Spaces:
Runtime error
Runtime error
File size: 19,959 Bytes
bfa0c67 1115bb5 dfd7729 bfa0c67 dfd7729 bfa0c67 50a12ff 83b0d23 bfa0c67 dfd7729 bfa0c67 dfd7729 bfa0c67 83b0d23 50a12ff 93ec191 dfd7729 bf902a7 83b0d23 dfd7729 bfa0c67 93ec191 83b0d23 93ec191 50a12ff 93ec191 50a12ff 93ec191 50a12ff 93ec191 50a12ff 93ec191 50a12ff 93ec191 50a12ff 93ec191 50a12ff 93ec191 50a12ff 93ec191 50a12ff 93ec191 e82c355 bfa0c67 50a12ff 93ec191 50a12ff bfa0c67 93ec191 bfa0c67 93ec191 bfa0c67 93ec191 dfd7729 83b0d23 e82c355 83b0d23 50a12ff bfa0c67 e82c355 50a12ff e82c355 50a12ff e82c355 93ec191 83b0d23 dfd7729 e82c355 dfd7729 bfa0c67 dfd7729 50a12ff 93ec191 50a12ff 93ec191 50a12ff 83b0d23 93ec191 e82c355 83b0d23 e82c355 50a12ff 83b0d23 93ec191 50a12ff 93ec191 50a12ff 93ec191 83b0d23 93ec191 50a12ff 83b0d23 aa1abb2 83b0d23 bfa0c67 50a12ff 83b0d23 dfd7729 83b0d23 e82c355 dfd7729 e82c355 50a12ff 83b0d23 93ec191 50a12ff e82c355 50a12ff 83b0d23 50a12ff bf902a7 50a12ff 83b0d23 bfa0c67 dfd7729 83b0d23 dfd7729 bfa0c67 dfd7729 bfa0c67 dfd7729 bfa0c67 bf902a7 50a12ff bf902a7 50a12ff bf902a7 50a12ff bfa0c67 dfd7729 bfa0c67 dfd7729 93ec191 dfd7729 93ec191 bf902a7 93ec191 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
import random
import numpy as np
import pandas as pd
import plotly.express as px
import streamlit as st
import xlsxwriter
from os import listdir
from .lib import set_input, create_dowload_button
from os.path import isfile, join, exists
import printj
class LogAnalyser:
def __init__(self, gen, container_guide, container_param, container_button):
self.gen, self.container_guide, self.container_param, self.container_button = gen, container_guide, container_param, container_button
# self.gen.initialise_classifier_model()
dirpath = 'data'
log_file_paths = sorted(
[join(dirpath, f) for f in listdir(dirpath) if isfile(join(dirpath, f)) and f.startswith('ist_log')])
self.path = container_param.selectbox(
'Select the log path', log_file_paths)
self.df_path = f'data/df/{self.path.split("/")[-1].split(".")[0]}.csv'
# if 'button1_counter' not in st.session_state:
# st.session_state.button1_counter = 0
# if 'df' not in st.session_state:
# self.df=0
st.markdown(self.get_text())
@staticmethod
@st.cache
def get_text():
return '''
### Equation
```
frequency_penalty = 1 - emotion_frequency
probability_emote = w * emotion_confidence + (1 - w) * frequency_penalty
Show_Emotion = probability_emote > (Random value between 0 and 1)
```
'''
def display_logs(self):
# self.container_param.markdown(
# f'st.session_state.button1_counter: {st.session_state.button1_counter}')
self.emotion_type = self.container_param.select_slider(
'How many Emotion data to show?', ['Max-only', '2', '3', '4', '5', '6', 'All 7'])
self.debug = 'debug' in self.df_path
if (not exists(self.df_path) or self.container_button.button('Detect Emotion')) and (not self.debug):
self.df = self.get_log()
# else:
self.df = pd.read_csv(self.df_path)
# if 'path' not in st.session_state:
# st.session_state.path=self.path
# if 'df' not in st.session_state or st.session_state.path!=self.path:
# st.session_state.df=self.get_log(self.path, self.gen)
# st.session_state.path=self.path
self.update_df()
