allow more steps for complex tasks
372
  name="gaia_specialist",
373
- description="Expert agent for GAIA benchmark tasks: web research, document analysis, video processing, and code execution."
374
  )
375
 
376
- # Strategic manager agent
 
 
 
 
377
  manager = CodeAgent(
378
  model=model,
379
  managed_agents=[worker_agent],
380
- tools=[WebSearchTool()],
381
- additional_authorized_imports=[
382
- "time", "numpy", "pandas", "requests", "serpapi", "llama_index",
383
- "beautifulsoup4", "markdownify", "lxml", "json", "urllib.parse",
384
- "youtube_transcript_api", "together", "math", "datetime", "re",
385
- "collections", "itertools"
386
- ],
387
- instructions="""You are an expert AI system designed to excel at the GAIA benchmark. Your mission is to provide precise, accurate answers to complex questions spanning multiple domains.
 
 
 
 
 
388
 
389
  **STRATEGIC APPROACH:**
390
 
391
- 1. **QUESTION ANALYSIS:**
392
- - Parse the question carefully to identify: required output format, key constraints, domain (science, history, current events, etc.)
393
- - Determine the information sources needed: web search, specific websites, videos, calculations, or combinations
394
-
395
- 2. **EXECUTION STRATEGY:**
396
-
397
- **Direct Web Search (for simple lookups):**
398
- ```python
399
- results = WebSearchTool(query="your search query")
400
- print(results)
401
- ```
402
-
403
- **Delegate to Specialist Agent (for complex tasks):**
404
- ```python
405
- answer = gaia_specialist.run("Detailed task description with specific requirements")
406
- print(answer)
407
- ```
408
-
409
- The specialist can:
410
- - `google_search`: Comprehensive web searches with rich formatting
411
- - `advanced_search`: Academic papers, news, specialized searches
412
- - `query_webpage`: Deep analysis of specific URLs
413
- - `query_youtube_video`: Extract information from video transcripts
414
- - `run_python_code`: Mathematical calculations, data processing, algorithms
415
- - `wikipedia_search`: Encyclopedic information
416
-
417
- 3. **ANSWER FORMATTING:**
418
- - Provide ONLY the final answer in the exact format requested
419
- - No explanations, prefixes, or extra text unless specifically asked
420
- - For numerical answers: provide just the number
421
- - For yes/no questions: provide just "Yes" or "No"
422
- - For lists: follow the specified format exactly
423
-
424
- **EXAMPLES:**
425
-
426
- Question: "What is 15! (15 factorial)?"
427
- Strategy: Mathematical calculation β†’ delegate to specialist
428
  ```python
429
- result = gaia_specialist.run("Calculate 15 factorial using Python")
430
- print(result)
 
431
  ```
432
 
433
- Question: "What is the capital of the country where Mount Everest is located?"
434
- Strategy: Multi-step reasoning β†’ delegate to specialist
435
  ```python
436
- answer = gaia_specialist.run("Find the country where Mount Everest is located, then identify its capital city")
437
- print(answer)
 
 
 
 
 
438
  ```
439
 
440
- Remember: Your final output must be ONLY the answer itself, formatted exactly as requested."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
441
  )
442
 
443
- logging.info("Enhanced GAIA agent initialized successfully.")
444
- return manager
 
 
445
 
446
- # --- Testing and Main Execution ---
447
 
448
  def main():
449
  """Test the agent with sample GAIA-style questions."""
450
  configure_logging()
 
 
451
  try:
452
  agent = initialize_agent()
453
- if agent:
454
- # Sample questions covering different GAIA categories
455
- test_questions = [
456
- "What is the square root of 144?",
457
- "In what year was the Python programming language first released?",
458
- "What is the chemical formula for caffeine?",
459
- "How many days are there between January 1, 2024 and March 15, 2024?",
460
- ]
461
-
462
- for i, question in enumerate(test_questions, 1):
463
- logging.info(f"\n{'='*50}")
464
- logging.info(f"Test Question {i}: {question}")
465
- logging.info(f"{'='*50}")
 
 
 
 
 
 
 
 
466
 
467
- try:
468
- response = agent.run(question)
469
- logging.info(f"Agent Answer: {response}")
470
- except Exception as e:
471
- logging.error(f"Error processing question {i}: {e}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472
 
473
- # Small delay between questions
474
- time.sleep(1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476
  except Exception as e:
477
- logging.critical(f"Critical error during testing: {e}", exc_info=True)
478
 
479
  if __name__ == "__main__":
480
  main()
 
5
  import io
6
  import contextlib
7
  import re
8
+ import json
9
  from functools import lru_cache, wraps
10
+ from typing import Optional, Dict, Any, List
11
+ from datetime import datetime, timedelta
12
 
13
  from dotenv import load_dotenv
14
  from requests.exceptions import RequestException
15
+ import requests
16
  import serpapi
17
  from llama_index.core import VectorStoreIndex, download_loader
18
  from llama_index.core.schema import Document
19
  from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound
20
+ import pandas as pd
21
+ import numpy as np
22
 
23
+ # --- Correctly import the specific tools from smolagents ---
24
+ from smolagents import (
25
+ CodeAgent,
26
+ InferenceClientModel,
27
+ ToolCallingAgent,
28
+ GoogleSearchTool,
29
+ tool,
30
+ )
31
 
32
  # --- Configuration and Setup ---
33
 
34
  def configure_logging():
35
+ """Sets up detailed logging configuration for debugging."""
36
  logging.basicConfig(
37
  level=logging.INFO,
38
  format="%(asctime)s [%(levelname)s] %(name)s: %(message)s",
 
40
  )
41
 
42
  def load_api_keys():
43
+ """Loads API keys from environment variables with fallback."""
44
  load_dotenv()
45
  keys = {
46
  'together': os.getenv('TOGETHER_API_KEY'),
47
  'serpapi': os.getenv('SERPAPI_API_KEY'),
48
+ 'hf_token': os.getenv('HF_TOKEN') or os.getenv('HUGGINGFACE_HUB_TOKEN'),
49
  }
50
+
51
+ # Log which keys are available (without revealing the actual keys)
52
+ for key_name, key_value in keys.items():
53
+ if key_value:
54
+ logging.info(f"βœ… {key_name.upper()} API key loaded")
55
+ else:
56
+ logging.warning(f"⚠️ {key_name.upper()} API key not found")
57
+
58
+ if not keys['together']:
59
+ raise ValueError("TOGETHER_API_KEY is required but not found in environment variables.")
60
+
61
  return keys
62
 
63
  # --- Custom Exceptions ---
 
67
  class YouTubeTranscriptApiError(Exception):
68
  pass
69
 
70
+ class DataProcessingError(Exception):
71
+ pass
72
+
73
+ # --- Enhanced Decorators ---
74
 
75
  def retry(max_retries=3, initial_delay=1, backoff=2):
76
+ """A robust retry decorator with exponential backoff and better error handling."""
77
  def decorator(func):
78
  @wraps(func)
79
  def wrapper(*args, **kwargs):
80
  delay = initial_delay
81
+ retryable_exceptions = (
82
+ RequestException,
83
+ SerpApiClientException,
84
+ YouTubeTranscriptApiError,
85
+ TranscriptsDisabled,
86
+ NoTranscriptFound,
87
+ ConnectionError,
88
+ TimeoutError
89
+ )
90
+ last_exception = None
91
+
92
  for attempt in range(1, max_retries + 1):
93
  try:
94
  return func(*args, **kwargs)
95
  except retryable_exceptions as e:
96
+ last_exception = e
97
  if attempt == max_retries:
98
  logging.error(f"{func.__name__} failed after {attempt} attempts: {e}")
99
+ break
100
  logging.warning(f"Attempt {attempt} for {func.__name__} failed: {e}. Retrying in {delay} seconds...")
101
  time.sleep(delay)
102
  delay *= backoff
103
  except Exception as e:
104
  logging.error(f"{func.__name__} failed with a non-retryable error: {e}")
105
  raise
106
+
107
+ # If we get here, all retries failed
108
+ return f"Error after {max_retries} attempts: {last_exception}"
109
  return wrapper
110
  return decorator
111
 
112
+ # --- Enhanced Helper Functions ---
113
 
114
  def extract_video_id(url_or_id: str) -> Optional[str]:
115
+ """Extract YouTube video ID from various URL formats with better validation."""
116
  if not url_or_id:
117
  return None
118
 
119
+ # Clean the input
120
+ url_or_id = url_or_id.strip()
121
+
122
+ # Check if it's already a video ID
123
  if re.match(r'^[a-zA-Z0-9_-]{11}$', url_or_id):
124
  return url_or_id
125
 
126
+ # Various YouTube URL patterns
127
  patterns = [
128
  r'(?:youtube\.com/watch\?v=|youtu\.be/|youtube\.com/embed/)([a-zA-Z0-9_-]{11})',
129
  r'youtube\.com/.*[?&]v=([a-zA-Z0-9_-]{11})',
130
+ r'youtube-nocookie\.com/embed/([a-zA-Z0-9_-]{11})',
131
  ]
132
 
133
  for pattern in patterns:
 
137
 
138
  return None
139
 
140
+ def clean_text_output(text: str) -> str:
141
+ """Clean and normalize text output for better processing."""
142
+ if not text:
143
+ return ""
144
+
145
+ # Remove excessive whitespace
146
+ text = re.sub(r'\s+', ' ', text.strip())
147
+
148
+ # Remove common prefixes that might interfere with answer extraction
149
+ prefixes_to_remove = [
150
+ "Based on the search results,",
151
+ "According to the information,",
152
+ "The answer is:",
153
+ "Result:",
154
+ ]
155
+
156
+ for prefix in prefixes_to_remove:
157
+ if text.lower().startswith(prefix.lower()):
158
+ text = text[len(prefix):].strip()
159
+
160
+ return text
161
+
162
+ def extract_numerical_answer(text: str) -> Optional[str]:
163
+ """Extract numerical answers from text with better precision."""
164
+ # Look for standalone numbers
165
+ number_patterns = [
166
+ r'\b(\d+\.?\d*)\b', # Decimal numbers
167
+ r'\b(\d+/\d+)\b', # Fractions
168
+ r'\b(\d+,\d+(?:,\d+)*)\b', # Numbers with commas
169
+ ]
170
+
171
+ for pattern in number_patterns:
172
+ matches = re.findall(pattern, text)
173
+ if matches:
174
+ return matches[-1] # Return the last match (often the final answer)
175
+
176
+ return None
177
+
178
+ # --- Answer Extraction Functions ---
179
+
180
+ def extract_final_answer(response: str) -> str:
181
+ """
182
+ Extract the final answer from agent response following GAIA format requirements.
183
+ Looks for 'FINAL ANSWER:' pattern and extracts the answer after it.
184
+ """
185
+ if not response:
186
+ return ""
187
+
188
+ # Look for FINAL ANSWER pattern (case insensitive)
189
+ final_answer_pattern = re.compile(r'FINAL\s+ANSWER\s*:\s*(.+?)(?:\n|$)', re.IGNORECASE | re.DOTALL)
190
+ match = final_answer_pattern.search(response)
191
+
192
+ if match:
193
+ answer = match.group(1).strip()
194
+ # Clean up common formatting issues
195
+ answer = re.sub(r'\s+', ' ', answer) # Normalize whitespace
196
+ answer = answer.rstrip('.') # Remove trailing periods
197
+ return answer
198
+
199
+ # Fallback: if no FINAL ANSWER found, try to extract from end of response
200
+ lines = response.strip().split('\n')
201
+ if lines:
202
+ last_line = lines[-1].strip()
203
+ # Remove common prefixes
204
+ for prefix in ['Answer:', 'Result:', 'The answer is:', 'Final result:']:
205
+ if last_line.lower().startswith(prefix.lower()):
206
+ return last_line[len(prefix):].strip()
207
+ return last_line
208
+
209
+ return response.strip()
210
+
211
+ def normalize_answer_format(answer: str, expected_type: str = "auto") -> str:
212
+ """
213
+ Normalize answer format according to GAIA requirements.
214
+ Args:
215
+ answer: The extracted answer
216
+ expected_type: "number", "string", "list", or "auto" to detect
217
+ """
218
+ if not answer:
219
+ return answer
220
+
221
+ answer = answer.strip()
222
+
223
+ # Auto-detect type if not specified
224
+ if expected_type == "auto":
225
+ # Try to detect a list (comma-separated, at least two elements)
226
+ if ',' in answer and len([x for x in answer.split(',') if x.strip()]) > 1:
227
+ expected_type = "list"
228
+ # Try to detect a number (integer or float, possibly negative)
229
+ elif re.fullmatch(r'[-+]?\d*\.?\d+(?:[eE][-+]?\d+)?', answer.replace(',', '').strip()):
230
+ expected_type = "number"
231
+ # Otherwise, treat as string
232
+ else:
233
+ expected_type = "string"
234
+
235
 
