Spaces:
Paused
Paused
File size: 12,393 Bytes
4f2a492 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, List, Optional, Union
import torch
from ...models import UNet2DModel
from ...schedulers import CMStochasticIterativeScheduler
from ...utils import (
logging,
replace_example_docstring,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import ConsistencyModelPipeline
>>> device = "cuda"
>>> # Load the cd_imagenet64_l2 checkpoint.
>>> model_id_or_path = "openai/diffusers-cd_imagenet64_l2"
>>> pipe = ConsistencyModelPipeline.from_pretrained(model_id_or_path, torch_dtype=torch.float16)
>>> pipe.to(device)
>>> # Onestep Sampling
>>> image = pipe(num_inference_steps=1).images[0]
>>> image.save("cd_imagenet64_l2_onestep_sample.png")
>>> # Onestep sampling, class-conditional image generation
>>> # ImageNet-64 class label 145 corresponds to king penguins
>>> image = pipe(num_inference_steps=1, class_labels=145).images[0]
>>> image.save("cd_imagenet64_l2_onestep_sample_penguin.png")
>>> # Multistep sampling, class-conditional image generation
>>> # Timesteps can be explicitly specified; the particular timesteps below are from the original Github repo:
>>> # https://github.com/openai/consistency_models/blob/main/scripts/launch.sh#L77
>>> image = pipe(num_inference_steps=None, timesteps=[22, 0], class_labels=145).images[0]
>>> image.save("cd_imagenet64_l2_multistep_sample_penguin.png")
```
"""
class ConsistencyModelPipeline(DiffusionPipeline):
r"""
Pipeline for unconditional or class-conditional image generation.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
unet ([`UNet2DModel`]):
A `UNet2DModel` to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Currently only
compatible with [`CMStochasticIterativeScheduler`].
"""
model_cpu_offload_seq = "unet"
def __init__(self, unet: UNet2DModel, scheduler: CMStochasticIterativeScheduler) -> None:
super().__init__()
self.register_modules(
unet=unet,
scheduler=scheduler,
)
self.safety_checker = None
def prepare_latents(self, batch_size, num_channels, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels, height, width)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device=device, dtype=dtype)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
# Follows diffusers.VaeImageProcessor.postprocess
def postprocess_image(self, sample: torch.FloatTensor, output_type: str = "pil"):
if output_type not in ["pt", "np", "pil"]:
raise ValueError(
f"output_type={output_type} is not supported. Make sure to choose one of ['pt', 'np', or 'pil']"
)
# Equivalent to diffusers.VaeImageProcessor.denormalize
sample = (sample / 2 + 0.5).clamp(0, 1)
if output_type == "pt":
return sample
# Equivalent to diffusers.VaeImageProcessor.pt_to_numpy
sample = sample.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "np":
return sample
# Output_type must be 'pil'
sample = self.numpy_to_pil(sample)
return sample
def prepare_class_labels(self, batch_size, device, class_labels=None):
if self.unet.config.num_class_embeds is not None:
if isinstance(class_labels, list):
class_labels = torch.tensor(class_labels, dtype=torch.int)
elif isinstance(class_labels, int):
assert batch_size == 1, "Batch size must be 1 if classes is an int"
class_labels = torch.tensor([class_labels], dtype=torch.int)
elif class_labels is None:
# Randomly generate batch_size class labels
# TODO: should use generator here? int analogue of randn_tensor is not exposed in ...utils
class_labels = torch.randint(0, self.unet.config.num_class_embeds, size=(batch_size,))
class_labels = class_labels.to(device)
else:
class_labels = None
return class_labels
def check_inputs(self, num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps):
if num_inference_steps is None and timesteps is None:
raise ValueError("Exactly one of `num_inference_steps` or `timesteps` must be supplied.")
if num_inference_steps is not None and timesteps is not None:
logger.warning(
f"Both `num_inference_steps`: {num_inference_steps} and `timesteps`: {timesteps} are supplied;"
" `timesteps` will be used over `num_inference_steps`."
)
if latents is not None:
expected_shape = (batch_size, 3, img_size, img_size)
if latents.shape != expected_shape:
raise ValueError(f"The shape of latents is {latents.shape} but is expected to be {expected_shape}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
batch_size: int = 1,
class_labels: Optional[Union[torch.Tensor, List[int], int]] = None,
num_inference_steps: int = 1,
timesteps: List[int] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
):
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
class_labels (`torch.Tensor` or `List[int]` or `int`, *optional*):
Optional class labels for conditioning class-conditional consistency models. Not used if the model is
not class-conditional.
num_inference_steps (`int`, *optional*, defaults to 1):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
timesteps (`List[int]`, *optional*):
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
timesteps are used. Must be in descending order.
generator (`torch.Generator`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
Examples:
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images.
"""
# 0. Prepare call parameters
img_size = self.unet.config.sample_size
device = self._execution_device
# 1. Check inputs
self.check_inputs(num_inference_steps, timesteps, latents, batch_size, img_size, callback_steps)
# 2. Prepare image latents
# Sample image latents x_0 ~ N(0, sigma_0^2 * I)
sample = self.prepare_latents(
batch_size=batch_size,
num_channels=self.unet.config.in_channels,
height=img_size,
width=img_size,
dtype=self.unet.dtype,
device=device,
generator=generator,
latents=latents,
)
# 3. Handle class_labels for class-conditional models
class_labels = self.prepare_class_labels(batch_size, device, class_labels=class_labels)
# 4. Prepare timesteps
if timesteps is not None:
self.scheduler.set_timesteps(timesteps=timesteps, device=device)
timesteps = self.scheduler.timesteps
num_inference_steps = len(timesteps)
else:
self.scheduler.set_timesteps(num_inference_steps)
timesteps = self.scheduler.timesteps
# 5. Denoising loop
# Multistep sampling: implements Algorithm 1 in the paper
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
scaled_sample = self.scheduler.scale_model_input(sample, t)
model_output = self.unet(scaled_sample, t, class_labels=class_labels, return_dict=False)[0]
sample = self.scheduler.step(model_output, t, sample, generator=generator)[0]
# call the callback, if provided
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, sample)
# 6. Post-process image sample
image = self.postprocess_image(sample, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)
|