if self.debug:
self.get_c1_plot()
self.get_c2_plot()
def get_c1_plot(self):
# c2_threshold=0
c1_threshold_list = np.arange(0, 1, 0.01)
c1_reaction_weight_list = np.arange(0, 1, 0.1)
# reaction_weight=0.5
list_stories = self.df.Story.unique()
total_num_stories = len(list_stories)
num_stories2show = 9 # int(set_input(self.container_param,
# label='Number of stories to show', min_value=1, max_value=total_num_stories, value=9, step=1,
# key_slider='num_stories2show_slider', key_input='num_stories2show_input',))
list_stories2show = list_stories[:num_stories2show]
c1r_sum_list = []
df_c1_analysis = pd.DataFrame()
c1_analysis_dict = dict()
for reaction_weight in c1_reaction_weight_list:
reaction_weight=np.round(reaction_weight, 2)
for c1_threshold in c1_threshold_list:
df_c1 = self.df.copy()
for story_id in list_stories2show:
reaction_num = 0
reaction_frequency = 0
probability_emote = 0
reaction_show = False
subset_condition = self.get_subset_condition(df_c1, story_id)
dfs = df_c1[subset_condition]
for i, (index, row) in enumerate(dfs.iterrows()):
if row.Emotion == 'neutral' or row.Score < self.score_threshold:
reaction_show = False
else:
reaction_frequency = reaction_num/(i+1)
probability_emote = row.Score*reaction_weight + \
(1-reaction_weight)*(1-reaction_frequency)
reaction_show = True if probability_emote > c1_threshold else False
if reaction_show:
reaction_num += 1
df_c1.at[index, 'reaction_frequency'] = reaction_frequency
df_c1.at[index, 'probability_emote'] = probability_emote
df_c1.at[index, 'c1_threshold'] = c1_threshold
df_c1.at[index, 'reaction_show'] = reaction_show
df_c1.at[index, 'c1'] = reaction_show
review = df_c1.e_review[index]
df_c1.at[index, 'c1r'] = self.get_criteria_review(
reaction_show, review=review)
c1r_sum = df_c1['c1r'].sum()
c1r_sum_list.append(c1r_sum)
c1_analysis_dict['c1_threshold']=c1_threshold
c1_analysis_dict['reaction_weight']=reaction_weight
c1_analysis_dict['c1r_sum']=c1r_sum
df_c1_analysis=pd.concat([df_c1_analysis, pd.DataFrame(c1_analysis_dict, index=[0])])
# fig = px.line(x=c1_threshold_list, y=c1r_sum_list)
fig = px.line(data_frame=df_c1_analysis, x='c1_threshold', y='c1r_sum', color='reaction_weight')
fig.update_layout(
title="Criteria 1 analysis `PE > Threshold`",
xaxis_title="PE Threshold",
yaxis_title="Count of good reviews",
# legend_title="Legend Title",
font=dict(
# family="Courier New, monospace",
size=14,
color="#006064"
),
)
st.plotly_chart(fig, use_container_width=True)
def get_c2_plot(self):
# c2_threshold=0
c2_threshold_list = np.arange(0, 1, 0.01)
list_stories = self.df.Story.unique()
total_num_stories = len(list_stories)
num_stories2show = 9 # int(set_input(self.container_param,
# label='Number of stories to show', min_value=1, max_value=total_num_stories, value=9, step=1,
# key_slider='num_stories2show_slider', key_input='num_stories2show_input',))
list_stories2show = list_stories[:num_stories2show]
c2r_sum_list = []
for c2_threshold in c2_threshold_list:
df_c2 = self.df.copy()
for story_id in list_stories2show:
subset_condition = self.get_subset_condition(df_c2, story_id)
dfs = df_c2[subset_condition]
for i, (index, row) in enumerate(dfs.iterrows()):