236
  def initialize_agent():
237
  """
238
+ Initializes an enhanced multi-disciplinary agent optimized for GAIA benchmark questions.
239
  """
240
  configure_logging()
241
+ logging.info("πŸš€ Starting GAIA agent initialization...")
242
 
243
+ try:
244
+ api_keys = load_api_keys()
245
+ except Exception as e:
246
+ logging.error(f"Failed to load API keys: {e}")
247
+ return None
248
+
249
+ # --- Enhanced Caching Layer for LlamaIndex ---
250
+ @lru_cache(maxsize=64) # Increased cache size
251
+ @retry(max_retries=3)
252
  def get_webpage_index(url: str) -> VectorStoreIndex:
253
+ logging.info(f"πŸ“„ Indexing webpage: {url}")
 
254
  try:
255
  loader_cls = download_loader("BeautifulSoupWebReader")
256
  loader = loader_cls()
257
  docs = loader.load_data(urls=[url])
258
  if not docs:
259
  raise ValueError(f"No content could be extracted from {url}")
260
+
261
+ # Filter out very short documents
262
+ valid_docs = [doc for doc in docs if len(doc.text.strip()) > 50]
263
+ if not valid_docs:
264
+ raise ValueError(f"No substantial content found in {url}")
265
+
266
+ return VectorStoreIndex.from_documents(valid_docs)
267
  except Exception as e:
268
+ logging.error(f"Error indexing webpage {url}: {e}")
269
  raise
270
 
271
  @lru_cache(maxsize=32)
272
+ @retry(max_retries=3)
273
  def get_youtube_index(video_id: str) -> VectorStoreIndex:
274
+ logging.info(f"πŸŽ₯ Indexing YouTube video: {video_id}")
 
275
  try:
276
+ # Try to get English transcript first
277
  try:
278
  transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['en'])
279
  except (TranscriptsDisabled, NoTranscriptFound):
280
+ # Try auto-generated or any available transcript
281
  transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
282
+ try:
283
+ transcript = transcript_list.find_transcript(['en']).fetch()
284
+ except:
285
+ # Get any available transcript
286
+ available_transcripts = list(transcript_list)
287
+ if not available_transcripts:
288
+ raise YouTubeTranscriptApiError(f"No transcripts available for video {video_id}")
289
+ transcript = available_transcripts[0].fetch()
290
 
291
  if not transcript:
292
  raise YouTubeTranscriptApiError(f"No transcript available for video {video_id}")
293
 
294
+ # Combine transcript with timestamps for better context
295
+ text_segments = []
296
+ for entry in transcript:
297
+ timestamp = int(entry.get('start', 0))
298
+ text = entry.get('text', '').strip()
299
+ if text:
300
+ text_segments.append(f"[{timestamp}s] {text}")
301
+
302
+ full_text = ' '.join(text_segments)
303
+ if not full_text.strip():
304
  raise YouTubeTranscriptApiError(f"Empty transcript for video {video_id}")
305
 
306
+ doc = Document(
307
+ text=full_text,
308
+ doc_id=f"youtube_{video_id}",
309
+ metadata={"source": f"https://youtube.com/watch?v={video_id}"}
310
+ )
311
  return VectorStoreIndex.from_documents([doc])
312
+
313
  except Exception as e:
314
+ logging.error(f"Error indexing YouTube video {video_id}: {e}")
315
+ raise
316
 
317
  # --- Enhanced Tool Definitions ---
318
 
319
  @tool
320
+ def advanced_web_query(url: str, query: str) -> str:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
321
  """
322
+ Extract specific information from a webpage using advanced querying.
323
+ Handles various content types and provides detailed responses.
 
324
  Args:
325
+ url: The webpage URL to analyze
326
+ query: Specific question to ask about the content
327
  """
328
  try:
329
  if not url.startswith(('http://', 'https://')):
330
  url = 'https://' + url
331
 
332
+ logging.info(f"πŸ” Querying webpage: {url} with query: {query}")
333
  index = get_webpage_index(url)
334
  query_engine = index.as_query_engine(
335
+ similarity_top_k=8, # Increased for better coverage
336
+ response_mode="tree_summarize",
337
+ verbose=True
338
  )
339
+
340
  response = query_engine.query(query)
341
+ result = clean_text_output(str(response))
342
+
343
+ # If the response seems incomplete, try a broader query
344
+ if len(result) < 50 and "not found" not in result.lower():
345
+ broader_query = f"Information about {query.split()[-1] if query.split() else query}"
346
+ broader_response = query_engine.query(broader_query)
347
+ broader_result = clean_text_output(str(broader_response))
348
+ if len(broader_result) > len(result):
349
+ result = broader_result
350
+
351
+ return result
352
+
353
  except Exception as e:
354
  error_msg = f"Error querying webpage {url}: {e}"
355
  logging.error(error_msg)
356
  return error_msg
357
 
358
  @tool
359
+ def enhanced_youtube_query(video_url_or_id: str, query: str) -> str:
360
  """
361
+ Extract information from YouTube video transcripts with enhanced processing.
362
+ Handles timestamps and provides contextual responses.
 
363
  Args:
364
+ video_url_or_id: YouTube URL or video ID
365
+ query: Specific question about the video content
366
  """
367
  try:
368
  video_id = extract_video_id(video_url_or_id)
369
  if not video_id:
370
  return f"Error: Could not extract valid YouTube video ID from '{video_url_or_id}'"
371
 
372
+ logging.info(f"🎬 Querying YouTube video: {video_id} with query: {query}")
373
  index = get_youtube_index(video_id)
374
  query_engine = index.as_query_engine(
375
+ similarity_top_k=6,
376
+ response_mode="tree_summarize",
377
+ verbose=True
378
  )
379
+
380
  response = query_engine.query(query)
381
+ result = clean_text_output(str(response))
382
+
383
+ return result
384
+
385
  except YouTubeTranscriptApiError as e:
386
+ error_msg = f"YouTube transcript error for {video_url_or_id}: {e}"
387
+ logging.error(error_msg)
388
+ return error_msg
389
  except Exception as e:
390
  error_msg = f"Error querying YouTube video {video_url_or_id}: {e}"
391
  logging.error(error_msg)
392
  return error_msg
393
 
394
  @tool
395
+ def enhanced_python_execution(code: str) -> str:
396
  """
397
+ Execute Python code with enhanced capabilities and error handling.
398
+ Includes mathematical, data processing, and web scraping capabilities.
 
 
399
  Args:
400
+ code: Python code to execute
401
+ """
402
+ # Expanded safe globals with more libraries
403
+ safe_globals = {}
 
 
 
 
 
 
 
 
 
 
404
  try:
405
+ # Basic Python modules
406
+ import math, datetime, json, re, collections, itertools, random
407
+ from fractions import Fraction
408
+ from decimal import Decimal
409
+ import statistics
410
+
411
  safe_globals.update({
412
  'math': math, 'datetime': datetime, 'json': json, 're': re,
413
+ 'collections': collections, 'itertools': itertools, 'random': random,
414
+ 'Fraction': Fraction, 'Decimal': Decimal, 'statistics': statistics
415
  })
416
 
417
+ # Scientific computing
418
  try:
419
  import numpy as np
420
  safe_globals['np'] = np
421
  safe_globals['numpy'] = np
422
  except ImportError:
423
+ logging.warning("NumPy not available")
424
 
425
  try:
426
  import pandas as pd
427
  safe_globals['pd'] = pd
428
  safe_globals['pandas'] = pd
429
  except ImportError:
430
+ logging.warning("Pandas not available")
431
+
432
+ # Web requests for data fetching
433
+ try:
434
+ import requests
435
+ safe_globals['requests'] = requests
436
+ except ImportError:
437
+ logging.warning("Requests not available")
438
 
439
  except ImportError as e:
440
+ logging.warning(f"Some modules not available: {e}")
441
+
442
+ # Capture both stdout and stderr
443
+ stdout_capture = io.StringIO()
444
+ stderr_capture = io.StringIO()
445
 
 
446
  try:
447
+ logging.info(f"🐍 Executing Python code: {code[:100]}...")
448
+
449
+ with contextlib.redirect_stdout(stdout_capture), contextlib.redirect_stderr(stderr_capture):
450
+ # Use exec with restricted builtins for safety
451
+ restricted_builtins = {
452
+ 'abs': abs, 'all': all, 'any': any, 'bin': bin, 'bool': bool,
453
+ 'chr': chr, 'dict': dict, 'dir': dir, 'divmod': divmod,
454
+ 'enumerate': enumerate, 'filter': filter, 'float': float,
455
+ 'format': format, 'hex': hex, 'int': int, 'len': len,
456
+ 'list': list, 'map': map, 'max': max, 'min': min, 'oct': oct,
457
+ 'ord': ord, 'pow': pow, 'print': print, 'range': range,
458
+ 'repr': repr, 'reversed': reversed, 'round': round,
459
+ 'set': set, 'sorted': sorted, 'str': str, 'sum': sum,
460
+ 'tuple': tuple, 'type': type, 'zip': zip,
461
+ }
462
+
463
+ exec(code, {"__builtins__": restricted_builtins}, safe_globals)
464
+
465
+ stdout_result = stdout_capture.getvalue()
466
+ stderr_result = stderr_capture.getvalue()
467
+
468
+ # Combine outputs
469
+ result_parts = []
470
+ if stdout_result.strip():
471
+ result_parts.append(stdout_result.strip())
472
+ if stderr_result.strip():
473
+ result_parts.append(f"Warnings/Errors: {stderr_result.strip()}")
474
+
475
+ if result_parts:
476
+ return '\n'.join(result_parts)
477
+ else:
478
+ return "Code executed successfully (no output)"
479
+
480
  except Exception as e:
481
+ error_msg = f"Code execution error: {e}"
482
+ stderr_result = stderr_capture.getvalue()
483
+ if stderr_result.strip():
484
+ error_msg += f"\nAdditional details: {stderr_result.strip()}"
485
+ logging.error(error_msg)
486
+ return error_msg
487
 
488
  @tool
489
+ def enhanced_wikipedia_search(query: str, detailed: bool = True) -> str:
490
  """
491
+ Search Wikipedia with enhanced content extraction and error handling.
492
+ Args:
493
+ query: Search term
494
+ detailed: Whether to return detailed information or just summary
495
+ """
496
+ try:
497
+ import wikipedia
498
+ wikipedia.set_lang("en")
499
+ wikipedia.set_rate_limiting(True)
500
+
501
+ logging.info(f"πŸ“š Searching Wikipedia for: {query}")
502
+
503
+ # Handle disambiguation and search suggestions
504
+ try:
505
+ page = wikipedia.page(query, auto_suggest=True)
506
+ except wikipedia.DisambiguationError as e:
507
+ # Take the first option from disambiguation
508
+ if e.options:
509
+ page = wikipedia.page(e.options[0])
510
+ else:
511
+ return f"Wikipedia disambiguation error for '{query}': {e}"
512
+ except wikipedia.PageError:
513
+ # Try searching if direct page lookup fails
514
+ search_results = wikipedia.search(query, results=3)
515
+ if search_results:
516
+ page = wikipedia.page(search_results[0])
517
+ else:
518
+ return f"No Wikipedia results found for '{query}'"
519
+
520
+ if detailed:
521
+ # Get more comprehensive content
522
+ content_sections = []
523
+ content_sections.append(f"**{page.title}**")
524
+ content_sections.append(f"Summary: {page.summary}")
525
+
526
+ # Add first few sections if available
527
+ if hasattr(page, 'content') and page.content:
528
+ sections = page.content.split('\n\n')[:3] # First 3 paragraphs
529
+ for section in sections:
530
+ if section.strip() and len(section) > 50:
531
+ content_sections.append(section.strip())
532
+
533
+ content_sections.append(f"Source: {page.url}")
534
+ return '\n\n'.join(content_sections)
535
+ else:
536
+ return f"**{page.title}**\n\n{page.summary}\n\nSource: {page.url}"
537
+
538
+ except ImportError:
539
+ return "Wikipedia library not installed. Cannot perform search."
540
+ except Exception as e:
541
+ error_msg = f"Wikipedia search error for '{query}': {e}"
542
+ logging.error(error_msg)
543
+ return error_msg
544
+
545
+ @tool
546
+ def data_processing_tool(data_description: str, operation: str) -> str:
547
+ """
548
+ Process and analyze data based on descriptions and operations.
549
+ Useful for mathematical calculations, data analysis, and structured data processing.
550
  Args:
551
+ data_description: Description of the data or data source
552
+ operation: The operation to perform (calculate, analyze, extract, etc.)
553
  """
554
  try:
555
+ logging.info(f"πŸ“Š Processing data: {data_description} | Operation: {operation}")
556
 
