Spaces:
Runtime error
Runtime error
adds download button
Browse files- src/lib.py +26 -4
- src/read_logs.py +2 -2
- src/test.py +7 -0
src/lib.py
CHANGED
@@ -4,8 +4,30 @@ import streamlit as st
|
|
4 |
|
5 |
from src import StoryGenerator
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# @st.cache(allow_output_mutation=True)
|
|
|
|
|
9 |
def initialise_storytelling(gen, container_guide, container_param, container_button):
|
10 |
gen.initialise_models()
|
11 |
choices_first_sentence = [
|
@@ -30,9 +52,9 @@ def initialise_storytelling(gen, container_guide, container_param, container_but
|
|
30 |
first_emotion = gen.get_emotion(first_sentence)
|
31 |
|
32 |
length = set_input(container_param,
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
return first_sentence, first_emotion, length
|
37 |
|
38 |
|
@@ -65,4 +87,4 @@ def set_input(container_param,
|
|
65 |
step=step,
|
66 |
key=key_slider,
|
67 |
on_change=slider2input)
|
68 |
-
return number_input
|
|
|
4 |
|
5 |
from src import StoryGenerator
|
6 |
|
7 |
+
import xlsxwriter
|
8 |
+
import pandas as pd
|
9 |
+
import io
|
10 |
+
|
11 |
+
|
12 |
+
def create_dowload_button(data, sheet_name='AllData', label="Download data", file_name='data.xlsx'):
|
13 |
+
|
14 |
+
buffer = io.BytesIO()
|
15 |
+
with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer:
|
16 |
+
# Write each dataframe to a different worksheet.
|
17 |
+
data.to_excel(writer, sheet_name=sheet_name)
|
18 |
+
|
19 |
+
# Close the Pandas Excel writer and output the Excel file to the buffer
|
20 |
+
writer.save()
|
21 |
+
st.download_button(
|
22 |
+
label=label,
|
23 |
+
data=buffer,
|
24 |
+
file_name=file_name,
|
25 |
+
mime='application/vnd.ms-excel',
|
26 |
+
)
|
27 |
|
28 |
# @st.cache(allow_output_mutation=True)
|
29 |
+
|
30 |
+
|
31 |
def initialise_storytelling(gen, container_guide, container_param, container_button):
|
32 |
gen.initialise_models()
|
33 |
choices_first_sentence = [
|
|
|
52 |
first_emotion = gen.get_emotion(first_sentence)
|
53 |
|
54 |
length = set_input(container_param,
|
55 |
+
label='Length of the sentence',
|
56 |
+
min_value=1, max_value=100, value=10, step=1,
|
57 |
+
key_slider='length_slider', key_input='length_input',)
|
58 |
return first_sentence, first_emotion, length
|
59 |
|
60 |
|
|
|
87 |
step=step,
|
88 |
key=key_slider,
|
89 |
on_change=slider2input)
|
90 |
+
return number_input
|
src/read_logs.py
CHANGED
@@ -5,7 +5,7 @@ import plotly.express as px
|
|
5 |
import streamlit as st
|
6 |
import xlsxwriter
|
7 |
from os import listdir
|
8 |
-
from .lib import set_input
|
9 |
from os.path import isfile, join, exists
|
10 |
import printj
|
11 |
|
@@ -163,12 +163,12 @@ class LogAnalyser:
|
|
163 |
elif table_mode == 'Table':
|
164 |
st.table(dfs)
|
165 |
# st.table(df_reaction_pattern.iloc[story_id-1])
|
|
|
166 |
# print(dfs.render())
|
167 |
if table_mode == 'Dataframe':
|
168 |
st.dataframe(df_reaction_pattern)
|
169 |
elif table_mode == 'Table':
|
170 |
st.table(df_reaction_pattern)
|
171 |
-
|
172 |
# @st.cache
|
173 |
def dfstyle_color_text_col(self, s):
|
174 |
result = ['background-color: white']*len(s)
|
|
|
5 |
import streamlit as st
|
6 |
import xlsxwriter
|
7 |
from os import listdir
|
8 |
+
from .lib import set_input, create_dowload_button
|
9 |
from os.path import isfile, join, exists
|
10 |
import printj
|
11 |
|
|
|
163 |
elif table_mode == 'Table':
|
164 |
st.table(dfs)
|
165 |
# st.table(df_reaction_pattern.iloc[story_id-1])
|
166 |
+
create_dowload_button(dfs, sheet_name=f'story_{story_id}', file_name=f'data_story_{story_id}.xlsx')
|
167 |
# print(dfs.render())
|
168 |
if table_mode == 'Dataframe':
|
169 |
st.dataframe(df_reaction_pattern)
|
170 |
elif table_mode == 'Table':
|
171 |
st.table(df_reaction_pattern)
|
|
|
172 |
# @st.cache
|
173 |
def dfstyle_color_text_col(self, s):
|
174 |
result = ['background-color: white']*len(s)
|
src/test.py
CHANGED
@@ -27,7 +27,14 @@ for i in range(len(s)-1):
|
|
27 |
|
28 |
g2p
|
29 |
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
|
|
31 |
# # def highlight_greaterthan(s,column):
|
32 |
# # is_max = pd.Series(data=False, index=s.index)
|
33 |
# # is_max[column] = s.loc[column] >= 1
|
|
|
27 |
|
28 |
g2p
|
29 |
|
30 |
+
# %%
|
31 |
+
# import plotly.express as px
|
32 |
+
from plotly.offline import init_notebook_mode, iplot
|
33 |
+
import numpy as np
|
34 |
+
init_notebook_mode()
|
35 |
|
36 |
+
x = np.linspace(0, 1)
|
37 |
+
iplot([{'x': x, 'y': 1-np.exp(-x)}])
|
38 |
# # def highlight_greaterthan(s,column):
|
39 |
# # is_max = pd.Series(data=False, index=s.index)
|
40 |
# # is_max[column] = s.loc[column] >= 1
|