c2 = row.Emotion != 'neutral' and row.Score > c2_threshold
df_c2.at[index, 'c2'] = c2
review = df_c2.e_review[index]
df_c2.at[index, 'c2r'] = self.get_criteria_review(
c2, review=review)
c2r_sum_list.append(df_c2['c2r'].sum())
fig = px.line(x=c2_threshold_list, y=c2r_sum_list)
fig.update_layout(
title="Criteria 2 analysis `CS > Threshold`",
xaxis_title="CS Threshold",
yaxis_title="Count of good reviews",
# legend_title="Legend Title",
font=dict(
# family="Courier New, monospace",
size=14,
color="#006064"
),
)
st.plotly_chart(fig, use_container_width=True)
# fig.show()
pass
@staticmethod
def get_subset_condition(data, story_id):
return (data.Story == story_id) & (data.Turn == 'user')
@staticmethod
def get_criteria_review(c, review):
# printj.green(f'{c} {type(c)}')
# printj.green(f'{review} {type(review)}')
result = int(c == True and (review == 'o' or review == None)) + int(
c == False and review == 'x')
return np.round(result, 0)
# return str(np.round(result, 0))
def get_ngram_pattern(self, s, n=2):
gnp = ''
for i in range(len(s)-(n-1)):
gnp += '1' if '1' in s[i:i+n] else '0'
return gnp
def update_df(self):
list_stories = self.df.Story.unique()
total_num_stories = len(list_stories)
num_stories2show = int(set_input(self.container_param,
label='No. of stories to show', min_value=1, max_value=total_num_stories, value=9, step=1,
key_slider='num_stories2show_slider', key_input='num_stories2show_input',))
list_stories2show = list_stories[:num_stories2show]
reaction_weight = set_input(self.container_param,
label='Reaction Weight w', min_value=0.0, max_value=1.0, value=0.5, step=0.01,
key_slider='w_slider', key_input='w_input',)
self.container_param_rv = self.container_param.columns([1, 1])
random_value_mode = self.container_param_rv[0].radio(
"C1 Threshold type", ["Random", "Fixed"], index=1)
# random_value = random.random()
if random_value_mode == "Fixed":
random_value = set_input(self.container_param,
label='C1 Threshold',
key_slider='rand_slider', key_input='rand_input',
min_value=0.,
max_value=1.,
value=.5,
step=.01,)
c2_threshold = set_input(self.container_param,
label='C2 Threshold', min_value=0.0, max_value=1.0, value=0.7, step=0.01,
key_slider='c2_threshold_slider', key_input='c2_threshold_input',)
table_mode = self.container_param.radio(
"Table Style:", ["Dataframe", "Table"])
self.show_pe_data = self.container_param.checkbox(
'Show Probability Emote', value=True, key='show_pe_data_log')
self.score_threshold = set_input(self.container_param,
label='Score Threshold', min_value=0.0, max_value=1.0, value=0.5, step=0.01,
key_slider='score_threshold_slider', key_input='score_threshold_input',)
df_reaction_pattern = pd.DataFrame()
reaction_pattern_dict = dict()
for story_id in list_stories2show:
reaction_num = 0
reaction_frequency = 0
probability_emote = 0
# random_value = 0
reaction_show = False
# c2 = True
subset_condition = self.get_subset_condition(self.df, story_id)
dfs = self.df[subset_condition]
for i, (index, row) in enumerate(dfs.iterrows()):
if row.Emotion == 'neutral' or row.Score < self.score_threshold:
reaction_show = False
else:
reaction_frequency = reaction_num/(i+1)
probability_emote = row.Score*reaction_weight + \