557
+ # This tool is designed to work with the Python execution tool
558
+ # for complex data processing tasks
559
+ code_template = f"""
560
+ # Data processing task: {operation}
561
+ # Data description: {data_description}
562
+
563
+ # Add your specific data processing logic here
564
+ # This is a template - specific implementation depends on the data and operation
565
+
566
+ print("Data processing task initiated")
567
+ print(f"Description: {data_description}")
568
+ print(f"Operation: {operation}")
569
+
570
+ # Example operations:
571
+ if "calculate" in "{operation}".lower():
572
+ print("Performing calculation...")
573
+ elif "analyze" in "{operation}".lower():
574
+ print("Performing analysis...")
575
+ elif "extract" in "{operation}".lower():
576
+ print("Extracting information...")
577
+
578
+ print("Task completed - use enhanced_python_execution for specific calculations")
579
+ """
580
 
581
+ return enhanced_python_execution(code_template)
 
 
 
 
 
 
582
 
 
583
  except Exception as e:
584
+ error_msg = f"Data processing error: {e}"
585
+ logging.error(error_msg)
586
+ return error_msg
587
 
588
  # --- Model and Agent Setup ---
589
 
590
  try:
591
+ # Use a more capable model for better performance
592
  model = InferenceClientModel(
593
+ model_id="meta-llama/Llama-3.1-70B-Instruct-Turbo", # Upgraded model
594
  token=api_keys['together'],
595
  provider="together"
596
  )
597
+ logging.info("βœ… Model loaded successfully")
598
  except Exception as e:
599
+ logging.error(f"Failed to load primary model, falling back: {e}")
600
+ try:
601
+ # Fallback model
602
+ model = InferenceClientModel(
603
+ model_id="Qwen/Qwen2.5-7B-Instruct",
604
+ token=api_keys['together'],
605
+ provider="together"
606
+ )
607
+ logging.info("βœ… Fallback model loaded successfully")
608
+ except Exception as e2:
609
+ logging.error(f"Failed to load fallback model: {e2}")
610
+ raise
611
+
612
+ # Configure Google Search tool
613
+ google_search_tool = None
614
+ if api_keys['serpapi']:
615
+ try:
616
+ google_search_tool = GoogleSearchTool(
617
+ provider='serpapi',
618
+ serpapi_api_key=api_keys['serpapi']
619
+ )
620
+ logging.info("βœ… Google Search tool configured")
621
+ except Exception as e:
622
+ logging.warning(f"Failed to configure Google Search tool: {e}")
623
+
624
+ # Prepare tools list
625
+ tools_list = [
626
+ enhanced_wikipedia_search,
627
+ advanced_web_query,
628
+ enhanced_youtube_query,
629
+ enhanced_python_execution,
630
+ data_processing_tool,
631
+ ]
632
+
633
+ if google_search_tool:
634
+ tools_list.insert(0, google_search_tool)
635
 
636
  # Specialized worker agent with comprehensive toolset
637
  worker_agent = ToolCallingAgent(
638
+ tools=tools_list,
 
 
 
 
 
 
 
639
  model=model,
640
+ max_steps=8, # Increased for complex tasks
641
  name="gaia_specialist",
642
+ description="Advanced specialist agent for GAIA benchmark: web research, document analysis, video processing, mathematical computation, and data analysis."
643
  )
644
 
645
+ # Enhanced strategic manager agent
646
+ manager_tools = []
647
+ if google_search_tool:
648
+ manager_tools.append(google_search_tool)
649
+
650
  manager = CodeAgent(
651
  model=model,
652
  managed_agents=[worker_agent],
653
+ tools=manager_tools,
654
+ instructions="""You are a general AI assistant designed for the GAIA benchmark. Your mission is to provide precise, accurate answers to complex questions that require deep reasoning and analysis.
655
+
656
+ **CRITICAL: ANSWER FORMAT REQUIREMENT**
657
+ You MUST finish your response with: FINAL ANSWER: [YOUR FINAL ANSWER]
658
+
659
+ YOUR FINAL ANSWER formatting rules:
660
+ - For NUMBERS: No commas, no units (like $ or %), no additional text
661
+ Example: "FINAL ANSWER: 42" NOT "FINAL ANSWER: 42 dollars" or "FINAL ANSWER: $42"
662
+ - For STRINGS: No articles (a, an, the), no abbreviations, write digits in plain text
663
+ Example: "FINAL ANSWER: New York City" NOT "FINAL ANSWER: NYC" or "FINAL ANSWER: The Big Apple"
664
+ - For LISTS: Comma-separated, apply above rules to each element
665
+ Example: "FINAL ANSWER: Paris, London, Berlin" or "FINAL ANSWER: 1.5, 2.3, 4.7"
666
 
667
  **STRATEGIC APPROACH:**
668
 
669
+ 1. **ANALYZE THE QUESTION**: Determine what type of answer is expected (number, string, or list)
670
+
671
+ 2. **DECOMPOSE THE PROBLEM**: Break complex questions into sub-problems:
672
+ - Identify required information sources
673
+ - Plan tool usage sequence
674
+ - Consider verification steps
675
+
676
+ 3. **TOOL SELECTION**:
677
+ - Use GoogleSearchTool for current information and general web queries
678
+ - Delegate to gaia_specialist for complex multi-tool analysis:
679
+ * advanced_web_query: Deep webpage content analysis
680
+ * enhanced_youtube_query: Video transcript analysis
681
+ * enhanced_python_execution: Mathematical calculations and data processing
682
+ * enhanced_wikipedia_search: Encyclopedic knowledge
683
+ * data_processing_tool: Structured data analysis
684
+
685
+ 4. **VERIFICATION**: Cross-check critical information and validate calculations
686
+
687
+ **DELEGATION EXAMPLES**:
688
+
689
+ Simple queries:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690
  ```python
691
+ # Direct search for current information
692
+ result = search_tool.run("population Tokyo 2024")
693
+ # Extract and format the answer properly
694
  ```
695
 
696
+ Complex analysis:
 
697
  ```python
698
+ # Delegate comprehensive tasks to specialist
699
+ answer = gaia_specialist.run('''
700
+ Find the founding year of the company mentioned in this video: [URL],
701
+ calculate years from founding to 2024,
702
+ then identify a major historical event from that founding year.
703
+ Format the final answer according to GAIA requirements.
704
+ ''')
705
  ```
706
 
707
+ **RESPONSE STRUCTURE**:
708
+ 1. Show your reasoning and steps
709
+ 2. Use tools to gather information
710
+ 3. Verify your findings
711
+ 4. Format the final answer correctly
712
+ 5. End with "FINAL ANSWER: [answer]"
713
+
714
+ **EXAMPLES OF PROPER FORMATTING**:
715
+ - Question asks for a year: "FINAL ANSWER: 1991"
716
+ - Question asks for a city: "FINAL ANSWER: San Francisco"
717
+ - Question asks for a percentage: "FINAL ANSWER: 25" (not "25%" unless specified)
718
+ - Question asks for a list of countries: "FINAL ANSWER: France, Germany, Italy"
719
+ - Question asks for a calculation result: "FINAL ANSWER: 456"
720
+
721
+ Remember: Be methodical, verify your information, and always end with the properly formatted FINAL ANSWER."""
722
  )
723
 
724
+ logging.info("🎯 Enhanced GAIA agent initialized successfully!")
725
+
726
+ # Return wrapped agent that ensures GAIA format compliance
727
+ return create_gaia_agent_wrapper(manager)
728
 
729
+ # --- Main Execution Block for Local Testing ---
730
 
731
  def main():
732
  """Test the agent with sample GAIA-style questions."""
733
  configure_logging()
734
+ logging.info("πŸ§ͺ Starting local testing...")
735
+
736
  try:
737
  agent = initialize_agent()
738
+ if not agent:
739
+ logging.error("Agent initialization failed")
740
+ return
741
+
742
+ # More challenging test questions similar to GAIA
743
+ test_questions = [
744
+ "What is 15! / (12! * 3!) ?",
745
+ "In what year was the Python programming language first released?",
746
+ "What is the square root of 2,025?",
747
+ ]
748
+
749
+ for i, question in enumerate(test_questions, 1):
750
+ logging.info(f"\n{'='*60}")
751
+ logging.info(f"πŸ” Test Question {i}: {question}")
752
+ logging.info('='*60)
753
+
754
+ start_time = time.time()
755
+ try:
756
+ # The agent wrapper now handles GAIA format compliance
757
+ response = agent(question)
758
+ elapsed_time = time.time() - start_time
759
 
760
+ logging.info(f"βœ… Final Answer: {response}")
761
+ logging.info(f"⏱️ Execution time: {elapsed_time:.2f} seconds")
762
+
763
+ except Exception as e:
764
+ logging.error(f"❌ Error processing question {i}: {e}")
765
+
766
+ time.sleep(2) # Prevent rate limiting
767
+
768
+ logging.info(f"\n{'='*60}")
769
+ logging.info("🏁 Testing completed!")
770
+ logging.info('='*60)
771
+
772
+ except Exception as e:
773
+ logging.critical(f"πŸ’₯ Critical error during testing: {e}", exc_info=True)
774
+
775
+ if __name__ == "__main__":
776
+ main(), answer:
777
+ expected_type = "number" if ',' not in answer or answer.count(',') < 2 else "list"
778
+ elif ',' in answer and len(answer.split(',')) > 1:
779
+ expected_type = "list"
780
+ else:
781
+ expected_type = "string"
782
+
783
+ if expected_type == "number":
784
+ # Remove commas and units for numbers
785
+ answer = re.sub(r'[,$%]', '', answer)
786
+ answer = re.sub(r'\s+', '', answer)
787
+ # Keep only number and decimal point
788
+ number_match = re.search(r'[\d.-]+', answer)
789
+ if number_match:
790
+ return number_match.group(0)
791
+
792
+ elif expected_type == "string":
793
+ # Remove articles and normalize
794
+ answer = re.sub(r'\b(a|an|the)\s+', '', answer, flags=re.IGNORECASE)
795
+ answer = re.sub(r'\s+', ' ', answer).strip()
796
+ # Expand common abbreviations
797
+ abbreviations = {
798
+ 'NYC': 'New York City',
799
+ 'LA': 'Los Angeles',
800
+ 'SF': 'San Francisco',
801
+ 'US': 'United States',
802
+ 'UK': 'United Kingdom',
803
+ 'EU': 'European Union'
804
+ }
805
+ for abbr, full in abbreviations.items():
806
+ if answer.upper() == abbr:
807
+ answer = full
808
+ break
809
+
810
+ elif expected_type == "list":
811
+ # Process each element in the list
812
+ elements = [elem.strip() for elem in answer.split(',')]
813
+ normalized_elements = []
814
+ for elem in elements:
815
+ if re.match(r'^[\d.-]+', elem):
816
+
817
+ def initialize_agent():
818
+ """
819
+ Initializes an enhanced multi-disciplinary agent optimized for GAIA benchmark questions.
820
+ """
821
+ configure_logging()
822
+ logging.info("πŸš€ Starting GAIA agent initialization...")
823
+
824
+ try:
825
+ api_keys = load_api_keys()
826
+ except Exception as e:
827
+ logging.error(f"Failed to load API keys: {e}")
828
+ return None
829
+
830
+ # --- Enhanced Caching Layer for LlamaIndex ---
831
+ @lru_cache(maxsize=64) # Increased cache size
832
+ @retry(max_retries=3)
833
+ def get_webpage_index(url: str) -> VectorStoreIndex:
834
+ logging.info(f"πŸ“„ Indexing webpage: {url}")
835
+ try:
836
+ loader_cls = download_loader("BeautifulSoupWebReader")
837
+ loader = loader_cls()
838
+ docs = loader.load_data(urls=[url])
839
+ if not docs:
840
+ raise ValueError(f"No content could be extracted from {url}")
841
+
842
+ # Filter out very short documents
843
+ valid_docs = [doc for doc in docs if len(doc.text.strip()) > 50]
844
+ if not valid_docs:
845
+ raise ValueError(f"No substantial content found in {url}")
846
 
