nekoshadow commited on
Commit
4f2a492
·
1 Parent(s): 0f417f9

Add controlnet

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. app.py +105 -78
  2. controlnet_ckpt/config.json +32 -0
  3. controlnet_sync.py +368 -0
  4. diffusers/__init__.py +758 -0
  5. diffusers/commands/__init__.py +27 -0
  6. diffusers/commands/diffusers_cli.py +43 -0
  7. diffusers/commands/env.py +84 -0
  8. diffusers/commands/fp16_safetensors.py +132 -0
  9. diffusers/configuration_utils.py +699 -0
  10. diffusers/dependency_versions_check.py +34 -0
  11. diffusers/dependency_versions_table.py +46 -0
  12. diffusers/experimental/README.md +5 -0
  13. diffusers/experimental/__init__.py +1 -0
  14. diffusers/experimental/rl/__init__.py +1 -0
  15. diffusers/experimental/rl/value_guided_sampling.py +153 -0
  16. diffusers/image_processor.py +884 -0
  17. diffusers/loaders/__init__.py +86 -0
  18. diffusers/loaders/ip_adapter.py +190 -0
  19. diffusers/loaders/lora.py +1553 -0
  20. diffusers/loaders/lora_conversion_utils.py +284 -0
  21. diffusers/loaders/peft.py +188 -0
  22. diffusers/loaders/single_file.py +637 -0
  23. diffusers/loaders/textual_inversion.py +455 -0
  24. diffusers/loaders/unet.py +828 -0
  25. diffusers/loaders/utils.py +59 -0
  26. diffusers/models/README.md +3 -0
  27. diffusers/models/__init__.py +94 -0
  28. diffusers/models/activations.py +123 -0
  29. diffusers/models/adapter.py +584 -0
  30. diffusers/models/attention.py +668 -0
  31. diffusers/models/attention_flax.py +494 -0
  32. diffusers/models/attention_processor.py +0 -0
  33. diffusers/models/autoencoders/__init__.py +5 -0
  34. diffusers/models/autoencoders/autoencoder_asym_kl.py +186 -0
  35. diffusers/models/autoencoders/autoencoder_kl.py +487 -0
  36. diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +400 -0
  37. diffusers/models/autoencoders/autoencoder_tiny.py +345 -0
  38. diffusers/models/autoencoders/consistency_decoder_vae.py +435 -0
  39. diffusers/models/autoencoders/vae.py +983 -0
  40. diffusers/models/controlnet.py +862 -0
  41. diffusers/models/controlnet_flax.py +395 -0
  42. diffusers/models/downsampling.py +338 -0
  43. diffusers/models/dual_transformer_2d.py +155 -0
  44. diffusers/models/embeddings.py +880 -0
  45. diffusers/models/embeddings_flax.py +97 -0
  46. diffusers/models/lora.py +434 -0
  47. diffusers/models/modeling_flax_pytorch_utils.py +134 -0
  48. diffusers/models/modeling_flax_utils.py +566 -0
  49. diffusers/models/modeling_outputs.py +17 -0
  50. diffusers/models/modeling_pytorch_flax_utils.py +161 -0
app.py CHANGED
@@ -12,25 +12,22 @@ from ldm.models.diffusion.sync_dreamer import SyncDDIMSampler, SyncMultiviewDiff
12
  from ldm.util import add_margin, instantiate_from_config
13
  from sam_utils import sam_init, sam_out_nosave
14
 
15
- import torch
16
- _TITLE = '''SyncDreamer: Generating Multiview-consistent Images from a Single-view Image'''
 
 
 
 
 
 
 
 
17
  _DESCRIPTION = '''
18
- <div>
19
- <a style="display:inline-block" href="https://liuyuan-pal.github.io/SyncDreamer/"><img src="https://img.shields.io/badge/SyncDremer-Homepage-blue"></a>
20
- <a style="display:inline-block; margin-left: .5em" href="https://arxiv.org/abs/2309.03453"><img src="https://img.shields.io/badge/2309.03453-f9f7f7?logo="></a>
21
- <a style="display:inline-block; margin-left: .5em" href='https://github.com/liuyuan-pal/SyncDreamer'><img src='https://img.shields.io/github/stars/liuyuan-pal/SyncDreamer?style=social' /></a>
22
- </div>
23
- Given a single-view image, SyncDreamer is able to generate multiview-consistent images, which enables direct 3D reconstruction with NeuS or NeRF without SDS loss </br>
24
-
25
- Procedure: </br>
26
- **Step 1**. Upload an image or select an example. ==> The foreground is masked out by SAM and we crop it as inputs. </br>
27
- **Step 2**. Select "Elevation angle "and click "Run generation". ==> Generate multiview images. The **Elevation angle** is the elevation of the input image. (This costs about 30s.) </br>
28
- You may adjust the **Crop size** and **Elevation angle** to get a better result! <br>
29
- To reconstruct a NeRF or a 3D mesh from the generated images, please refer to our [github repository](https://github.com/liuyuan-pal/SyncDreamer). <br>
30
- We have heavily borrowed codes from [One-2-3-45](https://huggingface.co/spaces/One-2-3-45/One-2-3-45), which is also an amazing single-view reconstruction method.
31
  '''
32
  _USER_GUIDE0 = "Step1: Please upload an image in the block above (or choose an example shown in the left)."
33
- # _USER_GUIDE1 = "Step1: Please select a **Crop size** and click **Crop it**."
34
  _USER_GUIDE2 = "Step2: Please choose a **Elevation angle** and click **Run Generate**. The **Elevation angle** is the elevation of the input image. This costs about 30s."
35
  _USER_GUIDE3 = "Generated multiview images are shown below! (You may adjust the **Crop size** and **Elevation angle** to get a better result!)"
36
 
@@ -79,48 +76,51 @@ def resize_inputs(image_input, crop_size):
79
  results = add_margin(ref_img_, size=256)
80
  return results
81
 
82
- def generate(model, sample_steps, batch_view_num, sample_num, cfg_scale, seed, image_input, elevation_input):
83
- if deployed:
84
- assert isinstance(model, SyncMultiviewDiffusion)
85
- seed=int(seed)
86
- torch.random.manual_seed(seed)
87
- np.random.seed(seed)
88
-
89
- # prepare data
90
- image_input = np.asarray(image_input)
91
- image_input = image_input.astype(np.float32) / 255.0
92
- alpha_values = image_input[:,:, 3:]
93
- image_input[:, :, :3] = alpha_values * image_input[:,:, :3] + 1 - alpha_values # white background
94
- image_input = image_input[:, :, :3] * 2.0 - 1.0
95
- image_input = torch.from_numpy(image_input.astype(np.float32))
96
- elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
97
- data = {"input_image": image_input, "input_elevation": elevation_input}
98
- for k, v in data.items():
99
- if deployed:
100
- data[k] = v.unsqueeze(0).cuda()
101
- else:
102
- data[k] = v.unsqueeze(0)
103
- data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)
104
-
105
- if deployed:
106
- sampler = SyncDDIMSampler(model, sample_steps)
107
- x_sample = model.sample(sampler, data, cfg_scale, batch_view_num)
108
- else:
109
- x_sample = torch.zeros(sample_num, 16, 3, 256, 256)
110
-
111
- B, N, _, H, W = x_sample.shape
112
- x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
113
- x_sample = x_sample.permute(0,1,3,4,2).cpu().numpy() * 255
114
- x_sample = x_sample.astype(np.uint8)
115
-
116
- results = []
117
- for bi in range(B):
118
- results.append(np.concatenate([x_sample[bi,ni] for ni in range(N)], 1))
119
- results = np.concatenate(results, 0)
120
- return Image.fromarray(results)
121
- else:
122
- return Image.fromarray(np.zeros([sample_num*256,16*256,3],np.uint8))
123
-
 
 
 
124
 
125
  def sam_predict(predictor, removal, raw_im):
126
  if raw_im is None: return None
@@ -152,26 +152,51 @@ def sam_predict(predictor, removal, raw_im):
152
  else:
153
  return raw_im
154
 
155
- def run_demo():
156
- # device = f"cuda:0" if torch.cuda.is_available() else "cpu"
157
- # models = None # init_model(device, os.path.join(code_dir, ckpt))
158
- cfg = 'configs/syncdreamer.yaml'
159
- ckpt = 'ckpt/syncdreamer-pretrain.ckpt'
160
  config = OmegaConf.load(cfg)
161
- # model = None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
162
  if deployed:
163
- model = instantiate_from_config(config.model)
164
- print(f'loading model from {ckpt} ...')
165
- ckpt = torch.load(ckpt,map_location='cpu')
166
- model.load_state_dict(ckpt['state_dict'], strict=True)
167
- model = model.cuda().eval()
168
- del ckpt
 
 
 
 
 
 
 
 
 
 
 
 
169
  mask_predictor = sam_init()
170
  removal = BackgroundRemoval()
171
  else:
172
- model = None
173
- mask_predictor = None
174
- removal = None
 
 
 
175
 
176
  # NOTE: Examples must match inputs
177
  examples_full = [
@@ -186,9 +211,11 @@ def run_demo():
186
  ]
187
 
188
  image_block = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None, interactive=True)
189
- elevation = gr.Slider(-10, 40, 30, step=5, label='Elevation angle of the input image', interactive=True)
190
  crop_size = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
191
 
 
 
192
  # Compose demo layout & data flow.
193
  with gr.Blocks(title=_TITLE, css="hf_demo/style.css") as demo:
194
  with gr.Row():
@@ -202,8 +229,8 @@ def run_demo():
202
  with gr.Column(scale=1.2):
203
  gr.Examples(
204
  examples=examples_full, # NOTE: elements must match inputs list!
205
- inputs=[image_block, elevation, crop_size],
206
- outputs=[image_block, elevation, crop_size],
207
  cache_examples=False,
208
  label='Examples (click one of the images below to start)',
209
  examples_per_page=5,
@@ -223,7 +250,7 @@ def run_demo():
223
 
224
  with gr.Column(scale=0.8):
225
  input_block = gr.Image(type='pil', image_mode='RGBA', label="Input to SyncDreamer", height=256, interactive=False)
226
- elevation.render()
227
  with gr.Accordion('Advanced options', open=False):
228
  cfg_scale = gr.Slider(1.0, 5.0, 2.0, step=0.1, label='Classifier free guidance', interactive=True)
229
  sample_num = gr.Slider(1, 2, 1, step=1, label='Sample num', interactive=False, info='How many instance (16 images per instance)')
@@ -252,7 +279,7 @@ def run_demo():
252
  # crop_btn.click(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=False)\
253
  # .success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
254
 
255
- run_btn.click(partial(generate, model), inputs=[sample_steps, batch_view_num, sample_num, cfg_scale, seed, input_block, elevation], outputs=[output_block], queue=True)\
256
  .success(fn=partial(update_guide, _USER_GUIDE3), outputs=[guide_text], queue=False)
257
 
258
  demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
 
12
  from ldm.util import add_margin, instantiate_from_config
13
  from sam_utils import sam_init, sam_out_nosave
14
 
15
+ from ldm.util import instantiate_from_config, prepare_inputs
16
+ import argparse
17
+ import cv2
18
+ from transformers import pipeline
19
+ from diffusers.utils import load_image, make_image_grid
20
+ from diffusers import UniPCMultistepScheduler
21
+ from pipeline_controlnet_sync import StableDiffusionControlNetPipeline
22
+ from controlnet_sync import ControlNetModelSync
23
+
24
+ _TITLE = '''ControlNet + SyncDreamer'''
25
  _DESCRIPTION = '''
26
+ Given a single-view image and select a target azimuth, ControlNet + SyncDreamer is able to generate the target view
27
+
28
+ This HF app is modified from [SyncDreamer HF app](https://huggingface.co/spaces/liuyuan-pal/SyncDreamer). The difference is that I added ControlNet on top of SyncDreamer.
 
 
 
 
 
 
 
 
 
 
29
  '''
30
  _USER_GUIDE0 = "Step1: Please upload an image in the block above (or choose an example shown in the left)."
 
31
  _USER_GUIDE2 = "Step2: Please choose a **Elevation angle** and click **Run Generate**. The **Elevation angle** is the elevation of the input image. This costs about 30s."
32
  _USER_GUIDE3 = "Generated multiview images are shown below! (You may adjust the **Crop size** and **Elevation angle** to get a better result!)"
33
 
 
76
  results = add_margin(ref_img_, size=256)
77
  return results
78
 
79
+ # def generate(model, sample_steps, batch_view_num, sample_num, cfg_scale, seed, image_input, elevation_input):
80
+ # if deployed:
81
+ # assert isinstance(model, SyncMultiviewDiffusion)
82
+ # seed=int(seed)
83
+ # torch.random.manual_seed(seed)
84
+ # np.random.seed(seed)
85
+
86
+ # # prepare data
87
+ # image_input = np.asarray(image_input)
88
+ # image_input = image_input.astype(np.float32) / 255.0
89
+ # alpha_values = image_input[:,:, 3:]
90
+ # image_input[:, :, :3] = alpha_values * image_input[:,:, :3] + 1 - alpha_values # white background
91
+ # image_input = image_input[:, :, :3] * 2.0 - 1.0
92
+ # image_input = torch.from_numpy(image_input.astype(np.float32))
93
+ # elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
94
+ # data = {"input_image": image_input, "input_elevation": elevation_input}
95
+ # for k, v in data.items():
96
+ # if deployed:
97
+ # data[k] = v.unsqueeze(0).cuda()
98
+ # else:
99
+ # data[k] = v.unsqueeze(0)
100
+ # data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)
101
+
102
+ # if deployed:
103
+ # sampler = SyncDDIMSampler(model, sample_steps)
104
+ # x_sample = model.sample(sampler, data, cfg_scale, batch_view_num)
105
+ # else:
106
+ # x_sample = torch.zeros(sample_num, 16, 3, 256, 256)
107
+
108
+ # B, N, _, H, W = x_sample.shape
109
+ # x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
110
+ # x_sample = x_sample.permute(0,1,3,4,2).cpu().numpy() * 255
111
+ # x_sample = x_sample.astype(np.uint8)
112
+
113
+ # results = []
114
+ # for bi in range(B):
115
+ # results.append(np.concatenate([x_sample[bi,ni] for ni in range(N)], 1))
116
+ # results = np.concatenate(results, 0)
117
+ # return Image.fromarray(results)
118
+ # else:
119
+ # return Image.fromarray(np.zeros([sample_num*256,16*256,3],np.uint8))
120
+
121
+ def generate(pipe, image_input, target_index):
122
+ output = pipe(conditioning_image=image_input)
123
+ return output[target_index]
124
 
125
  def sam_predict(predictor, removal, raw_im):
126
  if raw_im is None: return None
 
152
  else:
153
  return raw_im
154
 
155
+ def load_model(cfg,ckpt,strict=True):
 
 
 