(1-reaction_weight)*(1-reaction_frequency)
if random_value_mode == "Random":
random_value = random.random()
reaction_show = True if probability_emote > random_value else False
if reaction_show:
reaction_num += 1
self.df.at[index, 'reaction_frequency'] = reaction_frequency
self.df.at[index, 'probability_emote'] = probability_emote
self.df.at[index, 'random_value'] = random_value
self.df.at[index, 'reaction_show'] = reaction_show
self.df.at[index, 'c1'] = reaction_show
c2 = row.Emotion != 'neutral' and row.Score > c2_threshold
self.df.at[index, 'c2'] = c2
review = self.df.e_review[index]
self.df.at[index, 'c1r'] = self.get_criteria_review(
reaction_show, review=review)
self.df.at[index, 'c2r'] = self.get_criteria_review(
c2, review=review)
s = ''
df_edit = self.df[self.get_subset_condition(
self.df, story_id)].reaction_show.copy()
df_edit = df_edit.dropna()
for v in df_edit:
s += str(int(v))
# df_reaction_pattern.at[story_id]
# reaction_pattern_dict['story_id']=story_id
reaction_pattern_dict['reaction_length'] = len(s)
reaction_pattern_dict['reaction_1'] = s.count('1')
reaction_pattern_dict['reaction_pattern'] = s
for i in range(2, 8):
reaction_pattern_dict[f'{i}-gram_pattern'] = self.get_ngram_pattern(
s, n=i)
df_reaction_pattern = pd.concat(
[df_reaction_pattern, pd.DataFrame(reaction_pattern_dict, index=[f'Story_{story_id}'])])
# st.markdown(df_edit)
# st.markdown(s)
# for c in ['c1r', 'c2r']:
# st.markdown(f'Sum of {c} : {self.df[c].sum()}')
df_show = self.df.copy()
for c in ['c1r', 'c2r']:
df_show[c] = df_show[c].fillna(0).astype(int)
st.markdown(f'Sum of {c} : {df_show[c].sum()}')
for story_id in list_stories2show:
dfs = df_show[(df_show.Story == story_id)].copy()
columns2hide = ['Unnamed: 0', 'Story', ]
if not self.debug:
columns2hide += ['e_review']
if self.emotion_type == 'Max-only':
columns2hide += [
f'Emotion_{sorted_i+1}' for sorted_i in range(7)]
columns2hide += [
f'Score_{sorted_i+1}' for sorted_i in range(7)]
if not self.show_pe_data:
columns2hide += [
"reaction_frequency", "probability_emote", "random_value", "reaction_show"]
for c in columns2hide:
dfs.drop(c, axis=1, inplace=True)
st.markdown(f'#### Story {story_id}')
dfs = dfs.style
if self.show_pe_data:
dfs = dfs.apply(self.dfstyle_color_text_col, axis=1)
# dfs = dfs.applymap(self.dfstyle_color_text)
dfs = dfs.apply(self.rower, axis=None)
dfs = dfs.set_table_styles([{
'selector': 'tr:hover',
'props': 'color: #000000' # background-color: #eeee66;font-size: 1.01em;
}]) # .hide_index()
if table_mode == 'Dataframe':
st.dataframe(dfs)
# set_na_rep(" ").s
# st.dataframe(df_reaction_pattern.iloc[story_id-1])
elif table_mode == 'Table':
st.table(dfs)
# st.table(df_reaction_pattern.iloc[story_id-1])
create_dowload_button(
dfs, sheet_name=f'story_{story_id}', file_name=f'data_story_{story_id}.xlsx')
# print(dfs.render())
if table_mode == 'Dataframe':
st.dataframe(df_reaction_pattern)
elif table_mode == 'Table':
st.table(df_reaction_pattern)
# @st.cache
def dfstyle_color_text_col(self, s):
num_col = len(s)
result = ['background-color: white']*len(s)
# if s.Emotion == 'neutral' and s.Turn == 'user':
# result[-6:-1] = ['color: #992222'] + \
# ['color: #333333']+['color: #fcfcfc']*3
for si, sc in enumerate(s):