847
+ return VectorStoreIndex.from_documents(valid_docs)
848
+ except Exception as e:
849
+ logging.error(f"Error indexing webpage {url}: {e}")
850
+ raise
851
+
852
+ @lru_cache(maxsize=32)
853
+ @retry(max_retries=3)
854
+ def get_youtube_index(video_id: str) -> VectorStoreIndex:
855
+ logging.info(f"πŸŽ₯ Indexing YouTube video: {video_id}")
856
+ try:
857
+ # Try to get English transcript first
858
+ try:
859
+ transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['en'])
860
+ except (TranscriptsDisabled, NoTranscriptFound):
861
+ # Try auto-generated or any available transcript
862
+ transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
863
+ try:
864
+ transcript = transcript_list.find_transcript(['en']).fetch()
865
+ except:
866
+ # Get any available transcript
867
+ available_transcripts = list(transcript_list)
868
+ if not available_transcripts:
869
+ raise YouTubeTranscriptApiError(f"No transcripts available for video {video_id}")
870
+ transcript = available_transcripts[0].fetch()
871
+
872
+ if not transcript:
873
+ raise YouTubeTranscriptApiError(f"No transcript available for video {video_id}")
874
+
875
+ # Combine transcript with timestamps for better context
876
+ text_segments = []
877
+ for entry in transcript:
878
+ timestamp = int(entry.get('start', 0))
879
+ text = entry.get('text', '').strip()
880
+ if text:
881
+ text_segments.append(f"[{timestamp}s] {text}")
882
+
883
+ full_text = ' '.join(text_segments)
884
+ if not full_text.strip():
885
+ raise YouTubeTranscriptApiError(f"Empty transcript for video {video_id}")
886
+
887
+ doc = Document(
888
+ text=full_text,
889
+ doc_id=f"youtube_{video_id}",
890
+ metadata={"source": f"https://youtube.com/watch?v={video_id}"}
891
+ )
892
+ return VectorStoreIndex.from_documents([doc])
893
+
894
+ except Exception as e:
895
+ logging.error(f"Error indexing YouTube video {video_id}: {e}")
896
+ raise
897
+
898
+ # --- Enhanced Tool Definitions ---
899
+
900
+ @tool
901
+ def advanced_web_query(url: str, query: str) -> str:
902
+ """
903
+ Extract specific information from a webpage using advanced querying.
904
+ Handles various content types and provides detailed responses.
905
+ Args:
906
+ url: The webpage URL to analyze
907
+ query: Specific question to ask about the content
908
+ """
909
+ try:
910
+ if not url.startswith(('http://', 'https://')):
911
+ url = 'https://' + url
912
+
913
+ logging.info(f"πŸ” Querying webpage: {url} with query: {query}")
914
+ index = get_webpage_index(url)
915
+ query_engine = index.as_query_engine(
916
+ similarity_top_k=8, # Increased for better coverage
917
+ response_mode="tree_summarize",
918
+ verbose=True
919
+ )
920
+
921
+ response = query_engine.query(query)
922
+ result = clean_text_output(str(response))
923
+
924
+ # If the response seems incomplete, try a broader query
925
+ if len(result) < 50 and "not found" not in result.lower():
926
+ broader_query = f"Information about {query.split()[-1] if query.split() else query}"
927
+ broader_response = query_engine.query(broader_query)
928
+ broader_result = clean_text_output(str(broader_response))
929
+ if len(broader_result) > len(result):
930
+ result = broader_result
931
+
932
+ return result
933
+
934
+ except Exception as e:
935
+ error_msg = f"Error querying webpage {url}: {e}"
936
+ logging.error(error_msg)
937
+ return error_msg
938
+
939
+ @tool
940
+ def enhanced_youtube_query(video_url_or_id: str, query: str) -> str:
941
+ """
942
+ Extract information from YouTube video transcripts with enhanced processing.
943
+ Handles timestamps and provides contextual responses.
944
+ Args:
945
+ video_url_or_id: YouTube URL or video ID
946
+ query: Specific question about the video content
947
+ """
948
+ try:
949
+ video_id = extract_video_id(video_url_or_id)
950
+ if not video_id:
951
+ return f"Error: Could not extract valid YouTube video ID from '{video_url_or_id}'"
952
+
953
+ logging.info(f"🎬 Querying YouTube video: {video_id} with query: {query}")
954
+ index = get_youtube_index(video_id)
955
+ query_engine = index.as_query_engine(
956
+ similarity_top_k=6,
957
+ response_mode="tree_summarize",
958
+ verbose=True
959
+ )
960
+
961
+ response = query_engine.query(query)
962
+ result = clean_text_output(str(response))
963
+
964
+ return result
965
+
966
+ except YouTubeTranscriptApiError as e:
967
+ error_msg = f"YouTube transcript error for {video_url_or_id}: {e}"
968
+ logging.error(error_msg)
969
+ return error_msg
970
+ except Exception as e:
971
+ error_msg = f"Error querying YouTube video {video_url_or_id}: {e}"
972
+ logging.error(error_msg)
973
+ return error_msg
974
 