 
156
  config = OmegaConf.load(cfg)
157
+ model = instantiate_from_config(config.model)
158
+ print(f'loading model from {ckpt} ...')
159
+ ckpt = torch.load(ckpt,map_location='cuda')
160
+ model.load_state_dict(ckpt['state_dict'],strict=strict)
161
+ model = model.cuda().eval()
162
+ return model
163
+
164
+ def run_demo():
165
+ # # device = f"cuda:0" if torch.cuda.is_available() else "cpu"
166
+ # # models = None # init_model(device, os.path.join(code_dir, ckpt))
167
+ # cfg = 'configs/syncdreamer.yaml'
168
+ # ckpt = 'ckpt/syncdreamer-pretrain.ckpt'
169
+ # config = OmegaConf.load(cfg)
170
+ # # model = None
171
+
172
  if deployed:
173
+ controlnet = ControlNetModelSync.from_pretrained('controlnet_ckpt', torch_dtype=torch.float32, use_safetensors=True)
174
+ cfg = 'configs/syncdreamer.yaml'
175
+ dreamer = load_model(cfg, 'ckpt/syncdreamer-pretrain.ckpt', strict=True)
176
+
177
+ controlnet.to('cuda', dtype=torch.float32)
178
+
179
+ pipe = StableDiffusionControlNetPipeline.from_pretrained(
180
+ controlnet=controlnet, dreamer=dreamer, torch_dtype=torch.float32, use_safetensors=True
181
+ )
182
+ pipe.to('cuda', dtype=torch.float32)
183
+
184
+ # if deployed:
185
+ # model = instantiate_from_config(config.model)
186
+ # print(f'loading model from {ckpt} ...')
187
+ # ckpt = torch.load(ckpt,map_location='cpu')
188
+ # model.load_state_dict(ckpt['state_dict'], strict=True)
189
+ # model = model.cuda().eval()
190
+ # del ckpt
191
  mask_predictor = sam_init()
192
  removal = BackgroundRemoval()
193
  else:
194
+ # model = None
195
+ # mask_predictor = None
196
+ # removal = None
197
+ controlnet = None
198
+ dreamer = None
199
+ pipe = None
200
 
201
  # NOTE: Examples must match inputs
202
  examples_full = [
 
211
  ]
212
 
213
  image_block = gr.Image(type='pil', image_mode='RGBA', height=256, label='Input image', tool=None, interactive=True)
214
+ azimuth = gr.Slider(0, 360, 90, step=22.5, label='Target azimuth', interactive=True)
215
  crop_size = gr.Slider(120, 240, 200, step=10, label='Crop size', interactive=True)
216
 
217
+ target_index = round(azimuth % 360 / 22.5)
218
+
219
  # Compose demo layout & data flow.
220
  with gr.Blocks(title=_TITLE, css="hf_demo/style.css") as demo:
221
  with gr.Row():
 
229
  with gr.Column(scale=1.2):
230
  gr.Examples(
231
  examples=examples_full, # NOTE: elements must match inputs list!
232
+ inputs=[image_block, azimuth, crop_size],
233
+ outputs=[image_block, azimuth, crop_size],
234
  cache_examples=False,
235
  label='Examples (click one of the images below to start)',
236
  examples_per_page=5,
 
250
 
251
  with gr.Column(scale=0.8):
252
  input_block = gr.Image(type='pil', image_mode='RGBA', label="Input to SyncDreamer", height=256, interactive=False)
253
+ azimuth.render()
254
  with gr.Accordion('Advanced options', open=False):
255
  cfg_scale = gr.Slider(1.0, 5.0, 2.0, step=0.1, label='Classifier free guidance', interactive=True)
256
  sample_num = gr.Slider(1, 2, 1, step=1, label='Sample num', interactive=False, info='How many instance (16 images per instance)')
 
279
  # crop_btn.click(fn=resize_inputs, inputs=[sam_block, crop_size], outputs=[input_block], queue=False)\
280
  # .success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
281
 
282
+ run_btn.click(partial(generate, pipe), inputs=[input_block, target_index], outputs=[output_block], queue=True)\
283
  .success(fn=partial(update_guide, _USER_GUIDE3), outputs=[guide_text], queue=False)
284
 