if sc != sc:
result[si] = 'color: #fcfcfc'
# printj.red.bold_on_white(s)
# printj.red.bold_on_cyan(si)
# printj.red.bold_on_cyan(sc)
# if s.Score < self.score_threshold and s.Turn == 'user':
# result[-5:-1] = ['color: #992222'] + ['color: #fcfcfc']*3
# printj.red(result)
# printj.red.bold_on_cyan(s)
# printj.red.bold_on_cyan(type(s))
# printj.red.bold_on_white(s.keys().tolist())
# printj.red.bold_on_white(type(s.keys().tolist()))
# idx_reaction_show = s.keys().tolist().index("reaction_show")
# printj.red.bold_on_white(idx_reaction_show)
# if s.reaction_show == 1:
# # result[idx_reaction_show] = 'color: #222222'
# pass
# elif s.reaction_show == 0:
# # result[idx_reaction_show] = 'color: #222222'
# pass
# else:
# # print(s.reaction_show)
# # print(type(s.reaction_show))
# hide_length = 3
# result[idx_reaction_show-hide_length:] = ['color: #fcfcfc']*(num_col-idx_reaction_show+hide_length)
# if s.probability_emote!=s.probability_emote:
# result[5] = 'color: #eeeeee'
return result
# @staticmethod
# @st.cache
# def dfstyle_color_text(val):
# if type(val)==str:
# color = 'red' if val =='neutral' else 'black'
# # elif type(val)==float:
# # color = 'red' if val > .50000 else 'black'
# elif val==None:
# color = '#ffffff'
# else:
# color = None
# return 'color: %s' % color if color is not None else ''
@staticmethod
@st.cache
def rower(data):
s = data.index % 2 != 0
s = pd.concat([pd.Series(s)] * data.shape[1],
axis=1)
z = pd.DataFrame(np.where(s, 'background-color:#f9f9f9', ''),
index=data.index, columns=data.columns)
return z
def get_log(self):
df = pd.DataFrame(data=[], columns=[])
log_dict = dict()
with open(self.path) as f:
lines = f.readlines()
self.gen.initialise_classifier_model()
story_num = 0
for i, line in enumerate(lines):
if line.startswith('H:'):
log_dict['Turn'] = 'haru'
elif line.startswith('U:'):
log_dict['Turn'] = 'user'
else:
story_num += 1
continue
log_dict['Sentence'] = line[3:]
log_dict['Story'] = story_num
emotion_type = 'sorted' # 'max'
if self.emotion_type == 'max':
emotion_type = 'max'
else:
emotion_type = 'sorted' #
emotion = self.gen.get_emotion(
log_dict['Sentence'], filter_by=emotion_type)
if emotion_type == 'max':
log_dict['Emotion'] = emotion['label']
log_dict['Score'] = emotion['score']
elif emotion_type == 'sorted':
for sorted_i in range(len(emotion)):
log_dict[f'Emotion_{sorted_i+1}'] = emotion[sorted_i]['label']
log_dict[f'Score_{sorted_i+1}'] = emotion[sorted_i]['score']
log_dict['Emotion'] = emotion[0]['label']
log_dict['Score'] = emotion[0]['score']
log_dict['e_review'] = ' '
df = pd.concat(
[df, pd.DataFrame(log_dict, index=[f'idx_{i}'])])
df = df.reset_index(drop=True)
df.to_csv(self.df_path)
return df
def display_logs(gen, container_guide, container_param, container_button):
la = LogAnalyser(gen, container_guide, container_param, container_button)
la.display_logs()
# df = la.update_df(la.df)
if __name__ == '__main__':
# df = LogAnalyser.get_log(path='data/ist_logs.txt')
# initialize data of lists.
# data = {'Name': ['Tom', 'nick', 'krish', 'jack'],
# 'Age': [20, 21, 19, 18]}
# # Create DataFrame
# df = pd.DataFrame(data)
# print(df, type(df))
os.system('./run.sh')
|