975
+ @tool
976
+ def enhanced_python_execution(code: str) -> str:
977
+ """
978
+ Execute Python code with enhanced capabilities and error handling.
979
+ Includes mathematical, data processing, and web scraping capabilities.
980
+ Args:
981
+ code: Python code to execute
982
+ """
983
+ # Expanded safe globals with more libraries
984
+ safe_globals = {}
985
+ try:
986
+ # Basic Python modules
987
+ import math, datetime, json, re, collections, itertools, random
988
+ from fractions import Fraction
989
+ from decimal import Decimal
990
+ import statistics
991
+
992
+ safe_globals.update({
993
+ 'math': math, 'datetime': datetime, 'json': json, 're': re,
994
+ 'collections': collections, 'itertools': itertools, 'random': random,
995
+ 'Fraction': Fraction, 'Decimal': Decimal, 'statistics': statistics
996
+ })
997
+
998
+ # Scientific computing
999
+ try:
1000
+ import numpy as np
1001
+ safe_globals['np'] = np
1002
+ safe_globals['numpy'] = np
1003
+ except ImportError:
1004
+ logging.warning("NumPy not available")
1005
+
1006
+ try:
1007
+ import pandas as pd
1008
+ safe_globals['pd'] = pd
1009
+ safe_globals['pandas'] = pd
1010
+ except ImportError:
1011
+ logging.warning("Pandas not available")
1012
+
1013
+ # Web requests for data fetching
1014
+ try:
1015
+ import requests
1016
+ safe_globals['requests'] = requests
1017
+ except ImportError:
1018
+ logging.warning("Requests not available")
1019
+
1020
+ except ImportError as e:
1021
+ logging.warning(f"Some modules not available: {e}")
1022
+
1023
+ # Capture both stdout and stderr
1024
+ stdout_capture = io.StringIO()
1025
+ stderr_capture = io.StringIO()
1026
+
1027
+ try:
1028
+ logging.info(f"🐍 Executing Python code: {code[:100]}...")
1029
+
1030
+ with contextlib.redirect_stdout(stdout_capture), contextlib.redirect_stderr(stderr_capture):
1031
+ # Use exec with restricted builtins for safety
1032
+ restricted_builtins = {
1033
+ 'abs': abs, 'all': all, 'any': any, 'bin': bin, 'bool': bool,
1034
+ 'chr': chr, 'dict': dict, 'dir': dir, 'divmod': divmod,
1035
+ 'enumerate': enumerate, 'filter': filter, 'float': float,
1036
+ 'format': format, 'hex': hex, 'int': int, 'len': len,
1037
+ 'list': list, 'map': map, 'max': max, 'min': min, 'oct': oct,
1038
+ 'ord': ord, 'pow': pow, 'print': print, 'range': range,
1039
+ 'repr': repr, 'reversed': reversed, 'round': round,
1040
+ 'set': set, 'sorted': sorted, 'str': str, 'sum': sum,
1041
+ 'tuple': tuple, 'type': type, 'zip': zip,
1042
+ }
1043
+
1044
+ exec(code, {"__builtins__": restricted_builtins}, safe_globals)
1045
+
1046
+ stdout_result = stdout_capture.getvalue()
1047
+ stderr_result = stderr_capture.getvalue()
1048
+
1049
+ # Combine outputs
1050
+ result_parts = []
1051
+ if stdout_result.strip():
1052
+ result_parts.append(stdout_result.strip())
1053
+ if stderr_result.strip():
1054
+ result_parts.append(f"Warnings/Errors: {stderr_result.strip()}")
1055
+
1056
+ if result_parts:
1057
+ return '\n'.join(result_parts)
1058
+ else:
1059
+ return "Code executed successfully (no output)"
1060
+
1061
+ except Exception as e:
1062
+ error_msg = f"Code execution error: {e}"
1063
+ stderr_result = stderr_capture.getvalue()
1064
+ if stderr_result.strip():
1065
+ error_msg += f"\nAdditional details: {stderr_result.strip()}"
1066
+ logging.error(error_msg)
1067
+ return error_msg
1068
+
1069
+ @tool
1070
+ def enhanced_wikipedia_search(query: str, detailed: bool = True) -> str:
1071
+ """
1072
+ Search Wikipedia with enhanced content extraction and error handling.
1073
+ Args:
1074
+ query: Search term
1075
+ detailed: Whether to return detailed information or just summary
1076
+ """
1077
+ try:
1078
+ import wikipedia
1079
+ wikipedia.set_lang("en")
1080
+ wikipedia.set_rate_limiting(True)
1081
+
1082
+ logging.info(f"πŸ“š Searching Wikipedia for: {query}")
1083
+
1084
+ # Handle disambiguation and search suggestions
1085
+ try:
1086
+ page = wikipedia.page(query, auto_suggest=True)
1087
+ except wikipedia.DisambiguationError as e:
1088
+ # Take the first option from disambiguation
1089
+ if e.options:
1090
+ page = wikipedia.page(e.options[0])
1091
+ else:
1092
+ return f"Wikipedia disambiguation error for '{query}': {e}"
1093
+ except wikipedia.PageError:
1094
+ # Try searching if direct page lookup fails
1095
+ search_results = wikipedia.search(query, results=3)
1096
+ if search_results:
1097
+ page = wikipedia.page(search_results[0])
1098
+ else:
1099
+ return f"No Wikipedia results found for '{query}'"
1100
+
1101
+ if detailed:
1102
+ # Get more comprehensive content
1103
+ content_sections = []
1104
+ content_sections.append(f"**{page.title}**")
1105
+ content_sections.append(f"Summary: {page.summary}")
1106
+
1107
+ # Add first few sections if available
1108
+ if hasattr(page, 'content') and page.content:
1109
+ sections = page.content.split('\n\n')[:3] # First 3 paragraphs
1110
+ for section in sections:
1111
+ if section.strip() and len(section) > 50:
1112
+ content_sections.append(section.strip())
1113
+
1114
+ content_sections.append(f"Source: {page.url}")
1115
+ return '\n\n'.join(content_sections)
1116
+ else:
1117
+ return f"**{page.title}**\n\n{page.summary}\n\nSource: {page.url}"
1118
+
1119
+ except ImportError:
1120
+ return "Wikipedia library not installed. Cannot perform search."
1121
+ except Exception as e:
1122
+ error_msg = f"Wikipedia search error for '{query}': {e}"
1123
+ logging.error(error_msg)
1124
+ return error_msg
1125
+
1126
+ @tool
1127
+ def data_processing_tool(data_description: str, operation: str) -> str:
1128
+ """
1129
+ Process and analyze data based on descriptions and operations.
1130
+ Useful for mathematical calculations, data analysis, and structured data processing.
1131
+ Args:
1132
+ data_description: Description of the data or data source
1133
+ operation: The operation to perform (calculate, analyze, extract, etc.)
1134
+ """
1135
+ try:
1136
+ logging.info(f"πŸ“Š Processing data: {data_description} | Operation: {operation}")
1137
+
1138
+ # This tool is designed to work with the Python execution tool
1139
+ # for complex data processing tasks
1140
+ code_template = f"""
1141
+ # Data processing task: {operation}
1142
+ # Data description: {data_description}
1143
+
1144
+ # Add your specific data processing logic here
1145
+ # This is a template - specific implementation depends on the data and operation
1146
+
1147
+ print("Data processing task initiated")
1148
+ print(f"Description: {data_description}")
1149
+ print(f"Operation: {operation}")
1150
+
1151
+ # Example operations:
1152
+ if "calculate" in "{operation}".lower():
1153
+ print("Performing calculation...")
1154
+ elif "analyze" in "{operation}".lower():
1155
+ print("Performing analysis...")
1156
+ elif "extract" in "{operation}".lower():
1157
+ print("Extracting information...")
1158
+
1159
+ print("Task completed - use enhanced_python_execution for specific calculations")
1160
+ """
1161
+
1162
+ return enhanced_python_execution(code_template)
1163
+
1164
+ except Exception as e:
1165
+ error_msg = f"Data processing error: {e}"
1166
+ logging.error(error_msg)
1167
+ return error_msg
1168
+
1169
+ # --- Model and Agent Setup ---
1170
+
1171
+ try:
1172
+ # Use a more capable model for better performance
1173
+ model = InferenceClientModel(
1174
+ model_id="meta-llama/Llama-3.1-70B-Instruct-Turbo", # Upgraded model
1175
+ token=api_keys['together'],
1176
+ provider="together"
1177
+ )
1178
+ logging.info("βœ… Model loaded successfully")
1179
+ except Exception as e:
1180
+ logging.error(f"Failed to load primary model, falling back: {e}")
1181
+ try:
1182
+ # Fallback model
1183
+ model = InferenceClientModel(
1184
+ model_id="Qwen/Qwen2.5-7B-Instruct",
1185
+ token=api_keys['together'],
1186
+ provider="together"
1187
+ )
1188
+ logging.info("βœ… Fallback model loaded successfully")
1189
+ except Exception as e2:
1190
+ logging.error(f"Failed to load fallback model: {e2}")
1191
+ raise
1192
+
1193
+ # Configure Google Search tool
1194
+ google_search_tool = None
1195
+ if api_keys['serpapi']:
1196
+ try:
1197
+ google_search_tool = GoogleSearchTool(
1198
+ provider='serpapi',
1199
+ serpapi_api_key=api_keys['serpapi']
1200
+ )
1201
+ logging.info("βœ… Google Search tool configured")
1202
+ except Exception as e:
1203
+ logging.warning(f"Failed to configure Google Search tool: {e}")
1204
+
1205
+ # Prepare tools list
1206
+ tools_list = [
1207
+ enhanced_wikipedia_search,
1208
+ advanced_web_query,
1209
+ enhanced_youtube_query,
1210
+ enhanced_python_execution,
1211
+ data_processing_tool,
1212
+ ]
1213
+
1214
+ if google_search_tool:
1215
+ tools_list.insert(0, google_search_tool)
1216
+
1217
+ # Specialized worker agent with comprehensive toolset
1218
+ worker_agent = ToolCallingAgent(
1219
+ tools=tools_list,
1220
+ model=model,
1221
+ max_steps=8, # Increased for complex tasks
1222
+ name="gaia_specialist",
1223
+ description="Advanced specialist agent for GAIA benchmark: web research, document analysis, video processing, mathematical computation, and data analysis."
1224
+ )
1225
+
1226
+ # Enhanced strategic manager agent
1227
+ manager_tools = []
1228
+ if google_search_tool:
1229
+ manager_tools.append(google_search_tool)
1230
+
1231
+ manager = CodeAgent(
1232
+ model=model,
1233
+ managed_agents=[worker_agent],
1234
+ tools=manager_tools,
1235
+ instructions="""You are a general AI assistant designed for the GAIA benchmark. Your mission is to provide precise, accurate answers to complex questions that require deep reasoning and analysis.
1236
+
1237
+ **CRITICAL: ANSWER FORMAT REQUIREMENT**
1238
+ You MUST finish your response with: FINAL ANSWER: [YOUR FINAL ANSWER]
1239
+
1240
+ YOUR FINAL ANSWER formatting rules:
1241
+ - For NUMBERS: No commas, no units (like $ or %), no additional text
1242
+ Example: "FINAL ANSWER: 42" NOT "FINAL ANSWER: 42 dollars" or "FINAL ANSWER: $42"
1243
+ - For STRINGS: No articles (a, an, the), no abbreviations, write digits in plain text
1244
+ Example: "FINAL ANSWER: New York City" NOT "FINAL ANSWER: NYC" or "FINAL ANSWER: The Big Apple"
1245
+ - For LISTS: Comma-separated, apply above rules to each element
1246
+ Example: "FINAL ANSWER: Paris, London, Berlin" or "FINAL ANSWER: 1.5, 2.3, 4.7"
1247
+
1248
+ **STRATEGIC APPROACH:**
1249
+
1250
+ 1. **ANALYZE THE QUESTION**: Determine what type of answer is expected (number, string, or list)
1251
+
1252
+ 2. **DECOMPOSE THE PROBLEM**: Break complex questions into sub-problems:
1253
+ - Identify required information sources
1254
+ - Plan tool usage sequence
1255
+ - Consider verification steps
1256
+
1257
+ 3. **TOOL SELECTION**:
1258
+ - Use GoogleSearchTool for current information and general web queries
1259
+ - Delegate to gaia_specialist for complex multi-tool analysis:
1260
+ * advanced_web_query: Deep webpage content analysis
1261
+ * enhanced_youtube_query: Video transcript analysis
1262
+ * enhanced_python_execution: Mathematical calculations and data processing
1263
+ * enhanced_wikipedia_search: Encyclopedic knowledge
1264
+ * data_processing_tool: Structured data analysis
1265
+
1266
+ 4. **VERIFICATION**: Cross-check critical information and validate calculations
1267
+
1268
+ **DELEGATION EXAMPLES**:
1269
+
1270
+ Simple queries:
1271
+ ```python
1272
+ # Direct search for current information
1273
+ result = search_tool.run("population Tokyo 2024")
1274
+ # Extract and format the answer properly
1275
+ ```
1276
+
1277
+ Complex analysis:
1278
+ ```python
1279
+ # Delegate comprehensive tasks to specialist
1280
+ answer = gaia_specialist.run('''
1281
+ Find the founding year of the company mentioned in this video: [URL],
1282
+ calculate years from founding to 2024,
1283
+ then identify a major historical event from that founding year.
1284
+ Format the final answer according to GAIA requirements.
1285
+ ''')
1286
+ ```
1287
+
1288
+ **RESPONSE STRUCTURE**:
1289
+ 1. Show your reasoning and steps
1290
+ 2. Use tools to gather information
1291
+ 3. Verify your findings
1292
+ 4. Format the final answer correctly
1293
+ 5. End with "FINAL ANSWER: [answer]"
1294
+
1295
+ **EXAMPLES OF PROPER FORMATTING**:
1296
+ - Question asks for a year: "FINAL ANSWER: 1991"
1297
+ - Question asks for a city: "FINAL ANSWER: San Francisco"
1298
+ - Question asks for a percentage: "FINAL ANSWER: 25" (not "25%" unless specified)
1299
+ - Question asks for a list of countries: "FINAL ANSWER: France, Germany, Italy"
1300
+ - Question asks for a calculation result: "FINAL ANSWER: 456"
1301
+
1302
+ Remember: Be methodical, verify your information, and always end with the properly formatted FINAL ANSWER."""
1303
+ )
1304
+
1305
+ logging.info("🎯 Enhanced GAIA agent initialized successfully!")
1306
+ return manager
1307
+
1308
+ # --- Main Execution Block for Local Testing ---
1309
+
1310
+ def main():
1311
+ """Test the agent with sample GAIA-style questions."""
1312
+ configure_logging()
1313
+ logging.info("πŸ§ͺ Starting local testing...")
1314
+
1315
+ try:
1316
+ agent = initialize_agent()
1317
+ if not agent:
1318
+ logging.error("Agent initialization failed")
1319
+ return
1320
+
1321
+ # More challenging test questions similar to GAIA
1322
+ test_questions = [
1323
+ "What is 15! / (12! * 3!) ?",
1324
+ "In what year was the Python programming language first released?",
1325
+ "What is the square root of 2,025?",
1326
+ ]
1327
+
1328
+ for i, question in enumerate(test_questions, 1):
1329
+ logging.info(f"\n{'='*60}")
1330
+ logging.info(f"πŸ” Test Question {i}: {question}")
1331
+ logging.info('='*60)
1332
+
1333
+ start_time = time.time()
1334
+ try:
1335
+ response = agent.run(question)
1336
+ elapsed_time = time.time() - start_time
1337
+
1338
+ logging.info(f"βœ… Agent Answer: {response}")
1339
+ logging.info(f"⏱️ Execution time: {elapsed_time:.2f} seconds")
1340
+
1341
+ except Exception as e:
1342
+ logging.error(f"❌ Error processing question {i}: {e}")
1343
+
1344
+ time.sleep(2) # Prevent rate limiting
1345
+
1346
+ logging.info(f"\n{'='*60}")
1347
+ logging.info("🏁 Testing completed!")
1348
+ logging.info('='*60)
1349
+
1350
+ except Exception as e:
1351
+ logging.critical(f"πŸ’₯ Critical error during testing: {e}", exc_info=True)
1352
+
1353
+ if __name__ == "__main__":
1354
+ main(), elem:
1355
+ # It's a number
1356
+ normalized_elements.append(normalize_answer_format(elem, "number"))
1357
+ else:
1358
+ # It's a string
1359
+ normalized_elements.append(normalize_answer_format(elem, "string"))
1360
+ return ', '.join(normalized_elements)
1361
+
1362
+ return answer
1363
+
1364
+ # --- Enhanced Agent Wrapper ---
1365
+
1366
+ def create_gaia_agent_wrapper(agent):
1367
+ """
1368
+ Create a wrapper around the agent that ensures GAIA format compliance.
1369
+ """
1370
+ def gaia_agent_run(question: str) -> str:
1371
+ """
1372
+ Run the agent with GAIA format compliance.
1373
+ Returns only the final answer in the correct format.
1374
+ """
1375
+ try:
1376
+ # Add explicit formatting instruction to the question
1377
+ formatted_question = f"""
1378
+ {question}
1379
+
1380
+ Remember to end your response with: FINAL ANSWER: [YOUR FINAL ANSWER]
1381
+
1382
+ Follow GAIA formatting rules:
1383
+ - Numbers: No commas, no units (unless specified)
1384
+ - Strings: No articles, no abbreviations, digits in plain text
1385
+ - Lists: Comma-separated following above rules for each element
1386
+ """
1387
+
1388
+ # Get the full response from the agent
1389
+ full_response = agent.run(formatted_question)
1390
+
1391
+ # Extract and normalize the final answer
1392
+ final_answer = extract_final_answer(full_response)
1393
+ normalized_answer = normalize_answer_format(final_answer)
1394
+
1395
+ logging.info(f"🎯 Question: {question}")
1396
+ logging.info(f"πŸ€– Full response: {full_response}")
1397
+ logging.info(f"βœ… Final answer: {normalized_answer}")
1398
+
1399
+ return normalized_answer
1400
+
1401
+ except Exception as e:
1402
+ error_msg = f"Agent execution error: {e}"
1403
+ logging.error(error_msg)
1404
+ return f"ERROR: {e}"
1405
+
1406
+ return gaia_agent_run
1407
+
1408
+ def initialize_agent():
1409
+ """
1410
+ Initializes an enhanced multi-disciplinary agent optimized for GAIA benchmark questions.
1411
+ """
1412
+ configure_logging()
1413
+ logging.info("πŸš€ Starting GAIA agent initialization...")
1414
+
1415
+ try:
1416
+ api_keys = load_api_keys()
1417
+ except Exception as e:
1418
+ logging.error(f"Failed to load API keys: {e}")
1419
+ return None
1420
+
1421
+ # --- Enhanced Caching Layer for LlamaIndex ---
1422
+ @lru_cache(maxsize=64) # Increased cache size
1423
+ @retry(max_retries=3)
1424
+ def get_webpage_index(url: str) -> VectorStoreIndex:
1425
+ logging.info(f"πŸ“„ Indexing webpage: {url}")
1426
+ try:
1427
+ loader_cls = download_loader("BeautifulSoupWebReader")
1428
+ loader = loader_cls()
1429
+ docs = loader.load_data(urls=[url])
1430
+ if not docs:
1431
+ raise ValueError(f"No content could be extracted from {url}")
1432
+
1433
+ # Filter out very short documents
1434
+ valid_docs = [doc for doc in docs if len(doc.text.strip()) > 50]
1435
+ if not valid_docs:
1436
+ raise ValueError(f"No substantial content found in {url}")
1437
+
1438
+ return VectorStoreIndex.from_documents(valid_docs)
1439
+ except Exception as e:
1440
+ logging.error(f"Error indexing webpage {url}: {e}")
1441
+ raise
1442
+
1443
+ @lru_cache(maxsize=32)
1444
+ @retry(max_retries=3)
1445
+ def get_youtube_index(video_id: str) -> VectorStoreIndex:
1446
+ logging.info(f"πŸŽ₯ Indexing YouTube video: {video_id}")
1447
+ try:
1448
+ # Try to get English transcript first
1449
+ try:
1450
+ transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['en'])
1451
+ except (TranscriptsDisabled, NoTranscriptFound):
1452
+ # Try auto-generated or any available transcript
1453
+ transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
1454
+ try:
1455
+ transcript = transcript_list.find_transcript(['en']).fetch()
1456
+ except:
1457
+ # Get any available transcript
1458
+ available_transcripts = list(transcript_list)
1459
+ if not available_transcripts:
1460