285
  demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
controlnet_ckpt/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "ControlNetModelSync",
3
+ "_diffusers_version": "0.25.0.dev0",
4
+ "attention_resolutions": [
5
+ 4,
6
+ 2,
7
+ 1
8
+ ],
9
+ "channel_mult": [
10
+ 1,
11
+ 2,
12
+ 4,
13
+ 4
14
+ ],
15
+ "context_dim": 768,
16
+ "image_size": 32,
17
+ "in_channels": 8,
18
+ "legacy": false,
19
+ "model_channels": 320,
20
+ "num_heads": 8,
21
+ "num_res_blocks": 2,
22
+ "out_channels": 4,
23
+ "transformer_depth": 1,
24
+ "use_checkpoint": false,
25
+ "use_spatial_transformer": true,
26
+ "volume_dims": [
27
+ 64,
28
+ 128,
29
+ 256,
30
+ 512
31
+ ]
32
+ }
controlnet_sync.py ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from typing import Any, Dict, List, Optional, Tuple, Union
16
+
17
+ import os
18
+ from typing import Any, Callable, List, Optional, Tuple, Union
19
+ import torch
20
+ from torch import nn
21
+ from torch.nn import functional as F
22
+
23
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
24
+
25
+ from diffusers.loaders import FromOriginalControlnetMixin
26
+ from diffusers.utils import BaseOutput, logging
27
+ from diffusers.models.attention_processor import (
28
+ ADDED_KV_ATTENTION_PROCESSORS,
29
+ CROSS_ATTENTION_PROCESSORS,
30
+ AttentionProcessor,
31
+ AttnAddedKVProcessor,
32
+ AttnProcessor,
33
+ )
34
+ from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
35
+ from diffusers.models.modeling_utils import ModelMixin
36
+ from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, DownBlock2D, UNetMidBlock2D, UNetMidBlock2DCrossAttn, get_down_block
37
+ from diffusers.models.unet_2d_condition import UNet2DConditionModel
38
+
39
+ from diffusers.utils import (
40
+ CONFIG_NAME,
41
+ FLAX_WEIGHTS_NAME,
42
+ MIN_PEFT_VERSION,
43
+ SAFETENSORS_WEIGHTS_NAME,
44
+ WEIGHTS_NAME,
45
+ _add_variant,
46
+ _get_model_file,
47
+ check_peft_version,
48
+ deprecate,
49
+ is_accelerate_available,
50
+ is_torch_version,
51
+ logging,
52
+ )
53
+ from diffusers.utils.hub_utils import PushToHubMixin
54
+
55
+ from SyncDreamer.ldm.modules.attention import default, zero_module, checkpoint
56
+ from SyncDreamer.ldm.modules.diffusionmodules.openaimodel import UNetModel
57
+ from SyncDreamer.ldm.modules.diffusionmodules.util import timestep_embedding
58
+ from SyncDreamer.ldm.models.diffusion.sync_dreamer_attention import DepthWiseAttention
59
+
60
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
61
+
62
+ class DepthAttention(nn.Module):
63
+ def __init__(self, query_dim, context_dim, heads, dim_head, output_bias=True):
64
+ super().__init__()
65
+ inner_dim = dim_head * heads
66
+ context_dim = default(context_dim, query_dim)
67
+
68
+ self.scale = dim_head ** -0.5
69
+ self.heads = heads
70
+ self.dim_head = dim_head
71
+
72
+ self.to_q = nn.Conv2d(query_dim, inner_dim, 1, 1, bias=False)
73
+ self.to_k = nn.Conv3d(context_dim, inner_dim, 1, 1, bias=False)
74
+ self.to_v = nn.Conv3d(context_dim, inner_dim, 1, 1, bias=False)
75
+ if output_bias:
76
+ self.to_out = nn.Conv2d(inner_dim, query_dim, 1, 1)
77
+ else:
78
+ self.to_out = nn.Conv2d(inner_dim, query_dim, 1, 1, bias=False)
79
+
80
+ def forward(self, x, context):
81
+ """
82
+
83
+ @param x: b,f0,h,w
84
+ @param context: b,f1,d,h,w
85
+ @return:
86
+ """
87
+ hn, hd = self.heads, self.dim_head
88
+ b, _, h, w = x.shape
89
+ b, _, d, h, w = context.shape
90
+
91
+ q = self.to_q(x).reshape(b,hn,hd,h,w) # b,t,h,w
92
+ k = self.to_k(context).reshape(b,hn,hd,d,h,w) # b,t,d,h,w
93
+ v = self.to_v(context).reshape(b,hn,hd,d,h,w) # b,t,d,h,w
94
+
95
+ sim = torch.sum(q.unsqueeze(3) * k, 2) * self.scale # b,hn,d,h,w
96
+ attn = sim.softmax(dim=2)
97
+
98
+ # b,hn,hd,d,h,w * b,hn,1,d,h,w
99
+ out = torch.sum(v * attn.unsqueeze(2), 3) # b,hn,hd,h,w
100
+ out = out.reshape(b,hn*hd,h,w)
101
+ return self.to_out(out)
102
+
103
+
104
+ class DepthTransformer(nn.Module):
105
+ def __init__(self, dim, n_heads, d_head, context_dim=None, checkpoint=False):
106
+ super().__init__()
107
+ inner_dim = n_heads * d_head
108
+ self.proj_in = nn.Sequential(
109
+ nn.Conv2d(dim, inner_dim, 1, 1),
110
+ nn.GroupNorm(8, inner_dim),
111
+ nn.SiLU(True),
112
+ )
113
+ self.proj_context = nn.Sequential(
114
+ nn.Conv3d(context_dim, context_dim, 1, 1, bias=False), # no bias
115
+ nn.GroupNorm(8, context_dim),
116
+ nn.ReLU(True), # only relu, because we want input is 0, output is 0
117
+ )
118
+ self.depth_attn = DepthAttention(query_dim=inner_dim, heads=n_heads, dim_head=d_head, context_dim=context_dim, output_bias=False) # is a self-attention if not self.disable_self_attn
119
+ self.proj_out = nn.Sequential(
120
+ nn.GroupNorm(8, inner_dim),
121
+ nn.ReLU(True),
122
+ nn.Conv2d(inner_dim, inner_dim, 3, 1, 1, bias=False),
123
+ nn.GroupNorm(8, inner_dim),
124
+ nn.ReLU(True),
125
+ zero_module(nn.Conv2d(inner_dim, dim, 3, 1, 1, bias=False)),
126
+ )
127
+ self.checkpoint = checkpoint
128
+
129
+ def forward(self, x, context=None):
130
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
131
+
132
+ def _forward(self, x, context):
133
+ x_in = x
134
+ x = self.proj_in(x)
135
+ context = self.proj_context(context)
136
+ x = self.depth_attn(x, context)
137
+ x = self.proj_out(x) + x_in
138
+ return x
139
+
140
+ @dataclass
141
+ class ControlNetOutputSync(BaseOutput):
142
+ """
143
+ The output of [`ControlNetModelSync`].
144
+
145
+ Args:
146
+ down_block_res_samples (`tuple[torch.Tensor]`):
147
+ A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
148
+ be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
149
+ used to condition the original UNet's downsampling activations.
150
+ mid_down_block_re_sample (`torch.Tensor`):
151
+ The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
152
+ `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
153
+ Output can be used to condition the original UNet's middle block activation.
154
+ """
155
+
156
+ down_block_res_samples: Tuple[torch.Tensor]
157
+ mid_block_res_sample: torch.Tensor
158
+
159
+
160
+ class ControlNetConditioningEmbeddingSync(nn.Module):
161
+ """
162
+ Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
163
+ [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
164
+ training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
165
+ convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
166
+ (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
167
+ model) to encode image-space conditions ... into feature maps ..."
168
+ """
169
+
170
+ def __init__(
171
+ self,
172
+ conditioning_embedding_channels: int,
173
+ conditioning_channels: int = 3,
174
+ block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
175
+ ):
176
+ super().__init__()
177
+
178
+ self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
179
+
180
+ self.blocks = nn.ModuleList([])
181
+
182
+ for i in range(len(block_out_channels) - 1):
183
+ channel_in = block_out_channels[i]
184
+ channel_out = block_out_channels[i + 1]
185
+ self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
186
+ self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
187
+
188
+ self.conv_out = zero_module(
189
+ nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
190
+ )
191
+
192
+ def forward(self, conditioning):
193
+ embedding = self.conv_in(conditioning)
194
+ embedding = F.silu(embedding)
195
+
196
+ for block in self.blocks:
197
+ embedding = block(embedding)
198
+ embedding = F.silu(embedding)
199
+
200
+ embedding = self.conv_out(embedding)
201
+
202
+ return embedding
203
+
204
+
205
+ class ControlNetModelSync(UNetModel, ModelMixin, ConfigMixin):
206
+ use_fp16 = False
207
+ dtype = torch.float16 if use_fp16 else torch.float32
208
+
209
+ @register_to_config
210
+ def __init__(
211
+ self,
212
+ volume_dims=[64, 128, 256, 512],
213
+ image_size=32,
214
+ in_channels=8,
215
+ model_channels=320,
216
+ out_channels=4,
217
+ num_res_blocks=2,
218
+ attention_resolutions=[4, 2, 1],
219
+ channel_mult=[1, 2, 4, 4],
220
+ use_checkpoint=False,
221
+ legacy=False,
222
+ num_heads=8,
223
+ use_spatial_transformer=True,
224
+ transformer_depth=1,
225
+ context_dim=768,
226
+ ):
227
+
228
+ super().__init__(image_size=image_size, in_channels=in_channels, model_channels=model_channels, out_channels=out_channels, num_res_blocks=num_res_blocks, attention_resolutions=attention_resolutions, channel_mult=channel_mult, use_checkpoint=use_checkpoint, legacy=legacy, num_heads=num_heads, use_spatial_transformer=use_spatial_transformer, transformer_depth=transformer_depth, context_dim=context_dim)
229
+
230
+ block_out_channels = (320, 640, 1280, 1280)
231
+ conditioning_embedding_out_channels = (16, 32, 96, 256)
232
+ conditioning_channels = 3
233
+ down_block_types = (
234
+ "CrossAttnDownBlock2D",
235
+ "CrossAttnDownBlock2D",
236
+ "CrossAttnDownBlock2D",
237
+ "DownBlock2D",
238
+ )
239
+ layers_per_block = 2
240
+
241
+ # input
242
+ conv_in_kernel = 3
243
+ conv_in_padding = (conv_in_kernel - 1) // 2
244
+
245
+ d0,d1,d2,d3 = volume_dims
246
+
247
+ # 4
248
+ ch = model_channels*channel_mult[2]
249
+ self.middle_conditions = DepthTransformer(ch, 4, d3 // 2, context_dim=d3)
250
+
251
+ self.controlnet_cond_embedding = ControlNetConditioningEmbeddingSync(
252
+ conditioning_embedding_channels=self.in_channels,
253
+ block_out_channels=conditioning_embedding_out_channels,
254
+ conditioning_channels=conditioning_channels,
255
+ )
256
+
257
+ self.controlnet_down_blocks = nn.ModuleList([])
258
+ # down
259
+ output_channel = block_out_channels[0]
260
+
261
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
262
+ controlnet_block = zero_module(controlnet_block)
263
+ self.controlnet_down_blocks.append(controlnet_block)
264
+
265
+ for i, down_block_type in enumerate(down_block_types):
266
+ input_channel = output_channel
267
+ output_channel = block_out_channels[i]
268
+ is_final_block = i == len(block_out_channels) - 1
269
+
270
+ for _ in range(layers_per_block):
271
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
272
+ controlnet_block = zero_module(controlnet_block)
273
+ self.controlnet_down_blocks.append(controlnet_block)
274
+
275
+ if not is_final_block:
276
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
277
+ controlnet_block = zero_module(controlnet_block)
278
+ self.controlnet_down_blocks.append(controlnet_block)
279
+
280
+ # mid
281
+ mid_block_channel = block_out_channels[-1]
282
+
283
+ controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
284
+ controlnet_block = zero_module(controlnet_block)
285
+ self.controlnet_mid_block = controlnet_block
286
+
287
+ @classmethod
288
+ def from_unet(
289
+ cls,
290
+ unet: DepthWiseAttention,
291
+ load_weights_from_unet: bool = True,
292
+ ):
293
+ r"""
294
+ Instantiate a [`ControlNetModelSync`] from [`DepthWiseAttention`].
295
+
296
+ Parameters:
297
+ unet (`DepthWiseAttention`):
298
+ The UNet model weights to copy to the [`ControlNetModelSync`]. All configuration options are also copied
299
+ where applicable.
300
+ """
301
+
302
+ controlnet = cls(
303
+ image_size=32,
304
+ in_channels=8,
305
+ model_channels=320,
306
+ out_channels=4,
307
+ num_res_blocks=2,
308
+ attention_resolutions=[ 4, 2, 1 ],
309
+ num_heads=8,
310
+ volume_dims=[64, 128, 256, 512],
311
+ channel_mult=[ 1, 2, 4, 4 ],
312
+ use_spatial_transformer=True,
313
+ transformer_depth=1,
314
+ context_dim=768,
315
+ use_checkpoint=False,
316
+ legacy=False,
317
+ )
318
+
319
+ if load_weights_from_unet:
320
+ controlnet.time_embed.load_state_dict(unet.time_embed.state_dict())
321
+ controlnet.input_blocks.load_state_dict(unet.input_blocks.state_dict())
322
+ controlnet.middle_block.load_state_dict(unet.middle_block.state_dict())
323
+ controlnet.middle_conditions.load_state_dict(unet.middle_conditions.state_dict())
324
+
325
+ return controlnet
326
+
327
+ def forward(self, x, timesteps=None, controlnet_cond=None, conditioning_scale=1.0, context=None, return_dict = True, source_dict=None, **kwargs):
328
+
329
+ # 1-4. Down and mid blocks, incluidng time embedding
330
+ if len(timesteps.shape) == 0:
331
+ timesteps = timesteps[None].to(x.device)
332
+ hs = []
333
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
334
+ emb = self.time_embed(t_emb)
335
+ controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
336
+ x = x + controlnet_cond
337
+ h = x.type(self.dtype)
338
+ for index, module in enumerate(self.input_blocks):
339
+ h = module(h, emb, context)
340
+ hs.append(h)
341
+
342
+ h = self.middle_block(h, emb, context)
343
+ h = self.middle_conditions(h, context=source_dict[h.shape[-1]])
344
+
345
+ # 5. Control net blocks
346
+ controlnet_down_block_res_samples = ()
347
+
348
+ assert len(hs) == len(self.controlnet_down_blocks), "Number of layers in 'hs' should be equal to 'controlnet_down_blocks'"
349
+
350
+ for down_block_res_sample, controlnet_block in zip(hs, self.controlnet_down_blocks):
351
+ down_block_res_sample = controlnet_block(down_block_res_sample)
352
+ controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
353
+
354
+ down_block_res_samples = controlnet_down_block_res_samples
355
+
356
+ mid_block_res_sample = self.controlnet_mid_block(h)
357
+
358
+ if not return_dict:
359
+ return (down_block_res_samples, mid_block_res_sample)
360
+
361
+ return ControlNetOutputSync(
362
+ down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
363
+ )
364
+
365
+ def zero_module(module):
366
+ for p in module.parameters():
367
+ nn.init.zeros_(p)
368
+ return module
diffusers/__init__.py ADDED
@@ -0,0 +1,758 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __version__ = "0.26.0.dev0"
2
+
3
+ from typing import TYPE_CHECKING
4
+
5
+ from .utils import (
6
+ DIFFUSERS_SLOW_IMPORT,
7
+ OptionalDependencyNotAvailable,
8
+ _LazyModule,
9
+ is_flax_available,
10
+ is_k_diffusion_available,
11
+ is_librosa_available,
12
+ is_note_seq_available,
13
+ is_onnx_available,
14
+ is_scipy_available,
15
+ is_torch_available,
16
+ is_torchsde_available,
17
+ is_transformers_available,
18
+ )
19
+
20
+
21
+ # Lazy Import based on
22
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/__init__.py
23
+
24
+ # When adding a new object to this init, please add it to `_import_structure`. The `_import_structure` is a dictionary submodule to list of object names,
25
+ # and is used to defer the actual importing for when the objects are requested.
26
+ # This way `import diffusers` provides the names in the namespace without actually importing anything (and especially none of the backends).
27
+
28
+ _import_structure = {
29
+ "configuration_utils": ["ConfigMixin"],
30
+ "models": [],
31
+ "pipelines": [],
32
+ "schedulers": [],
33
+ "utils": [
34
+ "OptionalDependencyNotAvailable",
35
+ "is_flax_available",
36
+ "is_inflect_available",
37
+ "is_invisible_watermark_available",
38
+ "is_k_diffusion_available",
39
+ "is_k_diffusion_version",
40
+ "is_librosa_available",
41
+ "is_note_seq_available",
42
+ "is_onnx_available",
43
+ "is_scipy_available",
44
+ "is_torch_available",
45
+ "is_torchsde_available",
46
+ "is_transformers_available",
47
+ "is_transformers_version",
48
+ "is_unidecode_available",
49
+ "logging",
50
+ ],
51
+ }
52
+
53
+ try:
54
+ if not is_onnx_available():
55
+ raise OptionalDependencyNotAvailable()
56
+ except OptionalDependencyNotAvailable:
57
+ from .utils import dummy_onnx_objects # noqa F403
58
+
59
+ _import_structure["utils.dummy_onnx_objects"] = [
60
+ name for name in dir(dummy_onnx_objects) if not name.startswith("_")
61
+ ]
62
+
63
+ else:
64
+ _import_structure["pipelines"].extend(["OnnxRuntimeModel"])
65
+
66
+ try:
67