+ raise YouTubeTranscriptApiError(f"No transcripts available for video {video_id}")
1461
+ transcript = available_transcripts[0].fetch()
1462
+
1463
+ if not transcript:
1464
+ raise YouTubeTranscriptApiError(f"No transcript available for video {video_id}")
1465
+
1466
+ # Combine transcript with timestamps for better context
1467
+ text_segments = []
1468
+ for entry in transcript:
1469
+ timestamp = int(entry.get('start', 0))
1470
+ text = entry.get('text', '').strip()
1471
+ if text:
1472
+ text_segments.append(f"[{timestamp}s] {text}")
1473
+
1474
+ full_text = ' '.join(text_segments)
1475
+ if not full_text.strip():
1476
+ raise YouTubeTranscriptApiError(f"Empty transcript for video {video_id}")
1477
+
1478
+ doc = Document(
1479
+ text=full_text,
1480
+ doc_id=f"youtube_{video_id}",
1481
+ metadata={"source": f"https://youtube.com/watch?v={video_id}"}
1482
+ )
1483
+ return VectorStoreIndex.from_documents([doc])
1484
+
1485
+ except Exception as e:
1486
+ logging.error(f"Error indexing YouTube video {video_id}: {e}")
1487
+ raise
1488
+
1489
+ # --- Enhanced Tool Definitions ---
1490
+
1491
+ @tool
1492
+ def advanced_web_query(url: str, query: str) -> str:
1493
+ """
1494
+ Extract specific information from a webpage using advanced querying.
1495
+ Handles various content types and provides detailed responses.
1496
+ Args:
1497
+ url: The webpage URL to analyze
1498
+ query: Specific question to ask about the content
1499
+ """
1500
+ try:
1501
+ if not url.startswith(('http://', 'https://')):
1502
+ url = 'https://' + url
1503
+
1504
+ logging.info(f"πŸ” Querying webpage: {url} with query: {query}")
1505
+ index = get_webpage_index(url)
1506
+ query_engine = index.as_query_engine(
1507
+ similarity_top_k=8, # Increased for better coverage
1508
+ response_mode="tree_summarize",
1509
+ verbose=True
1510
+ )
1511
+
1512
+ response = query_engine.query(query)
1513
+ result = clean_text_output(str(response))
1514
+
1515
+ # If the response seems incomplete, try a broader query
1516
+ if len(result) < 50 and "not found" not in result.lower():
1517
+ broader_query = f"Information about {query.split()[-1] if query.split() else query}"
1518
+ broader_response = query_engine.query(broader_query)
1519
+ broader_result = clean_text_output(str(broader_response))
1520
+ if len(broader_result) > len(result):
1521
+ result = broader_result
1522
+
1523
+ return result
1524
+
1525
+ except Exception as e:
1526
+ error_msg = f"Error querying webpage {url}: {e}"
1527
+ logging.error(error_msg)
1528
+ return error_msg
1529
+
1530
+ @tool
1531
+ def enhanced_youtube_query(video_url_or_id: str, query: str) -> str:
1532
+ """
1533
+ Extract information from YouTube video transcripts with enhanced processing.
1534
+ Handles timestamps and provides contextual responses.
1535
+ Args:
1536
+ video_url_or_id: YouTube URL or video ID
1537
+ query: Specific question about the video content
1538
+ """
1539
+ try:
1540
+ video_id = extract_video_id(video_url_or_id)
1541
+ if not video_id:
1542
+ return f"Error: Could not extract valid YouTube video ID from '{video_url_or_id}'"
1543
+
1544
+ logging.info(f"🎬 Querying YouTube video: {video_id} with query: {query}")
1545
+ index = get_youtube_index(video_id)
1546
+ query_engine = index.as_query_engine(
1547
+ similarity_top_k=6,
1548
+ response_mode="tree_summarize",
1549
+ verbose=True
1550
+ )
1551
+
1552
+ response = query_engine.query(query)
1553
+ result = clean_text_output(str(response))
1554
+
1555
+ return result
1556
+
1557
+ except YouTubeTranscriptApiError as e:
1558
+ error_msg = f"YouTube transcript error for {video_url_or_id}: {e}"
1559
+ logging.error(error_msg)
1560
+ return error_msg
1561
+ except Exception as e:
1562
+ error_msg = f"Error querying YouTube video {video_url_or_id}: {e}"
1563
+ logging.error(error_msg)
1564
+ return error_msg
1565
+
1566
+ @tool
1567
+ def enhanced_python_execution(code: str) -> str:
1568
+ """
1569
+ Execute Python code with enhanced capabilities and error handling.
1570
+ Includes mathematical, data processing, and web scraping capabilities.
1571
+ Args:
1572
+ code: Python code to execute
1573
+ """
1574
+ # Expanded safe globals with more libraries
1575
+ safe_globals = {}
1576
+ try:
1577
+ # Basic Python modules
1578
+ import math, datetime, json, re, collections, itertools, random
1579
+ from fractions import Fraction
1580
+ from decimal import Decimal
1581
+ import statistics
1582
+
1583
+ safe_globals.update({
1584
+ 'math': math, 'datetime': datetime, 'json': json, 're': re,
1585
+ 'collections': collections, 'itertools': itertools, 'random': random,
1586
+ 'Fraction': Fraction, 'Decimal': Decimal, 'statistics': statistics
1587
+ })
1588
+
1589
+ # Scientific computing
1590
+ try:
1591
+ import numpy as np
1592
+ safe_globals['np'] = np
1593
+ safe_globals['numpy'] = np
1594
+ except ImportError:
1595
+ logging.warning("NumPy not available")
1596
+
1597
+ try:
1598
+ import pandas as pd
1599
+ safe_globals['pd'] = pd
1600
+ safe_globals['pandas'] = pd
1601
+ except ImportError:
1602
+ logging.warning("Pandas not available")
1603
+
1604
+ # Web requests for data fetching
1605
+ try:
1606
+ import requests
1607
+ safe_globals['requests'] = requests
1608
+ except ImportError:
1609
+ logging.warning("Requests not available")
1610
+
1611
+ except ImportError as e:
1612
+ logging.warning(f"Some modules not available: {e}")
1613
+
1614
+ # Capture both stdout and stderr
1615
+ stdout_capture = io.StringIO()
1616
+ stderr_capture = io.StringIO()
1617
+
1618
+ try:
1619
+ logging.info(f"🐍 Executing Python code: {code[:100]}...")
1620
+
1621
+ with contextlib.redirect_stdout(stdout_capture), contextlib.redirect_stderr(stderr_capture):
1622
+ # Use exec with restricted builtins for safety
1623
+ restricted_builtins = {
1624
+ 'abs': abs, 'all': all, 'any': any, 'bin': bin, 'bool': bool,
1625
+ 'chr': chr, 'dict': dict, 'dir': dir, 'divmod': divmod,
1626
+ 'enumerate': enumerate, 'filter': filter, 'float': float,
1627
+ 'format': format, 'hex': hex, 'int': int, 'len': len,
1628
+ 'list': list, 'map': map, 'max': max, 'min': min, 'oct': oct,
1629
+ 'ord': ord, 'pow': pow, 'print': print, 'range': range,
1630
+ 'repr': repr, 'reversed': reversed, 'round': round,
1631
+ 'set': set, 'sorted': sorted, 'str': str, 'sum': sum,
1632
+ 'tuple': tuple, 'type': type, 'zip': zip,
1633
+ }
1634
+
1635
+ exec(code, {"__builtins__": restricted_builtins}, safe_globals)
1636
+
1637
+ stdout_result = stdout_capture.getvalue()
1638
+ stderr_result = stderr_capture.getvalue()
1639
+
1640
+ # Combine outputs
1641
+ result_parts = []
1642
+ if stdout_result.strip():
1643
+ result_parts.append(stdout_result.strip())
1644
+ if stderr_result.strip():
1645
+ result_parts.append(f"Warnings/Errors: {stderr_result.strip()}")
1646
+
1647
+ if result_parts:
1648
+ return '\n'.join(result_parts)
1649
+ else:
1650
+ return "Code executed successfully (no output)"
1651
+
1652
+ except Exception as e:
1653
+ error_msg = f"Code execution error: {e}"
1654
+ stderr_result = stderr_capture.getvalue()
1655
+ if stderr_result.strip():
1656
+ error_msg += f"\nAdditional details: {stderr_result.strip()}"
1657
+ logging.error(error_msg)
1658
+ return error_msg
1659
+
1660
+ @tool
1661
+ def enhanced_wikipedia_search(query: str, detailed: bool = True) -> str:
1662
+ """
1663
+ Search Wikipedia with enhanced content extraction and error handling.
1664
+ Args:
1665
+ query: Search term
1666
+ detailed: Whether to return detailed information or just summary
1667
+ """
1668
+ try:
1669
+ import wikipedia
1670
+ wikipedia.set_lang("en")
1671
+ wikipedia.set_rate_limiting(True)
1672
+
1673
+ logging.info(f"πŸ“š Searching Wikipedia for: {query}")
1674
+
1675
+ # Handle disambiguation and search suggestions
1676
+ try:
1677
+ page = wikipedia.page(query, auto_suggest=True)
1678
+ except wikipedia.DisambiguationError as e:
1679
+ # Take the first option from disambiguation
1680
+ if e.options:
1681
+ page = wikipedia.page(e.options[0])
1682
+ else:
1683
+ return f"Wikipedia disambiguation error for '{query}': {e}"
1684
+ except wikipedia.PageError:
1685
+ # Try searching if direct page lookup fails
1686
+ search_results = wikipedia.search(query, results=3)
1687
+ if search_results:
1688
+ page = wikipedia.page(search_results[0])
1689
+ else:
1690
+ return f"No Wikipedia results found for '{query}'"
1691
+
1692
+ if detailed:
1693
+ # Get more comprehensive content
1694
+ content_sections = []
1695
+ content_sections.append(f"**{page.title}**")
1696
+ content_sections.append(f"Summary: {page.summary}")
1697
+
1698
+ # Add first few sections if available
1699
+ if hasattr(page, 'content') and page.content:
1700
+ sections = page.content.split('\n\n')[:3] # First 3 paragraphs
1701
+ for section in sections:
1702
+ if section.strip() and len(section) > 50:
1703
+ content_sections.append(section.strip())
1704
+
1705
+ content_sections.append(f"Source: {page.url}")
1706
+ return '\n\n'.join(content_sections)
1707
+ else:
1708
+ return f"**{page.title}**\n\n{page.summary}\n\nSource: {page.url}"
1709
+
1710
+ except ImportError:
1711
+ return "Wikipedia library not installed. Cannot perform search."
1712
+ except Exception as e:
1713
+ error_msg = f"Wikipedia search error for '{query}': {e}"
1714
+ logging.error(error_msg)
1715
+ return error_msg
1716
+
1717
+ @tool
1718
+ def data_processing_tool(data_description: str, operation: str) -> str:
1719
+ """
1720
+ Process and analyze data based on descriptions and operations.
1721
+ Useful for mathematical calculations, data analysis, and structured data processing.
1722
+ Args:
1723
+ data_description: Description of the data or data source
1724
+ operation: The operation to perform (calculate, analyze, extract, etc.)
1725
+ """
1726
+ try:
1727
+ logging.info(f"πŸ“Š Processing data: {data_description} | Operation: {operation}")
1728
+
1729
+ # This tool is designed to work with the Python execution tool
1730
+ # for complex data processing tasks
1731
+ code_template = f"""
1732
+ # Data processing task: {operation}
1733
+ # Data description: {data_description}
1734
+
1735
+ # Add your specific data processing logic here
1736
+ # This is a template - specific implementation depends on the data and operation
1737
+
1738
+ print("Data processing task initiated")
1739
+ print(f"Description: {data_description}")
1740
+ print(f"Operation: {operation}")
1741
+
1742
+ # Example operations:
1743
+ if "calculate" in "{operation}".lower():
1744
+ print("Performing calculation...")
1745
+ elif "analyze" in "{operation}".lower():
1746
+ print("Performing analysis...")
1747
+ elif "extract" in "{operation}".lower():
1748
+ print("Extracting information...")
1749
+
1750
+ print("Task completed - use enhanced_python_execution for specific calculations")
1751
+ """
1752
+
1753
+ return enhanced_python_execution(code_template)
1754
+
1755
+ except Exception as e:
1756
+ error_msg = f"Data processing error: {e}"
1757
+ logging.error(error_msg)
1758
+ return error_msg
1759
+
1760
+ # --- Model and Agent Setup ---
1761
+
1762
+ try:
1763
+ # Use a more capable model for better performance
1764
+ model = InferenceClientModel(
1765
+ model_id="meta-llama/Llama-3.1-70B-Instruct-Turbo", # Upgraded model
1766
+ token=api_keys['together'],
1767
+ provider="together"
1768
+ )
1769
+ logging.info("βœ… Model loaded successfully")
1770
+ except Exception as e:
1771
+ logging.error(f"Failed to load primary model, falling back: {e}")
1772
+ try:
1773
+ # Fallback model
1774
+ model = InferenceClientModel(
1775
+ model_id="Qwen/Qwen2.5-7B-Instruct",
1776
+ token=api_keys['together'],
1777
+ provider="together"
1778
+ )
1779
+ logging.info("βœ… Fallback model loaded successfully")
1780
+ except Exception as e2:
1781
+ logging.error(f"Failed to load fallback model: {e2}")
1782
+ raise
1783
+
1784
+ # Configure Google Search tool
1785
+ google_search_tool = None
1786
+ if api_keys['serpapi']:
1787
+ try:
1788
+ google_search_tool = GoogleSearchTool(
1789
+ provider='serpapi',
1790
+ serpapi_api_key=api_keys['serpapi']
1791
+ )
1792
+ logging.info("βœ… Google Search tool configured")
1793
+ except Exception as e:
1794
+ logging.warning(f"Failed to configure Google Search tool: {e}")
1795
+
1796
+ # Prepare tools list
1797
+ tools_list = [
1798
+ enhanced_wikipedia_search,
1799
+ advanced_web_query,
1800
+ enhanced_youtube_query,
1801
+ enhanced_python_execution,
1802
+ data_processing_tool,
1803
+ ]
1804
+
1805
+ if google_search_tool:
1806
+ tools_list.insert(0, google_search_tool)
1807
+
1808
+ # Specialized worker agent with comprehensive toolset
1809
+ worker_agent = ToolCallingAgent(
1810
+ tools=tools_list,
1811
+ model=model,
1812
+ max_steps=8, # Increased for complex tasks
1813
+ name="gaia_specialist",
1814
+ description="Advanced specialist agent for GAIA benchmark: web research, document analysis, video processing, mathematical computation, and data analysis."
1815
+ )
1816
+
1817
+ # Enhanced strategic manager agent
1818
+ manager_tools = []
1819
+ if google_search_tool:
1820
+ manager_tools.append(google_search_tool)
1821
+
1822
+ manager = CodeAgent(
1823
+ model=model,
1824
+ managed_agents=[worker_agent],
1825
+ tools=manager_tools,
1826
+ instructions="""You are a general AI assistant designed for the GAIA benchmark. Your mission is to provide precise, accurate answers to complex questions that require deep reasoning and analysis.
1827
+
1828
+ **CRITICAL: ANSWER FORMAT REQUIREMENT**
1829
+ You MUST finish your response with: FINAL ANSWER: [YOUR FINAL ANSWER]
1830
+
1831
+ YOUR FINAL ANSWER formatting rules:
1832
+ - For NUMBERS: No commas, no units (like $ or %), no additional text
1833
+ Example: "FINAL ANSWER: 42" NOT "FINAL ANSWER: 42 dollars" or "FINAL ANSWER: $42"
1834
+ - For STRINGS: No articles (a, an, the), no abbreviations, write digits in plain text
1835
+ Example: "FINAL ANSWER: New York City" NOT "FINAL ANSWER: NYC" or "FINAL ANSWER: The Big Apple"
1836
+ - For LISTS: Comma-separated, apply above rules to each element
1837
+ Example: "FINAL ANSWER: Paris, London, Berlin" or "FINAL ANSWER: 1.5, 2.3, 4.7"
1838
+
1839
+ **STRATEGIC APPROACH:**
1840
+
1841
+ 1. **ANALYZE THE QUESTION**: Determine what type of answer is expected (number, string, or list)
1842
+
1843
+ 2. **DECOMPOSE THE PROBLEM**: Break complex questions into sub-problems:
1844
+ - Identify required information sources
1845
+ - Plan tool usage sequence
1846
+ - Consider verification steps
1847
+
1848
+ 3. **TOOL SELECTION**:
1849
+ - Use GoogleSearchTool for current information and general web queries
1850
+ - Delegate to gaia_specialist for complex multi-tool analysis:
1851
+ * advanced_web_query: Deep webpage content analysis
1852
+ * enhanced_youtube_query: Video transcript analysis
1853
+ * enhanced_python_execution: Mathematical calculations and data processing
1854
+ * enhanced_wikipedia_search: Encyclopedic knowledge
1855
+ * data_processing_tool: Structured data analysis
1856
+
1857
+ 4. **VERIFICATION**: Cross-check critical information and validate calculations
1858
+
1859
+ **DELEGATION EXAMPLES**:
1860
+
1861
+ Simple queries:
1862
+ ```python
1863
+ # Direct search for current information
1864
+ result = search_tool.run("population Tokyo 2024")
1865
+ # Extract and format the answer properly
1866
+ ```
1867
+
1868
+ Complex analysis:
1869
+ ```python
1870
+ # Delegate comprehensive tasks to specialist
1871
+ answer = gaia_specialist.run('''
1872
+ Find the founding year of the company mentioned in this video: [URL],
1873
+ calculate years from founding to 2024,
1874
+ then identify a major historical event from that founding year.
1875
+ Format the final answer according to GAIA requirements.
1876
+ ''')
1877
+ ```
1878
+
1879
+ **RESPONSE STRUCTURE**:
1880
+ 1. Show your reasoning and steps
1881
+ 2. Use tools to gather information
1882
+ 3. Verify your findings
1883
+ 4. Format the final answer correctly
1884
+ 5. End with "FINAL ANSWER: [answer]"
1885
+
1886
+ **EXAMPLES OF PROPER FORMATTING**:
1887
+ - Question asks for a year: "FINAL ANSWER: 1991"
1888
+ - Question asks for a city: "FINAL ANSWER: San Francisco"
1889
+ - Question asks for a percentage: "FINAL ANSWER: 25" (not "25%" unless specified)
1890
+ - Question asks for a list of countries: "FINAL ANSWER: France, Germany, Italy"
1891
+ - Question asks for a calculation result: "FINAL ANSWER: 456"
1892
+
1893
+ Remember: Be methodical, verify your information, and always end with the properly formatted FINAL ANSWER."""
1894
+ )
1895
+
1896
+ logging.info("🎯 Enhanced GAIA agent initialized successfully!")
1897
+ return manager
1898
+
1899
+ # --- Main Execution Block for Local Testing ---
1900
+
1901
+ def main():
1902
+ """Test the agent with sample GAIA-style questions."""
1903
+ configure_logging()
1904
+ logging.info("πŸ§ͺ Starting local testing...")
1905
+
1906
+ try:
1907
+ agent = initialize_agent()
1908
+ if not agent:
1909
+ logging.error("Agent initialization failed")
1910
+ return
1911
+
1912
+ # More challenging test questions similar to GAIA
1913
+ test_questions = [
1914
+ "What is 15! / (12! * 3!) ?",
1915
+ "In what year was the Python programming language first released?",
1916
+ "What is the square root of 2,025?",
1917
+ ]
1918
+
1919
+ for i, question in enumerate(test_questions, 1):
1920
+ logging.info(f"\n{'='*60}")
1921
+ logging.info(f"πŸ” Test Question {i}: {question}")
1922
+ logging.info('='*60)
1923
+
1924
+ start_time = time.time()
1925
+ try:
1926
+ response = agent.run(question)
1927
+ elapsed_time = time.time() - start_time
1928
+
1929
+ logging.info(f"βœ… Agent Answer: {response}")
1930
+ logging.info(f"⏱️ Execution time: {elapsed_time:.2f} seconds")
1931
+
1932
+ except Exception as e:
1933
+ logging.error(f"❌ Error processing question {i}: {e}")
1934
+
1935
+ time.sleep(2) # Prevent rate limiting
1936
+
1937
+ logging.info(f"\n{'='*60}")
1938
+ logging.info("🏁 Testing completed!")
1939
+ logging.info('='*60)
1940
+
1941
  except Exception as e:
1942
+ logging.critical(f"πŸ’₯ Critical error during testing: {e}", exc_info=True)
1943
 
1944
  if __name__ == "__main__":
1945
  main()
app.py CHANGED
@@ -2,23 +2,56 @@ import os
2
  import gradio as gr
3
  import requests
4
  import pandas as pd
 
 
5
  from agent import initialize_agent # Import the agent initialization function
6
 
7
  # --- Constants ---
8
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
9
 
 
 
 
 
10
  # --- Helper Functions ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  def _fetch_questions(api_url: str) -> list:
12
  """Fetches evaluation questions from the API."""
13
  questions_url = f"{api_url}/questions"
14
- print(f"Fetching questions from: {questions_url}")
15
  try:
16
  response = requests.get(questions_url, timeout=15)
17
  response.raise_for_status()
18
  questions_data = response.json()
19
  if not questions_data:
20
  raise ValueError("Fetched questions list is empty or invalid format.")
21
- print(f"Fetched {len(questions_data)} questions.")
22
  return questions_data
23
  except requests.exceptions.RequestException as e:
24
  raise RuntimeError(f"Error fetching questions: {e}") from e
@@ -31,27 +64,69 @@ def _run_agent_on_questions(agent, questions_data: list) -> tuple[list, list]:
31
  """Runs the agent on each question and collects answers and logs."""
32
  results_log = []
33
  answers_payload = []
34
- print(f"Running agent on {len(questions_data)} questions...")
 
35
  for item in questions_data:
36
  task_id = item.get("task_id")
37
  question_text = item.get("question")
38
  if not task_id or question_text is None:
39
- print(f"Skipping item with missing task_id or question: {item}")
40
  continue
 
41
  try:
42
- submitted_answer = agent(question_text)
43
- answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
44
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  except Exception as e:
46
- print(f"Error running agent on task {task_id}: {e}")
47
- results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  return answers_payload, results_log
49
 
50
  def _submit_answers(api_url: str, username: str, agent_code_url: str, answers_payload: list) -> dict:
51
  """Submits the agent's answers to the evaluation API."""
52
  submit_url = f"{api_url}/submit"
53
- submission_data = {"username": username.strip(), "agent_code": agent_code_url, "answers": answers_payload}
54
- print(f"Submitting {len(answers_payload)} answers for user '{username}' to: {submit_url}")
 
 
 
 
 
 
55
  try:
56
  response = requests.post(submit_url, json=submission_data, timeout=60)
57
  response.raise_for_status()
@@ -79,9 +154,9 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
79
  username = None
80
  if profile:
81
  username = profile.username
82
- print(f"User logged in: {username}")
83
  else:
84
- print("User not logged in.")
85
  return "Please Login to Hugging Face with the button.", None
86
 
87
  if not username:
@@ -89,7 +164,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
89
 
90
  space_id = os.getenv("SPACE_ID")
91
  if not space_id:
92
- print("SPACE_ID environment variable not found. Cannot determine agent_code URL.")
93
  return "Error: SPACE_ID not set. Cannot determine agent_code URL.", None
94
  agent_code_url = f"https://huggingface.co/spaces/{space_id}/tree/main"
95
 
@@ -98,11 +173,11 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
98
 
99
  try:
100
  # 1. Instantiate Agent
101
- print("Initializing agent...")
102
  agent = initialize_agent()
103
  if agent is None:
104
  raise RuntimeError("Agent initialization failed. Check agent.py for details.")
105
- print("Agent initialized successfully.")
106
 
107
  # 2. Fetch Questions
108
  questions_data = _fetch_questions(DEFAULT_API_URL)
@@ -117,79 +192,129 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
117
  submission_result = _submit_answers(DEFAULT_API_URL, username, agent_code_url, answers_payload)
118
 
119
  final_status = (
120
- f"Submission Successful!\n"
121
- f"User: {submission_result.get('username')}\n"
122
- f"Overall Score: {submission_result.get('score', 'N/A')}% "
123
  f"({submission_result.get('correct_count', '?')}/{submission_result.get('total_attempted', '?')} correct)\n"
124
- f"Message: {submission_result.get('message', 'No message received.')}"
 
125
  )
126
  status_message = final_status
127
  results_df = pd.DataFrame(results_log)
128
 
129
  except RuntimeError as e:
130
- status_message = f"Operation Failed: {e}"
131
- print(status_message)
132
  # If an error occurs during agent run, results_log might be partially filled
133
- # Ensure results_df is created even if answers_payload is empty due to early error
134
  if 'results_log' in locals():
135
  results_df = pd.DataFrame(results_log)
136
  else:
137
  results_df = pd.DataFrame([{"Status": "Error", "Details": str(e)}])
138
  except Exception as e:
139
- status_message = f"An unexpected critical error occurred: {e}"
140
- print(status_message)
141
  results_df = pd.DataFrame([{"Status": "Critical Error", "Details": str(e)}])
142
 
143
  return status_message, results_df
144
 
145
  # --- Gradio Interface Definition ---
146
- with gr.Blocks() as demo:
147
- gr.Markdown("# GAIA Benchmark Evaluation with smolagent")
148
- gr.Markdown(
149
- """
150
- **Instructions:**
151
- 1. Clone this Space and modify `agent.py` to define your agent's logic, tools, and necessary packages.
152
- 2. Log in to your Hugging Face account using the button below. Your HF username will be used for submission.
153
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see your score.
154
- ---
155
- **Important Notes:**
156
- * The evaluation process can take some time as the agent processes all questions.
157
- * This Space provides a basic setup. You are encouraged to develop a more robust solution (e.g., caching answers, asynchronous processing) for production use.
158
- """
159
- )
160
-
161
- gr.LoginButton()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
 
163
- run_button = gr.Button("Run Evaluation & Submit All Answers")
 
 
164
 
165
- status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
166
- results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
 
 
 
 
 
 
 
 
 
 
 
167
 
168
  run_button.click(
169
  fn=run_and_submit_all,
170
  outputs=[status_output, results_table]
171
  )
172
 
 
 
 
 
 
 
 
 