+ if not is_torch_available():
68
+ raise OptionalDependencyNotAvailable()
69
+ except OptionalDependencyNotAvailable:
70
+ from .utils import dummy_pt_objects # noqa F403
71
+
72
+ _import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")]
73
+
74
+ else:
75
+ _import_structure["models"].extend(
76
+ [
77
+ "AsymmetricAutoencoderKL",
78
+ "AutoencoderKL",
79
+ "AutoencoderKLTemporalDecoder",
80
+ "AutoencoderTiny",
81
+ "ConsistencyDecoderVAE",
82
+ "ControlNetModel",
83
+ "Kandinsky3UNet",
84
+ "ModelMixin",
85
+ "MotionAdapter",
86
+ "MultiAdapter",
87
+ "PriorTransformer",
88
+ "T2IAdapter",
89
+ "T5FilmDecoder",
90
+ "Transformer2DModel",
91
+ "UNet1DModel",
92
+ "UNet2DConditionModel",
93
+ "UNet2DModel",
94
+ "UNet3DConditionModel",
95
+ "UNetMotionModel",
96
+ "UNetSpatioTemporalConditionModel",
97
+ "UVit2DModel",
98
+ "VQModel",
99
+ ]
100
+ )
101
+
102
+ _import_structure["optimization"] = [
103
+ "get_constant_schedule",
104
+ "get_constant_schedule_with_warmup",
105
+ "get_cosine_schedule_with_warmup",
106
+ "get_cosine_with_hard_restarts_schedule_with_warmup",
107
+ "get_linear_schedule_with_warmup",
108
+ "get_polynomial_decay_schedule_with_warmup",
109
+ "get_scheduler",
110
+ ]
111
+ _import_structure["pipelines"].extend(
112
+ [
113
+ "AudioPipelineOutput",
114
+ "AutoPipelineForImage2Image",
115
+ "AutoPipelineForInpainting",
116
+ "AutoPipelineForText2Image",
117
+ "ConsistencyModelPipeline",
118
+ "DanceDiffusionPipeline",
119
+ "DDIMPipeline",
120
+ "DDPMPipeline",
121
+ "DiffusionPipeline",
122
+ "DiTPipeline",
123
+ "ImagePipelineOutput",
124
+ "KarrasVePipeline",
125
+ "LDMPipeline",
126
+ "LDMSuperResolutionPipeline",
127
+ "PNDMPipeline",
128
+ "RePaintPipeline",
129
+ "ScoreSdeVePipeline",
130
+ ]
131
+ )
132
+ _import_structure["schedulers"].extend(
133
+ [
134
+ "AmusedScheduler",
135
+ "CMStochasticIterativeScheduler",
136
+ "DDIMInverseScheduler",
137
+ "DDIMParallelScheduler",
138
+ "DDIMScheduler",
139
+ "DDPMParallelScheduler",
140
+ "DDPMScheduler",
141
+ "DDPMWuerstchenScheduler",
142
+ "DEISMultistepScheduler",
143
+ "DPMSolverMultistepInverseScheduler",
144
+ "DPMSolverMultistepScheduler",
145
+ "DPMSolverSinglestepScheduler",
146
+ "EulerAncestralDiscreteScheduler",
147
+ "EulerDiscreteScheduler",
148
+ "HeunDiscreteScheduler",
149
+ "IPNDMScheduler",
150
+ "KarrasVeScheduler",
151
+ "KDPM2AncestralDiscreteScheduler",
152
+ "KDPM2DiscreteScheduler",
153
+ "LCMScheduler",
154
+ "PNDMScheduler",
155
+ "RePaintScheduler",
156
+ "SchedulerMixin",
157
+ "ScoreSdeVeScheduler",
158
+ "UnCLIPScheduler",
159
+ "UniPCMultistepScheduler",
160
+ "VQDiffusionScheduler",
161
+ ]
162
+ )
163
+ _import_structure["training_utils"] = ["EMAModel"]
164
+
165
+ try:
166
+ if not (is_torch_available() and is_scipy_available()):
167
+ raise OptionalDependencyNotAvailable()
168
+ except OptionalDependencyNotAvailable:
169
+ from .utils import dummy_torch_and_scipy_objects # noqa F403
170
+
171
+ _import_structure["utils.dummy_torch_and_scipy_objects"] = [
172
+ name for name in dir(dummy_torch_and_scipy_objects) if not name.startswith("_")
173
+ ]
174
+
175
+ else:
176
+ _import_structure["schedulers"].extend(["LMSDiscreteScheduler"])
177
+
178
+ try:
179
+ if not (is_torch_available() and is_torchsde_available()):
180
+ raise OptionalDependencyNotAvailable()
181
+ except OptionalDependencyNotAvailable:
182
+ from .utils import dummy_torch_and_torchsde_objects # noqa F403
183
+
184
+ _import_structure["utils.dummy_torch_and_torchsde_objects"] = [
185
+ name for name in dir(dummy_torch_and_torchsde_objects) if not name.startswith("_")
186
+ ]
187
+
188
+ else:
189
+ _import_structure["schedulers"].extend(["DPMSolverSDEScheduler"])
190
+
191
+ try:
192
+ if not (is_torch_available() and is_transformers_available()):
193
+ raise OptionalDependencyNotAvailable()
194
+ except OptionalDependencyNotAvailable:
195
+ from .utils import dummy_torch_and_transformers_objects # noqa F403
196
+
197
+ _import_structure["utils.dummy_torch_and_transformers_objects"] = [
198
+ name for name in dir(dummy_torch_and_transformers_objects) if not name.startswith("_")
199
+ ]
200
+
201
+ else:
202
+ _import_structure["pipelines"].extend(
203
+ [
204
+ "AltDiffusionImg2ImgPipeline",
205
+ "AltDiffusionPipeline",
206
+ "AmusedImg2ImgPipeline",
207
+ "AmusedInpaintPipeline",
208
+ "AmusedPipeline",
209
+ "AnimateDiffPipeline",
210
+ "AudioLDM2Pipeline",
211
+ "AudioLDM2ProjectionModel",
212
+ "AudioLDM2UNet2DConditionModel",
213
+ "AudioLDMPipeline",
214
+ "BlipDiffusionControlNetPipeline",
215
+ "BlipDiffusionPipeline",
216
+ "CLIPImageProjection",
217
+ "CycleDiffusionPipeline",
218
+ "IFImg2ImgPipeline",
219
+ "IFImg2ImgSuperResolutionPipeline",
220
+ "IFInpaintingPipeline",
221
+ "IFInpaintingSuperResolutionPipeline",
222
+ "IFPipeline",
223
+ "IFSuperResolutionPipeline",
224
+ "ImageTextPipelineOutput",
225
+ "Kandinsky3Img2ImgPipeline",
226
+ "Kandinsky3Pipeline",
227
+ "KandinskyCombinedPipeline",
228
+ "KandinskyImg2ImgCombinedPipeline",
229
+ "KandinskyImg2ImgPipeline",
230
+ "KandinskyInpaintCombinedPipeline",
231
+ "KandinskyInpaintPipeline",
232
+ "KandinskyPipeline",
233
+ "KandinskyPriorPipeline",
234
+ "KandinskyV22CombinedPipeline",
235
+ "KandinskyV22ControlnetImg2ImgPipeline",
236
+ "KandinskyV22ControlnetPipeline",
237
+ "KandinskyV22Img2ImgCombinedPipeline",
238
+ "KandinskyV22Img2ImgPipeline",
239
+ "KandinskyV22InpaintCombinedPipeline",
240
+ "KandinskyV22InpaintPipeline",
241
+ "KandinskyV22Pipeline",
242
+ "KandinskyV22PriorEmb2EmbPipeline",
243
+ "KandinskyV22PriorPipeline",
244
+ "LatentConsistencyModelImg2ImgPipeline",
245
+ "LatentConsistencyModelPipeline",
246
+ "LDMTextToImagePipeline",
247
+ "MusicLDMPipeline",
248
+ "PaintByExamplePipeline",
249
+ "PixArtAlphaPipeline",
250
+ "SemanticStableDiffusionPipeline",
251
+ "ShapEImg2ImgPipeline",
252
+ "ShapEPipeline",
253
+ "StableDiffusionAdapterPipeline",
254
+ "StableDiffusionAttendAndExcitePipeline",
255
+ "StableDiffusionControlNetImg2ImgPipeline",
256
+ "StableDiffusionControlNetInpaintPipeline",
257
+ "StableDiffusionControlNetPipeline",
258
+ "StableDiffusionDepth2ImgPipeline",
259
+ "StableDiffusionDiffEditPipeline",
260
+ "StableDiffusionGLIGENPipeline",
261
+ "StableDiffusionGLIGENTextImagePipeline",
262
+ "StableDiffusionImageVariationPipeline",
263
+ "StableDiffusionImg2ImgPipeline",
264
+ "StableDiffusionInpaintPipeline",
265
+ "StableDiffusionInpaintPipelineLegacy",
266
+ "StableDiffusionInstructPix2PixPipeline",
267
+ "StableDiffusionLatentUpscalePipeline",
268
+ "StableDiffusionLDM3DPipeline",
269
+ "StableDiffusionModelEditingPipeline",
270
+ "StableDiffusionPanoramaPipeline",
271
+ "StableDiffusionParadigmsPipeline",
272
+ "StableDiffusionPipeline",
273
+ "StableDiffusionPipelineSafe",
274
+ "StableDiffusionPix2PixZeroPipeline",
275
+ "StableDiffusionSAGPipeline",
276
+ "StableDiffusionUpscalePipeline",
277
+ "StableDiffusionXLAdapterPipeline",
278
+ "StableDiffusionXLControlNetImg2ImgPipeline",
279
+ "StableDiffusionXLControlNetInpaintPipeline",
280
+ "StableDiffusionXLControlNetPipeline",
281
+ "StableDiffusionXLImg2ImgPipeline",
282
+ "StableDiffusionXLInpaintPipeline",
283
+ "StableDiffusionXLInstructPix2PixPipeline",
284
+ "StableDiffusionXLPipeline",
285
+ "StableUnCLIPImg2ImgPipeline",
286
+ "StableUnCLIPPipeline",
287
+ "StableVideoDiffusionPipeline",
288
+ "TextToVideoSDPipeline",
289
+ "TextToVideoZeroPipeline",
290
+ "TextToVideoZeroSDXLPipeline",
291
+ "UnCLIPImageVariationPipeline",
292
+ "UnCLIPPipeline",
293
+ "UniDiffuserModel",
294
+ "UniDiffuserPipeline",
295
+ "UniDiffuserTextDecoder",
296
+ "VersatileDiffusionDualGuidedPipeline",
297
+ "VersatileDiffusionImageVariationPipeline",
298
+ "VersatileDiffusionPipeline",
299
+ "VersatileDiffusionTextToImagePipeline",
300
+ "VideoToVideoSDPipeline",
301
+ "VQDiffusionPipeline",
302
+ "WuerstchenCombinedPipeline",
303
+ "WuerstchenDecoderPipeline",
304
+ "WuerstchenPriorPipeline",
305
+ ]
306
+ )
307
+
308
+ try:
309
+ if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
310
+ raise OptionalDependencyNotAvailable()
311
+ except OptionalDependencyNotAvailable:
312
+ from .utils import dummy_torch_and_transformers_and_k_diffusion_objects # noqa F403
313
+
314
+ _import_structure["utils.dummy_torch_and_transformers_and_k_diffusion_objects"] = [
315
+ name for name in dir(dummy_torch_and_transformers_and_k_diffusion_objects) if not name.startswith("_")
316
+ ]
317
+
318
+ else:
319
+ _import_structure["pipelines"].extend(["StableDiffusionKDiffusionPipeline"])
320
+
321
+ try:
322
+ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
323
+ raise OptionalDependencyNotAvailable()
324
+ except OptionalDependencyNotAvailable:
325
+ from .utils import dummy_torch_and_transformers_and_onnx_objects # noqa F403
326
+
327
+ _import_structure["utils.dummy_torch_and_transformers_and_onnx_objects"] = [
328
+ name for name in dir(dummy_torch_and_transformers_and_onnx_objects) if not name.startswith("_")
329
+ ]
330
+
331
+ else:
332
+ _import_structure["pipelines"].extend(
333
+ [
334
+ "OnnxStableDiffusionImg2ImgPipeline",
335
+ "OnnxStableDiffusionInpaintPipeline",
336
+ "OnnxStableDiffusionInpaintPipelineLegacy",
337
+ "OnnxStableDiffusionPipeline",
338
+ "OnnxStableDiffusionUpscalePipeline",
339
+ "StableDiffusionOnnxPipeline",
340
+ ]
341
+ )
342
+
343
+ try:
344
+ if not (is_torch_available() and is_librosa_available()):
345
+ raise OptionalDependencyNotAvailable()
346
+ except OptionalDependencyNotAvailable:
347
+ from .utils import dummy_torch_and_librosa_objects # noqa F403
348
+
349
+ _import_structure["utils.dummy_torch_and_librosa_objects"] = [
350
+ name for name in dir(dummy_torch_and_librosa_objects) if not name.startswith("_")
351
+ ]
352
+
353
+ else:
354
+ _import_structure["pipelines"].extend(["AudioDiffusionPipeline", "Mel"])
355
+
356
+ try:
357
+ if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
358
+ raise OptionalDependencyNotAvailable()
359
+ except OptionalDependencyNotAvailable:
360
+ from .utils import dummy_transformers_and_torch_and_note_seq_objects # noqa F403
361
+
362
+ _import_structure["utils.dummy_transformers_and_torch_and_note_seq_objects"] = [
363
+ name for name in dir(dummy_transformers_and_torch_and_note_seq_objects) if not name.startswith("_")
364
+ ]
365
+
366
+
367
+ else:
368
+ _import_structure["pipelines"].extend(["SpectrogramDiffusionPipeline"])
369
+
370
+ try:
371
+ if not is_flax_available():
372
+ raise OptionalDependencyNotAvailable()
373
+ except OptionalDependencyNotAvailable:
374
+ from .utils import dummy_flax_objects # noqa F403
375
+
376
+ _import_structure["utils.dummy_flax_objects"] = [
377
+ name for name in dir(dummy_flax_objects) if not name.startswith("_")
378
+ ]
379
+
380
+
381
+ else:
382
+ _import_structure["models.controlnet_flax"] = ["FlaxControlNetModel"]
383
+ _import_structure["models.modeling_flax_utils"] = ["FlaxModelMixin"]
384
+ _import_structure["models.unet_2d_condition_flax"] = ["FlaxUNet2DConditionModel"]
385
+ _import_structure["models.vae_flax"] = ["FlaxAutoencoderKL"]
386
+ _import_structure["pipelines"].extend(["FlaxDiffusionPipeline"])
387
+ _import_structure["schedulers"].extend(
388
+ [
389
+ "FlaxDDIMScheduler",
390
+ "FlaxDDPMScheduler",
391
+ "FlaxDPMSolverMultistepScheduler",
392
+ "FlaxEulerDiscreteScheduler",
393
+ "FlaxKarrasVeScheduler",
394
+ "FlaxLMSDiscreteScheduler",
395
+ "FlaxPNDMScheduler",
396
+ "FlaxSchedulerMixin",
397
+ "FlaxScoreSdeVeScheduler",
398
+ ]
399
+ )
400
+
401
+
402
+ try:
403
+ if not (is_flax_available() and is_transformers_available()):
404
+ raise OptionalDependencyNotAvailable()
405
+ except OptionalDependencyNotAvailable:
406
+ from .utils import dummy_flax_and_transformers_objects # noqa F403
407
+
408
+ _import_structure["utils.dummy_flax_and_transformers_objects"] = [
409
+ name for name in dir(dummy_flax_and_transformers_objects) if not name.startswith("_")
410
+ ]
411
+
412
+
413
+ else:
414
+ _import_structure["pipelines"].extend(
415
+ [
416
+ "FlaxStableDiffusionControlNetPipeline",
417
+ "FlaxStableDiffusionImg2ImgPipeline",
418
+ "FlaxStableDiffusionInpaintPipeline",
419
+ "FlaxStableDiffusionPipeline",
420
+ "FlaxStableDiffusionXLPipeline",
421
+ ]
422
+ )
423
+
424
+ try:
425
+ if not (is_note_seq_available()):
426
+ raise OptionalDependencyNotAvailable()
427
+ except OptionalDependencyNotAvailable:
428
+ from .utils import dummy_note_seq_objects # noqa F403
429
+
430
+ _import_structure["utils.dummy_note_seq_objects"] = [
431
+ name for name in dir(dummy_note_seq_objects) if not name.startswith("_")
432
+ ]
433
+
434
+
435
+ else:
436
+ _import_structure["pipelines"].extend(["MidiProcessor"])
437
+
438
+ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
439
+ from .configuration_utils import ConfigMixin
440
+
441
+ try:
442
+ if not is_onnx_available():
443
+ raise OptionalDependencyNotAvailable()
444
+ except OptionalDependencyNotAvailable:
445
+ from .utils.dummy_onnx_objects import * # noqa F403
446
+ else:
447
+ from .pipelines import OnnxRuntimeModel
448
+
449
+ try:
450
+ if not is_torch_available():
451
+ raise OptionalDependencyNotAvailable()
452
+ except OptionalDependencyNotAvailable:
453
+ from .utils.dummy_pt_objects import * # noqa F403
454
+ else:
455
+ from .models import (
456
+ AsymmetricAutoencoderKL,
457
+ AutoencoderKL,
458
+ AutoencoderKLTemporalDecoder,
459
+ AutoencoderTiny,
460
+ ConsistencyDecoderVAE,
461
+ ControlNetModel,
462
+ Kandinsky3UNet,
463
+ ModelMixin,
464
+ MotionAdapter,
465
+ MultiAdapter,
466
+ PriorTransformer,
467
+ T2IAdapter,
468
+ T5FilmDecoder,
469
+ Transformer2DModel,
470
+ UNet1DModel,
471
+ UNet2DConditionModel,
472
+ UNet2DModel,
473
+ UNet3DConditionModel,
474
+ UNetMotionModel,
475
+ UNetSpatioTemporalConditionModel,
476
+ UVit2DModel,
477
+ VQModel,
478
+ )
479
+ from .optimization import (
480
+ get_constant_schedule,
481
+ get_constant_schedule_with_warmup,
482
+ get_cosine_schedule_with_warmup,
483
+ get_cosine_with_hard_restarts_schedule_with_warmup,
484
+ get_linear_schedule_with_warmup,
485
+ get_polynomial_decay_schedule_with_warmup,
486
+ get_scheduler,
487
+ )
488
+ from .pipelines import (
489
+ AudioPipelineOutput,
490
+ AutoPipelineForImage2Image,
491
+ AutoPipelineForInpainting,
492
+ AutoPipelineForText2Image,
493
+ BlipDiffusionControlNetPipeline,
494
+ BlipDiffusionPipeline,
495
+ CLIPImageProjection,
496
+ ConsistencyModelPipeline,
497
+ DanceDiffusionPipeline,
498
+ DDIMPipeline,
499
+ DDPMPipeline,
500
+ DiffusionPipeline,
501
+ DiTPipeline,
502
+ ImagePipelineOutput,
503
+ KarrasVePipeline,
504
+ LDMPipeline,
505
+ LDMSuperResolutionPipeline,
506
+ PNDMPipeline,
507
+ RePaintPipeline,
508
+ ScoreSdeVePipeline,
509
+ )
510
+ from .schedulers import (
511
+ AmusedScheduler,
512
+ CMStochasticIterativeScheduler,
513
+ DDIMInverseScheduler,
514
+ DDIMParallelScheduler,
515
+ DDIMScheduler,
516
+ DDPMParallelScheduler,
517
+ DDPMScheduler,
518
+ DDPMWuerstchenScheduler,
519
+ DEISMultistepScheduler,
520
+ DPMSolverMultistepInverseScheduler,
521
+ DPMSolverMultistepScheduler,
522
+ DPMSolverSinglestepScheduler,
523
+ EulerAncestralDiscreteScheduler,
524
+ EulerDiscreteScheduler,
525
+ HeunDiscreteScheduler,
526
+ IPNDMScheduler,
527
+ KarrasVeScheduler,
528
+ KDPM2AncestralDiscreteScheduler,
529
+ KDPM2DiscreteScheduler,
530
+ LCMScheduler,
531
+ PNDMScheduler,
532
+ RePaintScheduler,
533
+ SchedulerMixin,
534
+ ScoreSdeVeScheduler,
535
+ UnCLIPScheduler,
536
+ UniPCMultistepScheduler,
537
+ VQDiffusionScheduler,
538
+ )
539
+ from .training_utils import EMAModel
540
+
541
+ try:
542
+ if not (is_torch_available() and is_scipy_available()):
543
+ raise OptionalDependencyNotAvailable()
544
+ except OptionalDependencyNotAvailable:
545
+ from .utils.dummy_torch_and_scipy_objects import * # noqa F403
546
+ else:
547
+ from .schedulers import LMSDiscreteScheduler
548
+
549
+ try:
550
+ if not (is_torch_available() and is_torchsde_available()):
551
+ raise OptionalDependencyNotAvailable()
552
+ except OptionalDependencyNotAvailable:
553
+ from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
554
+ else:
555
+ from .schedulers import DPMSolverSDEScheduler
556
+
557
+ try:
558
+ if not (is_torch_available() and is_transformers_available()):
559
+ raise OptionalDependencyNotAvailable()
560
+ except OptionalDependencyNotAvailable:
561
+ from .utils.dummy_torch_and_transformers_objects import * # noqa F403
562
+ else:
563
+ from .pipelines import (
564
+ AltDiffusionImg2ImgPipeline,
565
+ AltDiffusionPipeline,
566
+ AmusedImg2ImgPipeline,
567
+ AmusedInpaintPipeline,
568
+ AmusedPipeline,
569
+ AnimateDiffPipeline,
570
+ AudioLDM2Pipeline,
571
+ AudioLDM2ProjectionModel,
572
+ AudioLDM2UNet2DConditionModel,
573
+ AudioLDMPipeline,
574
+ CLIPImageProjection,
575
+ CycleDiffusionPipeline,
576
+ IFImg2ImgPipeline,
577
+ IFImg2ImgSuperResolutionPipeline,
578
+ IFInpaintingPipeline,
579
+ IFInpaintingSuperResolutionPipeline,
580
+ IFPipeline,
581
+ IFSuperResolutionPipeline,
582
+ ImageTextPipelineOutput,
583
+ Kandinsky3Img2ImgPipeline,
584
+ Kandinsky3Pipeline,
585
+ KandinskyCombinedPipeline,
586
+ KandinskyImg2ImgCombinedPipeline,
587
+ KandinskyImg2ImgPipeline,
588
+ KandinskyInpaintCombinedPipeline,
589
+ KandinskyInpaintPipeline,
590
+ KandinskyPipeline,
591
+ KandinskyPriorPipeline,
592
+ KandinskyV22CombinedPipeline,
593
+ KandinskyV22ControlnetImg2ImgPipeline,
594
+ KandinskyV22ControlnetPipeline,
595
+ KandinskyV22Img2ImgCombinedPipeline,
596
+ KandinskyV22Img2ImgPipeline,
597
+ KandinskyV22InpaintCombinedPipeline,
598
+ KandinskyV22InpaintPipeline,
599
+ KandinskyV22Pipeline,
600
+ KandinskyV22PriorEmb2EmbPipeline,
601
+ KandinskyV22PriorPipeline,
602
+ LatentConsistencyModelImg2ImgPipeline,
603
+ LatentConsistencyModelPipeline,
604
+ LDMTextToImagePipeline,
605
+ MusicLDMPipeline,
606
+ PaintByExamplePipeline,
607
+ PixArtAlphaPipeline,
608
+ SemanticStableDiffusionPipeline,
609
+ ShapEImg2ImgPipeline,
610
+ ShapEPipeline,
611
+ StableDiffusionAdapterPipeline,
612
+ StableDiffusionAttendAndExcitePipeline,
613
+ StableDiffusionControlNetImg2ImgPipeline,
614
+ StableDiffusionControlNetInpaintPipeline,
615
+ StableDiffusionControlNetPipeline,
616
+ StableDiffusionDepth2ImgPipeline,
617
+ StableDiffusionDiffEditPipeline,
618
+ StableDiffusionGLIGENPipeline,
619
+ StableDiffusionGLIGENTextImagePipeline,
620
+ StableDiffusionImageVariationPipeline,
621
+ StableDiffusionImg2ImgPipeline,
622
+ StableDiffusionInpaintPipeline,
623
+ StableDiffusionInpaintPipelineLegacy,
624
+ StableDiffusionInstructPix2PixPipeline,
625
+ StableDiffusionLatentUpscalePipeline,
626
+ StableDiffusionLDM3DPipeline,
627
+ StableDiffusionModelEditingPipeline,
628
+ StableDiffusionPanoramaPipeline,
629
+ StableDiffusionParadigmsPipeline,
630
+ StableDiffusionPipeline,
631
+ StableDiffusionPipelineSafe,
632
+ StableDiffusionPix2PixZeroPipeline,
633
+ StableDiffusionSAGPipeline,
634
+ StableDiffusionUpscalePipeline,
635
+ StableDiffusionXLAdapterPipeline,
636
+ StableDiffusionXLControlNetImg2ImgPipeline,
637
+ StableDiffusionXLControlNetInpaintPipeline,
638
+ StableDiffusionXLControlNetPipeline,
639
+ StableDiffusionXLImg2ImgPipeline,
640
+ StableDiffusionXLInpaintPipeline,
641
+ StableDiffusionXLInstructPix2PixPipeline,
642
+ StableDiffusionXLPipeline,
643
+ StableUnCLIPImg2ImgPipeline,
644
+ StableUnCLIPPipeline,
645
+ StableVideoDiffusionPipeline,
646
+ TextToVideoSDPipeline,
647
+ TextToVideoZeroPipeline,
648
+ TextToVideoZeroSDXLPipeline,
649
+ UnCLIPImageVariationPipeline,
650
+ UnCLIPPipeline,
651
+ UniDiffuserModel,
652
+ UniDiffuserPipeline,
653
+ UniDiffuserTextDecoder,
654
+ VersatileDiffusionDualGuidedPipeline,
655
+ VersatileDiffusionImageVariationPipeline,
656
+ VersatileDiffusionPipeline,
657
+ VersatileDiffusionTextToImagePipeline,
658
+ VideoToVideoSDPipeline,
659
+ VQDiffusionPipeline,
660
+ WuerstchenCombinedPipeline,
661
+ WuerstchenDecoderPipeline,
662
+ WuerstchenPriorPipeline,
663
+ )
664
+
665
+ try:
666
+ if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
667
+ raise OptionalDependencyNotAvailable()
668
+ except OptionalDependencyNotAvailable:
669
+ from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
670
+ else:
671
+ from .pipelines import StableDiffusionKDiffusionPipeline
672
+
673
+ try:
674
+ if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
675
+ raise OptionalDependencyNotAvailable()
676
+ except OptionalDependencyNotAvailable:
677
+ from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
678
+ else:
679
+ from .pipelines import (
680
+ OnnxStableDiffusionImg2ImgPipeline,
681
+ OnnxStableDiffusionInpaintPipeline,
682
+ OnnxStableDiffusionInpaintPipelineLegacy,
683
+ OnnxStableDiffusionPipeline,
684
+ OnnxStableDiffusionUpscalePipeline,
685
+ StableDiffusionOnnxPipeline,
686
+ )
687
+
688
+ try:
689
+ if not (is_torch_available() and is_librosa_available()):
690
+ raise OptionalDependencyNotAvailable()
691
+ except OptionalDependencyNotAvailable:
692
+ from .utils.dummy_torch_and_librosa_objects import * # noqa F403
693
+ else:
694
+ from .pipelines import AudioDiffusionPipeline, Mel
695
+
696
+ try:
697
+ if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
698
+ raise OptionalDependencyNotAvailable()
699
+ except OptionalDependencyNotAvailable:
700
+ from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
701
+ else:
702
+ from .pipelines import SpectrogramDiffusionPipeline
703
+
704
+ try:
705
+ if not is_flax_available():
706
+ raise OptionalDependencyNotAvailable()
707
+ except OptionalDependencyNotAvailable:
708
+ from .utils.dummy_flax_objects import * # noqa F403
709
+ else:
710
+ from .models.controlnet_flax import FlaxControlNetModel
711
+ from .models.modeling_flax_utils import FlaxModelMixin
712
+ from .models.unet_2d_condition_flax import FlaxUNet2DConditionModel
713
+ from .models.vae_flax import FlaxAutoencoderKL
714
+ from .pipelines import FlaxDiffusionPipeline
715
+ from .schedulers import (
716
+ FlaxDDIMScheduler,
717
+ FlaxDDPMScheduler,
718
+ FlaxDPMSolverMultistepScheduler,
719
+ FlaxEulerDiscreteScheduler,
720
+ FlaxKarrasVeScheduler,
721
+ FlaxLMSDiscreteScheduler,
722
+ FlaxPNDMScheduler,
723
+ FlaxSchedulerMixin,
724
+ FlaxScoreSdeVeScheduler,
725
+ )
726
+
727
+ try:
728
+ if not (is_flax_available() and is_transformers_available()):
729
+ raise OptionalDependencyNotAvailable()
730
+ except OptionalDependencyNotAvailable:
731
+ from .utils.dummy_flax_and_transformers_objects import * # noqa F403
732
+ else:
733
+ from .pipelines import (
734
+ FlaxStableDiffusionControlNetPipeline,
735
+ FlaxStableDiffusionImg2ImgPipeline,
736
+ FlaxStableDiffusionInpaintPipeline,
737
+ FlaxStableDiffusionPipeline,
738
+ FlaxStableDiffusionXLPipeline,
739
+ )
740
+
741
+ try:
742
+ if not (is_note_seq_available()):
743
+ raise OptionalDependencyNotAvailable()
744
+ except OptionalDependencyNotAvailable:
745
+ from .utils.dummy_note_seq_objects import * # noqa F403
746
+ else:
747
+ from .pipelines import MidiProcessor
748
+
749
+ else:
750
+ import sys
751
+
752
+ sys.modules[__name__] = _LazyModule(
753
+ __name__,
754
+ globals()["__file__"],
755
+ _import_structure,
756
+ module_spec=__spec__,
757
+ extra_objects={"__version__": __version__},
758
+ )
diffusers/commands/__init__.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from abc import ABC, abstractmethod
16
+ from argparse import ArgumentParser
17
+
18
+
19
+ class BaseDiffusersCLICommand(ABC):
20
+ @staticmethod
21
+ @abstractmethod
22
+ def register_subcommand(parser: ArgumentParser):
23
+ raise NotImplementedError()
24
+
25
+ @abstractmethod
26
+ def run(self):
27
+ raise NotImplementedError()
diffusers/commands/diffusers_cli.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ from argparse import ArgumentParser
17
+
18
+ from .env import EnvironmentCommand
19
+ from .fp16_safetensors import FP16SafetensorsCommand
20
+
21
+
22
+ def main():
23
+ parser = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli <command> [<args>]")
24
+ commands_parser = parser.add_subparsers(help="diffusers-cli command helpers")
25
+
26
+ # Register commands
27
+ EnvironmentCommand.register_subcommand(commands_parser)
28
+ FP16SafetensorsCommand.register_subcommand(commands_parser)
29
+
30
+ # Let's go
31
+ args = parser.parse_args()
32
+
33
+ if not hasattr(args, "func"):
34
+ parser.print_help()
35
+ exit(1)
36
+
37
+ # Run
38
+ service = args.func(args)
39
+ service.run()
40
+
41
+
42
+ if __name__ == "__main__":
43
+ main()
diffusers/commands/env.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import platform
16
+ from argparse import ArgumentParser
17
+
18
+ import huggingface_hub
19
+
20
+ from .. import __version__ as version
21
+ from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
22
+ from . import BaseDiffusersCLICommand
23
+
24
+
25
+ def info_command_factory(_):
26
+ return EnvironmentCommand()
27
+
28
+
29
+ class EnvironmentCommand(BaseDiffusersCLICommand):
30
+ @staticmethod
31
+ def register_subcommand(parser: ArgumentParser):
32
+ download_parser = parser.add_parser("env")
33
+ download_parser.set_defaults(func=info_command_factory)
34
+
35
+ def run(self):
36
+ hub_version = huggingface_hub.__version__
37
+
38
+ pt_version = "not installed"
39
+ pt_cuda_available = "NA"
40
+ if is_torch_available():
41
+ import torch
42
+
43
+ pt_version = torch.__version__
44
+ pt_cuda_available = torch.cuda.is_available()
45
+
46
+ transformers_version = "not installed"
47
+ if is_transformers_available():
48
+ import transformers
49
+
50
+ transformers_version = transformers.__version__
51
+
52
+ accelerate_version = "not installed"
53
+ if is_accelerate_available():
54
+ import accelerate
55
+
56
+ accelerate_version = accelerate.__version__
57
+
58
+ xformers_version = "not installed"
59
+ if is_xformers_available():
60
+ import xformers
61
+
62
+ xformers_version = xformers.__version__
63
+
64
+ info = {
65
+ "`diffusers` version": version,
66
+ "Platform": platform.platform(),
67
+ "Python version": platform.python_version(),
68
+ "PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
69
+ "Huggingface_hub version": hub_version,
70
+ "Transformers version": transformers_version,
71
+ "Accelerate version": accelerate_version,
72
+ "xFormers version": xformers_version,
73
+ "Using GPU in script?": "<fill in>",
74
+ "Using distributed or parallel set-up in script?": "<fill in>",
75
+ }
76
+
77
+ print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
78
+ print(self.format_dict(info))
79
+
80
+ return info
81
+
82
+ @staticmethod
83
+ def format_dict(d):
84
+ return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
diffusers/commands/fp16_safetensors.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ """
16
+ Usage example:
17
+ diffusers-cli fp16_safetensors --ckpt_id=openai/shap-e --fp16 --use_safetensors
18
+ """
19
+
20
+ import glob
21
+ import json
22
+ import warnings
23
+ from argparse import ArgumentParser, Namespace
24
+ from importlib import import_module
25
+
26
+ import huggingface_hub
27
+ import torch
28
+ from huggingface_hub import hf_hub_download
29
+ from packaging import version
30
+
31
+ from ..utils import logging
32
+ from . import BaseDiffusersCLICommand
33
+
34
+
35
+ def conversion_command_factory(args: Namespace):
36
+ if args.use_auth_token:
37
+ warnings.warn(
38
+ "The `--use_auth_token` flag is deprecated and will be removed in a future version. Authentication is now"
39
+ " handled automatically if user is logged in."
40
+ )
41
+ return FP16SafetensorsCommand(args.ckpt_id, args.fp16, args.use_safetensors)
42
+
43
+
44
+ class FP16SafetensorsCommand(BaseDiffusersCLICommand):
45
+ @staticmethod
46
+ def register_subcommand(parser: ArgumentParser):
47
+ conversion_parser = parser.add_parser("fp16_safetensors")
48
+ conversion_parser.add_argument(
49
+ "--ckpt_id",
50
+ type=str,
51
+ help="Repo id of the checkpoints on which to run the conversion. Example: 'openai/shap-e'.",
52
+ )
53
+ conversion_parser.add_argument(
54
+ "--fp16", action="store_true", help="If serializing the variables in FP16 precision."
55
+ )
56
+ conversion_parser.add_argument(
57
+ "--use_safetensors", action="store_true", help="If serializing in the safetensors format."
58
+ )
59
+ conversion_parser.add_argument(
60
+ "--use_auth_token",
61
+ action="store_true",
62
+ help="When working with checkpoints having private visibility. When used `huggingface-cli login` needs to be run beforehand.",
63
+ )
64
+ conversion_parser.set_defaults(func=conversion_command_factory)
65
+
66
+ def __init__(self, ckpt_id: str, fp16: bool, use_safetensors: bool):
67
+ self.logger = logging.get_logger("diffusers-cli/fp16_safetensors")
68
+ self.ckpt_id = ckpt_id
69
+ self.local_ckpt_dir = f"/tmp/{ckpt_id}"
70
+ self.fp16 = fp16
71
+
72
+ self.use_safetensors = use_safetensors
73
+
74
+ if not self.use_safetensors and not self.fp16:
75
+ raise NotImplementedError(
76
+ "When `use_safetensors` and `fp16` both are False, then this command is of no use."
77
+ )
78
+
79
+ def run(self):
80
+ if version.parse(huggingface_hub.__version__) < version.parse("0.9.0"):
81
+ raise ImportError(
82
+ "The huggingface_hub version must be >= 0.9.0 to use this command. Please update your huggingface_hub"
83
+ " installation."
84
+ )
85
+ else:
86
+ from huggingface_hub import create_commit
87
+ from huggingface_hub._commit_api import CommitOperationAdd
88
+
89
+ model_index = hf_hub_download(repo_id=self.ckpt_id, filename="model_index.json")
90
+ with open(model_index, "r") as f:
91
+ pipeline_class_name = json.load(f)["_class_name"]
92
+ pipeline_class = getattr(import_module("diffusers"), pipeline_class_name)
93
+ self.logger.info(f"Pipeline class imported: {pipeline_class_name}.")
94
+
95
+ # Load the appropriate pipeline. We could have use `DiffusionPipeline`
96
+ # here, but just to avoid any rough edge cases.
97
+ pipeline = pipeline_class.from_pretrained(
98
+ self.ckpt_id, torch_dtype=torch.float16 if self.fp16 else torch.float32
99
+ )
100
+ pipeline.save_pretrained(
101
+ self.local_ckpt_dir,
102
+ safe_serialization=True if self.use_safetensors else False,
103
+ variant="fp16" if self.fp16 else None,
104
+ )
105
+ self.logger.info(f"Pipeline locally saved to {self.local_ckpt_dir}.")
106
+
107
+ # Fetch all the paths.
108
+ if self.fp16:
109
+ modified_paths = glob.glob(f"{self.local_ckpt_dir}/*/*.fp16.*")
110
+ elif self.use_safetensors:
111
+ modified_paths = glob.glob(f"{self.local_ckpt_dir}/*/*.safetensors")
112
+
113
+ # Prepare for the PR.
114
+ commit_message = f"Serialize variables with FP16: {self.fp16} and safetensors: {self.use_safetensors}."
115
+ operations = []
116
+ for path in modified_paths:
117
+ operations.append(CommitOperationAdd(path_in_repo="/".join(path.split("/")[4:]), path_or_fileobj=path))
118
+
119
+ # Open the PR.
120
+ commit_description = (
121
+ "Variables converted by the [`diffusers`' `fp16_safetensors`"
122
+ " CLI](https://github.com/huggingface/diffusers/blob/main/src/diffusers/commands/fp16_safetensors.py)."
123
+ )
124
+ hub_pr_url = create_commit(
125
+ repo_id=self.ckpt_id,
126
+ operations=operations,
127
+ commit_message=commit_message,