 
173
  if __name__ == "__main__":
174
- print("\n" + "-"*30 + " App Starting " + "-"*30)
175
- # Check for SPACE_HOST and SPACE_ID at startup for information
176
- space_host_startup = os.getenv("SPACE_HOST")
177
- space_id_startup = os.getenv("SPACE_ID")
178
-
179
- if space_host_startup:
180
- print(f"βœ… SPACE_HOST found: {space_host_startup}")
181
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
 
 
 
 
 
182
  else:
183
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
184
 
185
- if space_id_startup:
186
- print(f"βœ… SPACE_ID found: {space_id_startup}")
187
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
188
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
189
  else:
190
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
 
 
 
 
191
 
192
- print("-"*(60 + len(" App Starting ")) + "\n")
 
 
193
 
194
- print("Launching Gradio Interface for Basic Agent Evaluation...")
195
  demo.launch(debug=True, share=False)
 
2
  import gradio as gr
3
  import requests
4
  import pandas as pd
5
+ import re
6
+ import logging
7
  from agent import initialize_agent # Import the agent initialization function
8
 
9
  # --- Constants ---
10
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
11
 
12
+ # Configure logging
13
+ logging.basicConfig(level=logging.INFO)
14
+ logger = logging.getLogger(__name__)
15
+
16
  # --- Helper Functions ---
17
+
18
+ def extract_final_answer_from_response(response: str) -> str:
19
+ """
20
+ Extract the final answer from agent response following GAIA format.
21
+ The agent should return responses ending with 'FINAL ANSWER: [answer]'
22
+ """
23
+ if not response:
24
+ return ""
25
+
26
+ # The agent wrapper should already return just the final answer
27
+ # but this is a safety check in case the format isn't perfect
28
+ if isinstance(response, str):
29
+ # Look for FINAL ANSWER pattern
30
+ final_answer_pattern = re.compile(r'FINAL\s+ANSWER\s*:\s*(.+?)(?:\n|$)', re.IGNORECASE | re.DOTALL)
31
+ match = final_answer_pattern.search(response)
32
+
33
+ if match:
34
+ answer = match.group(1).strip()
35
+ # Clean up the answer
36
+ answer = re.sub(r'\s+', ' ', answer)
37
+ answer = answer.rstrip('.')
38
+ return answer
39
+
40
+ # If no FINAL ANSWER pattern found, return the response as is
41
+ # (the agent wrapper should have already cleaned it)
42
+ return str(response).strip()
43
+
44
  def _fetch_questions(api_url: str) -> list:
45
  """Fetches evaluation questions from the API."""
46
  questions_url = f"{api_url}/questions"
47
+ logger.info(f"Fetching questions from: {questions_url}")
48
  try:
49
  response = requests.get(questions_url, timeout=15)
50
  response.raise_for_status()
51
  questions_data = response.json()
52
  if not questions_data:
53
  raise ValueError("Fetched questions list is empty or invalid format.")
54
+ logger.info(f"Fetched {len(questions_data)} questions.")
55
  return questions_data
56
  except requests.exceptions.RequestException as e:
57
  raise RuntimeError(f"Error fetching questions: {e}") from e
 
64
  """Runs the agent on each question and collects answers and logs."""
65
  results_log = []
66
  answers_payload = []
67
+ logger.info(f"Running agent on {len(questions_data)} questions...")
68
+
69
  for item in questions_data:
70
  task_id = item.get("task_id")
71
  question_text = item.get("question")
72
  if not task_id or question_text is None:
73
+ logger.warning(f"Skipping item with missing task_id or question: {item}")
74
  continue
75
+
76
  try:
77
+ logger.info(f"Processing task {task_id}: {question_text[:100]}...")
78
+
79
+ # The agent is now wrapped to return GAIA-compliant format
80
+ raw_response = agent(question_text)
81
+
82
+ # Extract the final answer (should already be clean from wrapper)
83
+ submitted_answer = extract_final_answer_from_response(raw_response)
84
+
85
+ # Log the full interaction for debugging
86
+ logger.info(f"Task {task_id} - Raw response: {raw_response}")
87
+ logger.info(f"Task {task_id} - Final answer: {submitted_answer}")
88
+
89
+ answers_payload.append({
90
+ "task_id": task_id,
91
+ "submitted_answer": submitted_answer
92
+ })
93
+
94
+ results_log.append({
95
+ "Task ID": task_id,
96
+ "Question": question_text,
97
+ "Raw Response": raw_response,
98
+ "Final Answer": submitted_answer
99
+ })
100
+
101
  except Exception as e:
102
+ error_msg = f"AGENT ERROR: {e}"
103
+ logger.error(f"Error running agent on task {task_id}: {e}")
104
+
105
+ answers_payload.append({
106
+ "task_id": task_id,
107
+ "submitted_answer": error_msg
108
+ })
109
+
110
+ results_log.append({
111
+ "Task ID": task_id,
112
+ "Question": question_text,
113
+ "Raw Response": error_msg,
114
+ "Final Answer": error_msg
115
+ })
116
+
117
  return answers_payload, results_log
118
 
119
  def _submit_answers(api_url: str, username: str, agent_code_url: str, answers_payload: list) -> dict:
120
  """Submits the agent's answers to the evaluation API."""
121
  submit_url = f"{api_url}/submit"
122
+ submission_data = {
123
+ "username": username.strip(),
124
+ "agent_code": agent_code_url,
125
+ "answers": answers_payload
126
+ }
127
+
128
+ logger.info(f"Submitting {len(answers_payload)} answers for user '{username}' to: {submit_url}")
129
+
130
  try:
131
  response = requests.post(submit_url, json=submission_data, timeout=60)
132
  response.raise_for_status()
 
154
  username = None
155
  if profile:
156
  username = profile.username
157
+ logger.info(f"User logged in: {username}")
158
  else:
159
+ logger.info("User not logged in.")
160
  return "Please Login to Hugging Face with the button.", None
161
 
162
  if not username:
 
164
 
165
  space_id = os.getenv("SPACE_ID")
166
  if not space_id:
167
+ logger.error("SPACE_ID environment variable not found. Cannot determine agent_code URL.")
168
  return "Error: SPACE_ID not set. Cannot determine agent_code URL.", None
169
  agent_code_url = f"https://huggingface.co/spaces/{space_id}/tree/main"
170
 
 
173
 
174
  try:
175
  # 1. Instantiate Agent
176
+ logger.info("Initializing agent...")
177
  agent = initialize_agent()
178
  if agent is None:
179
  raise RuntimeError("Agent initialization failed. Check agent.py for details.")
180
+ logger.info("Agent initialized successfully.")
181
 
182
  # 2. Fetch Questions
183
  questions_data = _fetch_questions(DEFAULT_API_URL)
 
192
  submission_result = _submit_answers(DEFAULT_API_URL, username, agent_code_url, answers_payload)
193
 
194
  final_status = (
195
+ f"πŸŽ‰ Submission Successful!\n"
196
+ f"πŸ‘€ User: {submission_result.get('username')}\n"
197
+ f"πŸ“Š Overall Score: {submission_result.get('score', 'N/A')}% "
198
  f"({submission_result.get('correct_count', '?')}/{submission_result.get('total_attempted', '?')} correct)\n"
199
+ f"πŸ’¬ Message: {submission_result.get('message', 'No message received.')}\n"
200
+ f"πŸ”— Agent Code: {agent_code_url}"
201
  )
202
  status_message = final_status
203
  results_df = pd.DataFrame(results_log)
204
 
205
  except RuntimeError as e:
206
+ status_message = f"❌ Operation Failed: {e}"
207
+ logger.error(status_message)
208
  # If an error occurs during agent run, results_log might be partially filled
 
209
  if 'results_log' in locals():
210
  results_df = pd.DataFrame(results_log)
211
  else:
212
  results_df = pd.DataFrame([{"Status": "Error", "Details": str(e)}])
213
  except Exception as e:
214
+ status_message = f"πŸ’₯ Critical Error: {e}"
215
+ logger.error(status_message)
216
  results_df = pd.DataFrame([{"Status": "Critical Error", "Details": str(e)}])
217
 
218
  return status_message, results_df
219
 
220
  # --- Gradio Interface Definition ---
221
+ with gr.Blocks(title="GAIA Benchmark Agent", theme=gr.themes.Soft()) as demo:
222
+ gr.Markdown("""
223
+ # 🧠 GAIA Benchmark Evaluation Agent
224
+
225
+ **Enhanced AI Agent for General AI Assistant (GAIA) Benchmark**
226
+ """)
227
+
228
+ gr.Markdown("""
229
+ ## πŸ“‹ Instructions:
230
+
231
+ 1. **Setup**: Clone this Space and ensure your `.env` file contains:
232
+ ```
233
+ TOGETHER_API_KEY=your_together_api_key
234
+ SERPAPI_API_KEY=your_serpapi_key
235
+ ```
236
+
237
+ 2. **Login**: Use the button below to log in with your Hugging Face account
238
+
239
+ 3. **Run**: Click 'Run Evaluation & Submit' to process all GAIA questions
240
+
241
+ 4. **Wait**: The process may take several minutes depending on question complexity
242
+
243
+ ---
244
+
245
+ ### 🎯 GAIA Format Requirements:
246
+ - **Numbers**: No commas, no units (unless specified)
247
+ - **Strings**: No articles (a, an, the), no abbreviations
248
+ - **Lists**: Comma-separated values following above rules
249
+
250
+ ### πŸ”§ Agent Capabilities:
251
+ - **Web Research**: Google Search, Wikipedia, webpage analysis
252
+ - **Video Analysis**: YouTube transcript processing
253
+ - **Mathematical Computing**: Python execution with scientific libraries
254
+ - **Multi-step Reasoning**: Complex problem decomposition
255
+ """)
256
 
257
+ with gr.Row():
258
+ gr.LoginButton(scale=1)
259
+ run_button = gr.Button("πŸš€ Run Evaluation & Submit All Answers", variant="primary", scale=2)
260
 
261
+ status_output = gr.Textbox(
262
+ label="πŸ“Š Evaluation Status & Results",
263
+ lines=8,
264
+ interactive=False,
265
+ placeholder="Click 'Run Evaluation' to start the process..."
266
+ )
267
+
268
+ results_table = gr.DataFrame(
269
+ label="πŸ“ Detailed Question Results",
270
+ wrap=True,
271
+ interactive=False,
272
+ column_widths=["10%", "40%", "25%", "25%"]
273
+ )
274
 
275
  run_button.click(
276
  fn=run_and_submit_all,
277
  outputs=[status_output, results_table]
278
  )
279
 
280
+ gr.Markdown("""
281
+ ---
282
+ ### πŸ’‘ Tips for Better Performance:
283
+ - Ensure stable internet connection for web searches
284
+ - Monitor the status output for real-time progress
285
+ - Check the detailed results table for individual question analysis
286
+ - The agent automatically formats answers according to GAIA requirements
287
+ """)
288
+
289
  if __name__ == "__main__":
290
+ print("\n" + "="*70)
291
+ print("πŸš€ GAIA BENCHMARK AGENT STARTING")
292
+ print("="*70)
293
+
294
+ # Check environment variables
295
+ space_host = os.getenv("SPACE_HOST")
296
+ space_id = os.getenv("SPACE_ID")
297
+ together_key = os.getenv("TOGETHER_API_KEY")
298
+ serpapi_key = os.getenv("SERPAPI_API_KEY")
299
+
300
+ if space_host:
301
+ print(f"βœ… SPACE_HOST: {space_host}")
302
+ print(f" 🌐 Runtime URL: https://{space_host}.hf.space")
303
  else:
304
+ print("ℹ️ SPACE_HOST not found (local development)")
305
 
306
+ if space_id:
307
+ print(f"βœ… SPACE_ID: {space_id}")
308
+ print(f" πŸ“‚ Repo URL: https://huggingface.co/spaces/{space_id}")
 
309
  else:
310
+ print("⚠️ SPACE_ID not found - submissions may fail")
311
+
312
+ print(f"πŸ”‘ API Keys Status:")
313
+ print(f" Together AI: {'βœ… Set' if together_key else '❌ Missing'}")
314
+ print(f" SerpAPI: {'βœ… Set' if serpapi_key else '⚠️ Missing (optional)'}")
315
 
316
+ print("="*70)
317
+ print("🎯 Launching GAIA Benchmark Interface...")
318
+ print("="*70 + "\n")
319
 
 
320
  demo.launch(debug=True, share=False)
requirements.txt CHANGED
@@ -10,4 +10,11 @@ serpapi
10
  llama-index
11
  youtube-transcript-api
12
  together
13
- python-chess
 
 
 
 
 
 
 
 
10
  llama-index
11
  youtube-transcript-api
12
  together
13
+ python-chess
14
+ transformers
15
+ torch
16
+ requests
17
+ serpapi-python-client
18
+ llama-index
19
+ beautifulsoup4
20
+ lxml