128
+ commit_description=commit_description,
129
+ repo_type="model",
130
+ create_pr=True,
131
+ ).pr_url
132
+ self.logger.info(f"PR created here: {hub_pr_url}.")
diffusers/configuration_utils.py ADDED
@@ -0,0 +1,699 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ ConfigMixin base class and utilities."""
17
+ import dataclasses
18
+ import functools
19
+ import importlib
20
+ import inspect
21
+ import json
22
+ import os
23
+ import re
24
+ from collections import OrderedDict
25
+ from pathlib import PosixPath
26
+ from typing import Any, Dict, Tuple, Union
27
+
28
+ import numpy as np
29
+ from huggingface_hub import create_repo, hf_hub_download
30
+ from huggingface_hub.utils import (
31
+ EntryNotFoundError,
32
+ RepositoryNotFoundError,
33
+ RevisionNotFoundError,
34
+ validate_hf_hub_args,
35
+ )
36
+ from requests import HTTPError
37
+
38
+ from . import __version__
39
+ from .utils import (
40
+ HUGGINGFACE_CO_RESOLVE_ENDPOINT,
41
+ DummyObject,
42
+ deprecate,
43
+ extract_commit_hash,
44
+ http_user_agent,
45
+ logging,
46
+ )
47
+
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+ _re_configuration_file = re.compile(r"config\.(.*)\.json")
52
+
53
+
54
+ class FrozenDict(OrderedDict):
55
+ def __init__(self, *args, **kwargs):
56
+ super().__init__(*args, **kwargs)
57
+
58
+ for key, value in self.items():
59
+ setattr(self, key, value)
60
+
61
+ self.__frozen = True
62
+
63
+ def __delitem__(self, *args, **kwargs):
64
+ raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
65
+
66
+ def setdefault(self, *args, **kwargs):
67
+ raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
68
+
69
+ def pop(self, *args, **kwargs):
70
+ raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
71
+
72
+ def update(self, *args, **kwargs):
73
+ raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
74
+
75
+ def __setattr__(self, name, value):
76
+ if hasattr(self, "__frozen") and self.__frozen:
77
+ raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
78
+ super().__setattr__(name, value)
79
+
80
+ def __setitem__(self, name, value):
81
+ if hasattr(self, "__frozen") and self.__frozen:
82
+ raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
83
+ super().__setitem__(name, value)
84
+
85
+
86
+ class ConfigMixin:
87
+ r"""
88
+ Base class for all configuration classes. All configuration parameters are stored under `self.config`. Also
89
+ provides the [`~ConfigMixin.from_config`] and [`~ConfigMixin.save_config`] methods for loading, downloading, and
90
+ saving classes that inherit from [`ConfigMixin`].
91
+
92
+ Class attributes:
93
+ - **config_name** (`str`) -- A filename under which the config should stored when calling
94
+ [`~ConfigMixin.save_config`] (should be overridden by parent class).
95
+ - **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
96
+ overridden by subclass).
97
+ - **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by subclass).
98
+ - **_deprecated_kwargs** (`List[str]`) -- Keyword arguments that are deprecated. Note that the `init` function
99
+ should only have a `kwargs` argument if at least one argument is deprecated (should be overridden by
100
+ subclass).
101
+ """
102
+
103
+ config_name = None
104
+ ignore_for_config = []
105
+ has_compatibles = False
106
+
107
+ _deprecated_kwargs = []
108
+
109
+ def register_to_config(self, **kwargs):
110
+ if self.config_name is None:
111
+ raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
112
+ # Special case for `kwargs` used in deprecation warning added to schedulers
113
+ # TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
114
+ # or solve in a more general way.
115
+ kwargs.pop("kwargs", None)
116
+
117
+ if not hasattr(self, "_internal_dict"):
118
+ internal_dict = kwargs
119
+ else:
120
+ previous_dict = dict(self._internal_dict)
121
+ internal_dict = {**self._internal_dict, **kwargs}
122
+ logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
123
+
124
+ self._internal_dict = FrozenDict(internal_dict)
125
+
126
+ def __getattr__(self, name: str) -> Any:
127
+ """The only reason we overwrite `getattr` here is to gracefully deprecate accessing
128
+ config attributes directly. See https://github.com/huggingface/diffusers/pull/3129
129
+
130
+ Tihs funtion is mostly copied from PyTorch's __getattr__ overwrite:
131
+ https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
132
+ """
133
+
134
+ is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
135
+ is_attribute = name in self.__dict__
136
+
137
+ if is_in_config and not is_attribute:
138
+ deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'scheduler.config.{name}'."
139
+ deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
140
+ return self._internal_dict[name]
141
+
142
+ raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")
143
+
144
+ def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
145
+ """
146
+ Save a configuration object to the directory specified in `save_directory` so that it can be reloaded using the
147
+ [`~ConfigMixin.from_config`] class method.
148
+
149
+ Args:
150
+ save_directory (`str` or `os.PathLike`):
151
+ Directory where the configuration JSON file is saved (will be created if it does not exist).
152
+ push_to_hub (`bool`, *optional*, defaults to `False`):
153
+ Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
154
+ repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
155
+ namespace).
156
+ kwargs (`Dict[str, Any]`, *optional*):
157
+ Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
158
+ """
159
+ if os.path.isfile(save_directory):
160
+ raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
161
+
162
+ os.makedirs(save_directory, exist_ok=True)
163
+
164
+ # If we save using the predefined names, we can load using `from_config`
165
+ output_config_file = os.path.join(save_directory, self.config_name)
166
+
167
+ self.to_json_file(output_config_file)
168
+ logger.info(f"Configuration saved in {output_config_file}")
169
+
170
+ if push_to_hub:
171
+ commit_message = kwargs.pop("commit_message", None)
172
+ private = kwargs.pop("private", False)
173
+ create_pr = kwargs.pop("create_pr", False)
174
+ token = kwargs.pop("token", None)
175
+ repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
176
+ repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id
177
+
178
+ self._upload_folder(
179
+ save_directory,
180
+ repo_id,
181
+ token=token,
182
+ commit_message=commit_message,
183
+ create_pr=create_pr,
184
+ )
185
+
186
+ @classmethod
187
+ def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
188
+ r"""
189
+ Instantiate a Python class from a config dictionary.
190
+
191
+ Parameters:
192
+ config (`Dict[str, Any]`):
193
+ A config dictionary from which the Python class is instantiated. Make sure to only load configuration
194
+ files of compatible classes.
195
+ return_unused_kwargs (`bool`, *optional*, defaults to `False`):
196
+ Whether kwargs that are not consumed by the Python class should be returned or not.
197
+ kwargs (remaining dictionary of keyword arguments, *optional*):
198
+ Can be used to update the configuration object (after it is loaded) and initiate the Python class.
199
+ `**kwargs` are passed directly to the underlying scheduler/model's `__init__` method and eventually
200
+ overwrite the same named arguments in `config`.
201
+
202
+ Returns:
203
+ [`ModelMixin`] or [`SchedulerMixin`]:
204
+ A model or scheduler object instantiated from a config dictionary.
205
+
206
+ Examples:
207
+
208
+ ```python
209
+ >>> from diffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler
210
+
211
+ >>> # Download scheduler from huggingface.co and cache.
212
+ >>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32")
213
+
214
+ >>> # Instantiate DDIM scheduler class with same config as DDPM
215
+ >>> scheduler = DDIMScheduler.from_config(scheduler.config)
216
+
217
+ >>> # Instantiate PNDM scheduler class with same config as DDPM
218
+ >>> scheduler = PNDMScheduler.from_config(scheduler.config)
219
+ ```
220
+ """
221
+ # <===== TO BE REMOVED WITH DEPRECATION
222
+ # TODO(Patrick) - make sure to remove the following lines when config=="model_path" is deprecated
223
+ if "pretrained_model_name_or_path" in kwargs:
224
+ config = kwargs.pop("pretrained_model_name_or_path")
225
+
226
+ if config is None:
227
+ raise ValueError("Please make sure to provide a config as the first positional argument.")
228
+ # ======>
229
+
230
+ if not isinstance(config, dict):
231
+ deprecation_message = "It is deprecated to pass a pretrained model name or path to `from_config`."
232
+ if "Scheduler" in cls.__name__:
233
+ deprecation_message += (
234
+ f"If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead."
235
+ " Otherwise, please make sure to pass a configuration dictionary instead. This functionality will"
236
+ " be removed in v1.0.0."
237
+ )
238
+ elif "Model" in cls.__name__:
239
+ deprecation_message += (
240
+ f"If you were trying to load a model, please use {cls}.load_config(...) followed by"
241
+ f" {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary"
242
+ " instead. This functionality will be removed in v1.0.0."
243
+ )
244
+ deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False)
245
+ config, kwargs = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs)
246
+
247
+ init_dict, unused_kwargs, hidden_dict = cls.extract_init_dict(config, **kwargs)
248
+
249
+ # Allow dtype to be specified on initialization
250
+ if "dtype" in unused_kwargs:
251
+ init_dict["dtype"] = unused_kwargs.pop("dtype")
252
+
253
+ # add possible deprecated kwargs
254
+ for deprecated_kwarg in cls._deprecated_kwargs:
255
+ if deprecated_kwarg in unused_kwargs:
256
+ init_dict[deprecated_kwarg] = unused_kwargs.pop(deprecated_kwarg)
257
+
258
+ # Return model and optionally state and/or unused_kwargs
259
+ model = cls(**init_dict)
260
+
261
+ # make sure to also save config parameters that might be used for compatible classes
262
+ model.register_to_config(**hidden_dict)
263
+
264
+ # add hidden kwargs of compatible classes to unused_kwargs
265
+ unused_kwargs = {**unused_kwargs, **hidden_dict}
266
+
267
+ if return_unused_kwargs:
268
+ return (model, unused_kwargs)
269
+ else:
270
+ return model
271
+
272
+ @classmethod
273
+ def get_config_dict(cls, *args, **kwargs):
274
+ deprecation_message = (
275
+ f" The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be"
276
+ " removed in version v1.0.0"
277
+ )
278
+ deprecate("get_config_dict", "1.0.0", deprecation_message, standard_warn=False)
279
+ return cls.load_config(*args, **kwargs)
280
+
281
+ @classmethod
282
+ @validate_hf_hub_args
283
+ def load_config(
284
+ cls,
285
+ pretrained_model_name_or_path: Union[str, os.PathLike],
286
+ return_unused_kwargs=False,
287
+ return_commit_hash=False,
288
+ **kwargs,
289
+ ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
290
+ r"""
291
+ Load a model or scheduler configuration.
292
+
293
+ Parameters:
294
+ pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
295
+ Can be either:
296
+
297
+ - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
298
+ the Hub.
299
+ - A path to a *directory* (for example `./my_model_directory`) containing model weights saved with
300
+ [`~ConfigMixin.save_config`].
301
+
302
+ cache_dir (`Union[str, os.PathLike]`, *optional*):
303
+ Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
304
+ is not used.
305
+ force_download (`bool`, *optional*, defaults to `False`):
306
+ Whether or not to force the (re-)download of the model weights and configuration files, overriding the
307
+ cached versions if they exist.
308
+ resume_download (`bool`, *optional*, defaults to `False`):
309
+ Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
310
+ incompletely downloaded files are deleted.
311
+ proxies (`Dict[str, str]`, *optional*):
312
+ A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
313
+ 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
314
+ output_loading_info(`bool`, *optional*, defaults to `False`):
315
+ Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
316
+ local_files_only (`bool`, *optional*, defaults to `False`):
317
+ Whether to only load local model weights and configuration files or not. If set to `True`, the model
318
+ won't be downloaded from the Hub.
319
+ token (`str` or *bool*, *optional*):
320
+ The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
321
+ `diffusers-cli login` (stored in `~/.huggingface`) is used.
322
+ revision (`str`, *optional*, defaults to `"main"`):
323
+ The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
324
+ allowed by Git.
325
+ subfolder (`str`, *optional*, defaults to `""`):
326
+ The subfolder location of a model file within a larger model repository on the Hub or locally.
327
+ return_unused_kwargs (`bool`, *optional*, defaults to `False):
328
+ Whether unused keyword arguments of the config are returned.
329
+ return_commit_hash (`bool`, *optional*, defaults to `False):
330
+ Whether the `commit_hash` of the loaded configuration are returned.
331
+
332
+ Returns:
333
+ `dict`:
334
+ A dictionary of all the parameters stored in a JSON configuration file.
335
+
336
+ """
337
+ cache_dir = kwargs.pop("cache_dir", None)
338
+ force_download = kwargs.pop("force_download", False)
339
+ resume_download = kwargs.pop("resume_download", False)
340
+ proxies = kwargs.pop("proxies", None)
341
+ token = kwargs.pop("token", None)
342
+ local_files_only = kwargs.pop("local_files_only", False)
343
+ revision = kwargs.pop("revision", None)
344
+ _ = kwargs.pop("mirror", None)
345
+ subfolder = kwargs.pop("subfolder", None)
346
+ user_agent = kwargs.pop("user_agent", {})
347
+
348
+ user_agent = {**user_agent, "file_type": "config"}
349
+ user_agent = http_user_agent(user_agent)
350
+
351
+ pretrained_model_name_or_path = str(pretrained_model_name_or_path)
352
+
353
+ if cls.config_name is None:
354
+ raise ValueError(
355
+ "`self.config_name` is not defined. Note that one should not load a config from "
356
+ "`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
357
+ )
358
+
359
+ if os.path.isfile(pretrained_model_name_or_path):
360
+ config_file = pretrained_model_name_or_path
361
+ elif os.path.isdir(pretrained_model_name_or_path):
362
+ if os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
363
+ # Load from a PyTorch checkpoint
364
+ config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
365
+ elif subfolder is not None and os.path.isfile(
366
+ os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
367
+ ):
368
+ config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
369
+ else:
370
+ raise EnvironmentError(
371
+ f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
372
+ )
373
+ else:
374
+ try:
375
+ # Load from URL or cache if already cached
376
+ config_file = hf_hub_download(
377
+ pretrained_model_name_or_path,
378
+ filename=cls.config_name,
379
+ cache_dir=cache_dir,
380
+ force_download=force_download,
381
+ proxies=proxies,
382
+ resume_download=resume_download,
383
+ local_files_only=local_files_only,
384
+ token=token,
385
+ user_agent=user_agent,
386
+ subfolder=subfolder,
387
+ revision=revision,
388
+ )
389
+ except RepositoryNotFoundError:
390
+ raise EnvironmentError(
391
+ f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
392
+ " listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
393
+ " token having permission to this repo with `token` or log in with `huggingface-cli login`."
394
+ )
395
+ except RevisionNotFoundError:
396
+ raise EnvironmentError(
397
+ f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
398
+ " this model name. Check the model page at"
399
+ f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
400
+ )
401
+ except EntryNotFoundError:
402
+ raise EnvironmentError(
403
+ f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
404
+ )
405
+ except HTTPError as err:
406
+ raise EnvironmentError(
407
+ "There was a specific connection error when trying to load"
408
+ f" {pretrained_model_name_or_path}:\n{err}"
409
+ )
410
+ except ValueError:
411
+ raise EnvironmentError(
412
+ f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
413
+ f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
414
+ f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
415
+ " run the library in offline mode at"
416
+ " 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
417
+ )
418
+ except EnvironmentError:
419
+ raise EnvironmentError(
420
+ f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
421
+ "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
422
+ f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
423
+ f"containing a {cls.config_name} file"
424
+ )
425
+
426
+ try:
427
+ # Load config dict
428
+ config_dict = cls._dict_from_json_file(config_file)
429
+
430
+ commit_hash = extract_commit_hash(config_file)
431
+ except (json.JSONDecodeError, UnicodeDecodeError):
432
+ raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
433
+
434
+ if not (return_unused_kwargs or return_commit_hash):
435
+ return config_dict
436
+
437
+ outputs = (config_dict,)
438
+
439
+ if return_unused_kwargs:
440
+ outputs += (kwargs,)
441
+
442
+ if return_commit_hash:
443
+ outputs += (commit_hash,)
444
+
445
+ return outputs
446
+
447
+ @staticmethod
448
+ def _get_init_keys(cls):
449
+ return set(dict(inspect.signature(cls.__init__).parameters).keys())
450
+
451
+ @classmethod
452
+ def extract_init_dict(cls, config_dict, **kwargs):
453
+ # Skip keys that were not present in the original config, so default __init__ values were used
454
+ used_defaults = config_dict.get("_use_default_values", [])
455
+ config_dict = {k: v for k, v in config_dict.items() if k not in used_defaults and k != "_use_default_values"}
456
+
457
+ # 0. Copy origin config dict
458
+ original_dict = dict(config_dict.items())
459
+
460
+ # 1. Retrieve expected config attributes from __init__ signature
461
+ expected_keys = cls._get_init_keys(cls)
462
+ expected_keys.remove("self")
463
+ # remove general kwargs if present in dict
464
+ if "kwargs" in expected_keys:
465
+ expected_keys.remove("kwargs")
466
+ # remove flax internal keys
467
+ if hasattr(cls, "_flax_internal_args"):
468
+ for arg in cls._flax_internal_args:
469
+ expected_keys.remove(arg)
470
+
471
+ # 2. Remove attributes that cannot be expected from expected config attributes
472
+ # remove keys to be ignored
473
+ if len(cls.ignore_for_config) > 0:
474
+ expected_keys = expected_keys - set(cls.ignore_for_config)
475
+
476
+ # load diffusers library to import compatible and original scheduler
477
+ diffusers_library = importlib.import_module(__name__.split(".")[0])
478
+
479
+ if cls.has_compatibles:
480
+ compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)]
481
+ else:
482
+ compatible_classes = []
483
+
484
+ expected_keys_comp_cls = set()
485
+ for c in compatible_classes:
486
+ expected_keys_c = cls._get_init_keys(c)
487
+ expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c)
488
+ expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls)
489
+ config_dict = {k: v for k, v in config_dict.items() if k not in expected_keys_comp_cls}
490
+
491
+ # remove attributes from orig class that cannot be expected
492
+ orig_cls_name = config_dict.pop("_class_name", cls.__name__)
493
+ if (
494
+ isinstance(orig_cls_name, str)
495
+ and orig_cls_name != cls.__name__
496
+ and hasattr(diffusers_library, orig_cls_name)
497
+ ):
498
+ orig_cls = getattr(diffusers_library, orig_cls_name)
499
+ unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys
500
+ config_dict = {k: v for k, v in config_dict.items() if k not in unexpected_keys_from_orig}
501
+ elif not isinstance(orig_cls_name, str) and not isinstance(orig_cls_name, (list, tuple)):
502
+ raise ValueError(
503
+ "Make sure that the `_class_name` is of type string or list of string (for custom pipelines)."
504
+ )
505
+
506
+ # remove private attributes
507
+ config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}
508
+
509
+ # 3. Create keyword arguments that will be passed to __init__ from expected keyword arguments
510
+ init_dict = {}
511
+ for key in expected_keys:
512
+ # if config param is passed to kwarg and is present in config dict
513
+ # it should overwrite existing config dict key
514
+ if key in kwargs and key in config_dict:
515
+ config_dict[key] = kwargs.pop(key)
516
+
517
+ if key in kwargs:
518
+ # overwrite key
519
+ init_dict[key] = kwargs.pop(key)
520
+ elif key in config_dict:
521
+ # use value from config dict
522
+ init_dict[key] = config_dict.pop(key)
523
+
524
+ # 4. Give nice warning if unexpected values have been passed
525
+ if len(config_dict) > 0:
526
+ logger.warning(
527
+ f"The config attributes {config_dict} were passed to {cls.__name__}, "
528
+ "but are not expected and will be ignored. Please verify your "
529
+ f"{cls.config_name} configuration file."
530
+ )
531
+
532
+ # 5. Give nice info if config attributes are initiliazed to default because they have not been passed
533
+ passed_keys = set(init_dict.keys())
534
+ if len(expected_keys - passed_keys) > 0:
535
+ logger.info(
536
+ f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
537
+ )
538
+
539
+ # 6. Define unused keyword arguments
540
+ unused_kwargs = {**config_dict, **kwargs}
541
+
542
+ # 7. Define "hidden" config parameters that were saved for compatible classes
543
+ hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict}
544
+
545
+ return init_dict, unused_kwargs, hidden_config_dict
546
+
547
+ @classmethod
548
+ def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
549
+ with open(json_file, "r", encoding="utf-8") as reader:
550
+ text = reader.read()
551
+ return json.loads(text)
552
+
553
+ def __repr__(self):
554
+ return f"{self.__class__.__name__} {self.to_json_string()}"
555
+
556
+ @property
557
+ def config(self) -> Dict[str, Any]:
558
+ """
559
+ Returns the config of the class as a frozen dictionary
560
+
561
+ Returns:
562
+ `Dict[str, Any]`: Config of the class.
563
+ """
564
+ return self._internal_dict
565
+
566
+ def to_json_string(self) -> str:
567
+ """
568
+ Serializes the configuration instance to a JSON string.
569
+
570
+ Returns:
571
+ `str`:
572
+ String containing all the attributes that make up the configuration instance in JSON format.
573
+ """
574
+ config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
575
+ config_dict["_class_name"] = self.__class__.__name__
576
+ config_dict["_diffusers_version"] = __version__
577
+
578
+ def to_json_saveable(value):
579
+ if isinstance(value, np.ndarray):
580
+ value = value.tolist()
581
+ elif isinstance(value, PosixPath):
582
+ value = str(value)
583
+ return value
584
+
585
+ config_dict = {k: to_json_saveable(v) for k, v in config_dict.items()}
586
+ # Don't save "_ignore_files" or "_use_default_values"
587
+ config_dict.pop("_ignore_files", None)
588
+ config_dict.pop("_use_default_values", None)
589
+
590
+ return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
591
+
592
+ def to_json_file(self, json_file_path: Union[str, os.PathLike]):
593
+ """
594
+ Save the configuration instance's parameters to a JSON file.
595
+
596
+ Args:
597
+ json_file_path (`str` or `os.PathLike`):
598
+ Path to the JSON file to save a configuration instance's parameters.
599
+ """
600
+ with open(json_file_path, "w", encoding="utf-8") as writer:
601
+ writer.write(self.to_json_string())
602
+
603
+
604
+ def register_to_config(init):
605
+ r"""
606
+ Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
607
+ automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
608
+ shouldn't be registered in the config, use the `ignore_for_config` class variable
609
+
610
+ Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
611
+ """
612
+
613
+ @functools.wraps(init)
614
+ def inner_init(self, *args, **kwargs):
615
+ # Ignore private kwargs in the init.
616
+ init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
617
+ config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")}
618
+ if not isinstance(self, ConfigMixin):
619
+ raise RuntimeError(
620
+ f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
621
+ "not inherit from `ConfigMixin`."
622
+ )
623
+
624
+ ignore = getattr(self, "ignore_for_config", [])
625
+ # Get positional arguments aligned with kwargs
626
+ new_kwargs = {}
627
+ signature = inspect.signature(init)
628
+ parameters = {
629
+ name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
630
+ }
631
+ for arg, name in zip(args, parameters.keys()):
632
+ new_kwargs[name] = arg
633
+
634
+ # Then add all kwargs
635
+ new_kwargs.update(
636
+ {
637
+ k: init_kwargs.get(k, default)
638
+ for k, default in parameters.items()
639
+ if k not in ignore and k not in new_kwargs
640
+ }
641
+ )
642
+
643
+ # Take note of the parameters that were not present in the loaded config
644
+ if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
645
+ new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
646
+
647
+ new_kwargs = {**config_init_kwargs, **new_kwargs}
648
+ getattr(self, "register_to_config")(**new_kwargs)
649
+ init(self, *args, **init_kwargs)
650
+
651
+ return inner_init
652
+
653
+
654
+ def flax_register_to_config(cls):
655
+ original_init = cls.__init__
656
+
657
+ @functools.wraps(original_init)
658
+ def init(self, *args, **kwargs):
659
+ if not isinstance(self, ConfigMixin):
660
+ raise RuntimeError(
661
+ f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
662
+ "not inherit from `ConfigMixin`."
663
+ )
664
+
665
+ # Ignore private kwargs in the init. Retrieve all passed attributes
666
+ init_kwargs = dict(kwargs.items())
667
+
668
+ # Retrieve default values
669
+ fields = dataclasses.fields(self)
670
+ default_kwargs = {}
671
+ for field in fields:
672
+ # ignore flax specific attributes
673
+ if field.name in self._flax_internal_args:
674
+ continue
675
+ if type(field.default) == dataclasses._MISSING_TYPE:
676
+ default_kwargs[field.name] = None
677
+ else:
678
+ default_kwargs[field.name] = getattr(self, field.name)
679
+
680
+ # Make sure init_kwargs override default kwargs
681
+ new_kwargs = {**default_kwargs, **init_kwargs}
682
+ # dtype should be part of `init_kwargs`, but not `new_kwargs`
683
+ if "dtype" in new_kwargs:
684
+ new_kwargs.pop("dtype")
685
+
686
+ # Get positional arguments aligned with kwargs
687
+ for i, arg in enumerate(args):
688
+ name = fields[i].name
689
+ new_kwargs[name] = arg
690
+
691
+ # Take note of the parameters that were not present in the loaded config
692
+ if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
693
+ new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
694
+
695
+ getattr(self, "register_to_config")(**new_kwargs)
696
+ original_init(self, *args, **kwargs)
697
+
698
+ cls.__init__ = init
699
+ return cls
diffusers/dependency_versions_check.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from .dependency_versions_table import deps
16
+ from .utils.versions import require_version, require_version_core
17
+
18
+
19
+ # define which module versions we always want to check at run time
20
+ # (usually the ones defined in `install_requires` in setup.py)
21
+ #
22
+ # order specific notes:
23
+ # - tqdm must be checked before tokenizers
24
+
25
+ pkgs_to_check_at_runtime = "python requests filelock numpy".split()
26
+ for pkg in pkgs_to_check_at_runtime:
27
+ if pkg in deps:
28
+ require_version_core(deps[pkg])
29
+ else:
30
+ raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
31
+
32
+
33
+ def dep_version_check(pkg, hint=None):
34
+ require_version(deps[pkg], hint)
diffusers/dependency_versions_table.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # THIS FILE HAS BEEN AUTOGENERATED. To update:
2
+ # 1. modify the `_deps` dict in setup.py
3
+ # 2. run `make deps_table_update`
4
+ deps = {
5
+ "Pillow": "Pillow",
6
+ "accelerate": "accelerate>=0.11.0",
7
+ "compel": "compel==0.1.8",
8
+ "datasets": "datasets",
9
+ "filelock": "filelock",
10
+ "flax": "flax>=0.4.1",
11
+ "hf-doc-builder": "hf-doc-builder>=0.3.0",
12
+ "huggingface-hub": "huggingface-hub>=0.20.2",
13
+ "requests-mock": "requests-mock==1.10.0",
14
+ "importlib_metadata": "importlib_metadata",
15
+ "invisible-watermark": "invisible-watermark>=0.2.0",
16
+ "isort": "isort>=5.5.4",
17
+ "jax": "jax>=0.4.1",
18
+ "jaxlib": "jaxlib>=0.4.1",
19
+ "Jinja2": "Jinja2",
20
+ "k-diffusion": "k-diffusion>=0.0.12",
21
+ "torchsde": "torchsde",
22
+ "note_seq": "note_seq",
23
+ "librosa": "librosa",
24
+ "numpy": "numpy",
25
+ "omegaconf": "omegaconf",
26
+ "parameterized": "parameterized",
27
+ "peft": "peft>=0.6.0",
28
+ "protobuf": "protobuf>=3.20.3,<4",
29
+ "pytest": "pytest",
30
+ "pytest-timeout": "pytest-timeout",
31
+ "pytest-xdist": "pytest-xdist",
32
+ "python": "python>=3.8.0",
33
+ "ruff": "ruff==0.1.5",
34
+ "safetensors": "safetensors>=0.3.1",
35
+ "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
36
+ "GitPython": "GitPython<3.1.19",
37
+ "scipy": "scipy",
38
+ "onnx": "onnx",
39
+ "regex": "regex!=2019.12.17",
40
+ "requests": "requests",
41
+ "tensorboard": "tensorboard",
42
+ "torch": "torch>=1.4",
43
+ "torchvision": "torchvision",
44
+ "transformers": "transformers>=4.25.1",
45
+ "urllib3": "urllib3<=2.0.0",
46
+ }
diffusers/experimental/README.md ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # 🧨 Diffusers Experimental
2
+
3
+ We are adding experimental code to support novel applications and usages of the Diffusers library.
4
+ Currently, the following experiments are supported:
5
+ * Reinforcement learning via an implementation of the [Diffuser](https://arxiv.org/abs/2205.09991) model.
diffusers/experimental/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .rl import ValueGuidedRLPipeline
diffusers/experimental/rl/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .value_guided_sampling import ValueGuidedRLPipeline
diffusers/experimental/rl/value_guided_sampling.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import numpy as np
16
+ import torch
17
+ import tqdm
18
+
19
+ from ...models.unet_1d import UNet1DModel
20
+ from ...pipelines import DiffusionPipeline
21
+ from ...utils.dummy_pt_objects import DDPMScheduler
22
+ from ...utils.torch_utils import randn_tensor
23
+
24
+
25
+ class ValueGuidedRLPipeline(DiffusionPipeline):
26
+ r"""
27
+ Pipeline for value-guided sampling from a diffusion model trained to predict sequences of states.
28
+
29
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
30
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
31
+
32
+ Parameters:
33
+ value_function ([`UNet1DModel`]):
34
+ A specialized UNet for fine-tuning trajectories base on reward.
35
+ unet ([`UNet1DModel`]):
36
+ UNet architecture to denoise the encoded trajectories.
37
+ scheduler ([`SchedulerMixin`]):
38
+ A scheduler to be used in combination with `unet` to denoise the encoded trajectories. Default for this
39
+ application is [`DDPMScheduler`].
40
+ env ():
41
+ An environment following the OpenAI gym API to act in. For now only Hopper has pretrained models.
42
+ """
43
+
44
+ def __init__(
45
+ self,
46
+ value_function: UNet1DModel,
47
+ unet: UNet1DModel,
48
+ scheduler: DDPMScheduler,
49
+ env,
50
+ ):
51
+ super().__init__()
52
+
53
+ self.register_modules(value_function=value_function, unet=unet, scheduler=scheduler, env=env)
54
+
55
+ self.data = env.get_dataset()
56
+ self.means = {}
57
+ for key in self.data.keys():
58
+ try:
59
+ self.means[key] = self.data[key].mean()
60
+ except: # noqa: E722
61
+ pass
62
+ self.stds = {}
63
+ for key in self.data.keys():
64
+ try:
65
+ self.stds[key] = self.data[key].std()
66
+ except: # noqa: E722
67
+ pass
68
+ self.state_dim = env.observation_space.shape[0]
69
+ self.action_dim = env.action_space.shape[0]
70
+
71
+ def normalize(self, x_in, key):
72
+ return (x_in - self.means[key]) / self.stds[key]
73
+
74
+ def de_normalize(self, x_in, key):
75
+ return x_in * self.stds[key] + self.means[key]
76
+
77
+ def to_torch(self, x_in):
78
+ if isinstance(x_in, dict):
79
+ return {k: self.to_torch(v) for k, v in x_in.items()}
80
+ elif torch.is_tensor(x_in):
81
+ return x_in.to(self.unet.device)
82
+ return torch.tensor(x_in, device=self.unet.device)
83
+
84
+ def reset_x0(self, x_in, cond, act_dim):
85
+ for key, val in cond.items():
86
+ x_in[:, key, act_dim:] = val.clone()
87
+ return x_in
88
+
89
+ def run_diffusion(self, x, conditions, n_guide_steps, scale):
90
+ batch_size = x.shape[0]
91
+ y = None
92
+ for i in tqdm.tqdm(self.scheduler.timesteps):
93
+ # create batch of timesteps to pass into model
94
+ timesteps = torch.full((batch_size,), i, device=self.unet.device, dtype=torch.long)
95
+ for _ in range(n_guide_steps):
96
+ with torch.enable_grad():
97
+ x.requires_grad_()
98
+
99
+ # permute to match dimension for pre-trained models
100
+ y = self.value_function(x.permute(0, 2, 1), timesteps).sample
101
+ grad = torch.autograd.grad([y.sum()], [x])[0]
102
+
103
+ posterior_variance = self.scheduler._get_variance(i)
104
+ model_std = torch.exp(0.5 * posterior_variance)
105
+ grad = model_std * grad
106
+
107
+ grad[timesteps < 2] = 0
108
+ x = x.detach()
109
+ x = x + scale * grad
110
+ x = self.reset_x0(x, conditions, self.action_dim)
111
+
112
+ prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1)
113
+
114
+ # TODO: verify deprecation of this kwarg
115
+ x = self.scheduler.step(prev_x, i, x)["prev_sample"]
116
+
117
+ # apply conditions to the trajectory (set the initial state)
118
+ x = self.reset_x0(x, conditions, self.action_dim)
119
+ x = self.to_torch(x)
120
+ return x, y
121
+
122
+ def __call__(self, obs, batch_size=64, planning_horizon=32, n_guide_steps=2, scale=0.1):
123
+ # normalize the observations and create batch dimension
124
+ obs = self.normalize(obs, "observations")
125
+ obs = obs[None].repeat(batch_size, axis=0)
126
+
127
+ conditions = {0: self.to_torch(obs)}
128
+ shape = (batch_size, planning_horizon, self.state_dim + self.action_dim)
129
+
130
+ # generate initial noise and apply our conditions (to make the trajectories start at current state)
131
+ x1 = randn_tensor(shape, device=self.unet.device)
132
+ x = self.reset_x0(x1, conditions, self.action_dim)
133
+ x = self.to_torch(x)
134
+
135
+ # run the diffusion process
136
+ x, y = self.run_diffusion(x, conditions, n_guide_steps, scale)
137
+
138
+ # sort output trajectories by value
139
+ sorted_idx = y.argsort(0, descending=True).squeeze()
140
+ sorted_values = x[sorted_idx]
141
+ actions = sorted_values[:, :, : self.action_dim]
142
+ actions = actions.detach().cpu().numpy()
143
+ denorm_actions = self.de_normalize(actions, key="actions")
144
+
145
+ # select the action with the highest value
146
+ if y is not None:
147
+ selected_index = 0
148
+ else:
149
+ # if we didn't run value guiding, select a random action
150
+ selected_index = np.random.randint(0, batch_size)
151
+
152
+ denorm_actions = denorm_actions[selected_index, 0]
153
+ return denorm_actions
diffusers/image_processor.py ADDED
@@ -0,0 +1,884 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import warnings
16
+ from typing import List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import PIL.Image
20
+ import torch
21
+ from PIL import Image, ImageFilter, ImageOps
22
+
23
+ from .configuration_utils import ConfigMixin, register_to_config
24
+ from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
25
+
26
+
27
+ PipelineImageInput = Union[
28
+ PIL.Image.Image,
29
+ np.ndarray,
30
+ torch.FloatTensor,
31
+ List[PIL.Image.Image],
32
+ List[np.ndarray],
33
+ List[torch.FloatTensor],
34
+ ]
35
+
36
+ PipelineDepthInput = PipelineImageInput
37
+
38
+
39
+ class VaeImageProcessor(ConfigMixin):
40
+ """
41
+ Image processor for VAE.
42
+
43
+ Args:
44
+ do_resize (`bool`, *optional*, defaults to `True`):
45
+ Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
46
+ `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
47
+ vae_scale_factor (`int`, *optional*, defaults to `8`):
48
+ VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
49
+ resample (`str`, *optional*, defaults to `lanczos`):
50
+ Resampling filter to use when resizing the image.
51
+ do_normalize (`bool`, *optional*, defaults to `True`):
52
+ Whether to normalize the image to [-1,1].
53
+ do_binarize (`bool`, *optional*, defaults to `False`):
54
+ Whether to binarize the image to 0/1.
55
+ do_convert_rgb (`bool`, *optional*, defaults to be `False`):
56
+ Whether to convert the images to RGB format.
57
+ do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
58
+ Whether to convert the images to grayscale format.
59
+ """
60
+
61
+ config_name = CONFIG_NAME
62
+
63
+ @register_to_config
64
+ def __init__(
65
+ self,
66
+ do_resize: bool = True,
67
+ vae_scale_factor: int = 8,
68
+ resample: str = "lanczos",
69
+ do_normalize: bool = True,
70
+ do_binarize: bool = False,
71
+ do_convert_rgb: bool = False,
72
+ do_convert_grayscale: bool = False,
73
+ ):
74
+ super().__init__()
75
+ if do_convert_rgb and do_convert_grayscale:
76
+ raise ValueError(
77
+ "`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
78
+ " if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
79
+ " if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
80
+ )
81
+ self.config.do_convert_rgb = False
82
+
83
+ @staticmethod
84
+ def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
85
+ """
86
+ Convert a numpy image or a batch of images to a PIL image.
87
+ """
88
+ if images.ndim == 3:
89
+ images = images[None, ...]
90
+ images = (images * 255).round().astype("uint8")
91
+ if images.shape[-1] == 1:
92
+ # special case for grayscale (single channel) images
93
+ pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
94
+ else:
95
+ pil_images = [Image.fromarray(image) for image in images]
96
+
97
+ return pil_images
98
+
99
+ @staticmethod
100
+ def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
101
+ """
102
+ Convert a PIL image or a list of PIL images to NumPy arrays.
103
+ """
104
+ if not isinstance(images, list):
105
+ images = [images]
106
+ images = [np.array(image).astype(np.float32) / 255.0 for image in images]
107
+ images = np.stack(images, axis=0)
108
+
109
+ return images
110
+
111
+ @staticmethod
112
+ def numpy_to_pt(images: np.ndarray) -> torch.FloatTensor:
113
+ """
114
+ Convert a NumPy image to a PyTorch tensor.
115
+ """
116
+ if images.ndim == 3:
117
+ images = images[..., None]
118
+
119
+ images = torch.from_numpy(images.transpose(0, 3, 1, 2))
120
+ return images
121
+
122
+ @staticmethod
123
+ def pt_to_numpy(images: torch.FloatTensor) -> np.ndarray:
124
+ """
125
+ Convert a PyTorch tensor to a NumPy image.
126
+ """
127
+ images = images.cpu().permute(0, 2, 3, 1).float().numpy()
128
+ return images
129
+
130
+ @staticmethod
131
+ def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
132
+ """
133
+ Normalize an image array to [-1,1].
134
+ """
135
+ return 2.0 * images - 1.0
136
+
137
+ @staticmethod
138
+ def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
139
+ """
140
+ Denormalize an image array to [0,1].
141
+ """
142
+ return (images / 2 + 0.5).clamp(0, 1)
143
+
144
+ @staticmethod
145
+ def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
146
+ """
147
+ Converts a PIL image to RGB format.
148
+ """
149
+ image = image.convert("RGB")
150
+
151
+ return image
152
+
153
+ @staticmethod
154
+ def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
155
+ """
156
+ Converts a PIL image to grayscale format.
157
+ """
158
+ image = image.convert("L")
159
+
160
+ return image
161
+
162
+ @staticmethod
163
+ def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image:
164
+ """
165
+ Applies Gaussian blur to an image.
166
+ """
167
+ image = image.filter(ImageFilter.GaussianBlur(blur_factor))
168
+
169
+ return image
170
+
171
+ @staticmethod
172
+ def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0):
173
+ """
174
+ Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect ratio of the original image;
175
+ for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128.
176
+
177
+ Args:
178
+ mask_image (PIL.Image.Image): Mask image.
179
+ width (int): Width of the image to be processed.
180
+ height (int): Height of the image to be processed.
181
+ pad (int, optional): Padding to be added to the crop region. Defaults to 0.
182
+
183
+ Returns:
184
+ tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and matches the original aspect ratio.
185
+ """
186
+
187
+ mask_image = mask_image.convert("L")
188
+ mask = np.array(mask_image)
189
+
190
+ # 1. find a rectangular region that contains all masked ares in an image
191
+ h, w = mask.shape
192
+ crop_left = 0
193
+ for i in range(w):
194
+ if not (mask[:, i] == 0).all():
195
+ break
196
+ crop_left += 1
197
+
198
+ crop_right = 0
199
+ for i in reversed(range(w)):
200
+ if not (mask[:, i] == 0).all():
201
+ break
202
+ crop_right += 1
203
+
204
+ crop_top = 0
205
+ for i in range(h):
206
+ if not (mask[i] == 0).all():
207
+ break
208
+ crop_top += 1
209
+
210
+ crop_bottom = 0
211
+ for i in reversed(range(h)):
212
+ if not (mask[i] == 0).all():
213
+ break
214
+ crop_bottom += 1
215
+
216
+ # 2. add padding to the crop region
217
+ x1, y1, x2, y2 = (
218
+ int(max(crop_left - pad, 0)),
219
+ int(max(crop_top - pad, 0)),
220
+ int(min(w - crop_right + pad, w)),
221
+ int(min(h - crop_bottom + pad, h)),
222
+ )
223
+
224
+ # 3. expands crop region to match the aspect ratio of the image to be processed
225
+ ratio_crop_region = (x2 - x1) / (y2 - y1)
226
+ ratio_processing = width / height
227
+
228
+ if ratio_crop_region > ratio_processing:
229
+ desired_height = (x2 - x1) / ratio_processing
230
+ desired_height_diff = int(desired_height - (y2 - y1))
231
+ y1 -= desired_height_diff // 2
232
+ y2 += desired_height_diff - desired_height_diff // 2
233
+ if y2 >= mask_image.height:
234
+ diff = y2 - mask_image.height
235
+ y2 -= diff
236
+ y1 -= diff
237
+ if y1 < 0:
238
+ y2 -= y1
239
+ y1 -= y1
240
+ if y2 >= mask_image.height:
241
+ y2 = mask_image.height
242
+ else:
243
+ desired_width = (y2 - y1) * ratio_processing
244
+ desired_width_diff = int(desired_width - (x2 - x1))
245
+ x1 -= desired_width_diff // 2
246
+ x2 += desired_width_diff - desired_width_diff // 2
247
+ if x2 >= mask_image.width:
248
+ diff = x2 - mask_image.width
249
+ x2 -= diff
250
+ x1 -= diff
251
+ if x1 < 0:
252
+ x2 -= x1
253
+ x1 -= x1
254
+ if x2 >= mask_image.width:
255
+ x2 = mask_image.width
256
+
257
+ return x1, y1, x2, y2
258
+
259
+ def _resize_and_fill(
260
+ self,
261
+ image: PIL.Image.Image,
262
+ width: int,
263
+ height: int,
264
+ ) -> PIL.Image.Image:
265
+ """
266
+ Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image.
267
+
268
+ Args:
269
+ image: The image to resize.
270
+ width: The width to resize the image to.
271
+ height: The height to resize the image to.
272
+ """
273
+
274
+ ratio = width / height
275
+ src_ratio = image.width / image.height
276
+
277
+ src_w = width if ratio < src_ratio else image.width * height // image.height
278
+ src_h = height if ratio >= src_ratio else image.height * width // image.width
279
+
280
+ resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
281
+ res = Image.new("RGB", (width, height))
282
+ res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
283
+
284
+ if ratio < src_ratio:
285
+ fill_height = height // 2 - src_h // 2
286
+ if fill_height > 0:
287
+ res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
288
+ res.paste(
289
+ resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)),
290
+ box=(0, fill_height + src_h),
291
+ )
292
+ elif ratio > src_ratio:
293
+ fill_width = width // 2 - src_w // 2
294
+ if fill_width > 0:
295
+ res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
296
+ res.paste(
297
+ resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)),
298
+ box=(fill_width + src_w, 0),
299
+ )
300
+
301
+ return res
302
+
303
+ def _resize_and_crop(
304
+ self,
305
+ image: PIL.Image.Image,
306
+ width: int,
307
+ height: int,
308
+ ) -> PIL.Image.Image:
309
+ """
310
+ Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess.
311
+
312
+ Args:
313
+ image: The image to resize.
314
+ width: The width to resize the image to.
315
+ height: The height to resize the image to.
316
+ """
317
+ ratio = width / height
318
+ src_ratio = image.width / image.height
319
+
320
+ src_w = width if ratio > src_ratio else image.width * height // image.height
321
+ src_h = height if ratio <= src_ratio else image.height * width // image.width
322
+
323
+ resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
324
+ res = Image.new("RGB", (width, height))
325
+ res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
326
+ return res
327
+
328
+ def resize(
329
+ self,
330
+ image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
331
+ height: int,
332
+ width: int,
333
+ resize_mode: str = "default", # "defalt", "fill", "crop"
334
+ ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
335
+ """
336
+ Resize image.
337
+
338
+ Args:
339
+ image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
340
+ The image input, can be a PIL image, numpy array or pytorch tensor.
341
+ height (`int`):
342
+ The height to resize to.
343
+ width (`int`):
344
+ The width to resize to.
345
+ resize_mode (`str`, *optional*, defaults to `default`):
346
+ The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit
347
+ within the specified width and height, and it may not maintaining the original aspect ratio.
348
+ If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
349
+ within the dimensions, filling empty with data from image.
350
+ If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
351
+ within the dimensions, cropping the excess.
352
+ Note that resize_mode `fill` and `crop` are only supported for PIL image input.
353
+
354
+ Returns:
355
+ `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
356
+ The resized image.
357
+ """
358
+ if resize_mode != "default" and not isinstance(image, PIL.Image.Image):
359
+ raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}")
360
+ if isinstance(image, PIL.Image.Image):
361
+ if resize_mode == "default":
362
+ image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
363
+ elif resize_mode == "fill":
364
+ image = self._resize_and_fill(image, width, height)
365
+ elif resize_mode == "crop":
366
+ image = self._resize_and_crop(image, width, height)
367
+ else:
368
+ raise ValueError(f"resize_mode {resize_mode} is not supported")
369
+
370
+ elif isinstance(image, torch.Tensor):
371
+ image = torch.nn.functional.interpolate(
372
+ image,
373
+ size=(height, width),
374
+ )
375
+ elif isinstance(image, np.ndarray):
376
+ image = self.numpy_to_pt(image)
377
+ image = torch.nn.functional.interpolate(
378
+ image,
379
+ size=(height, width),
380
+ )
381
+ image = self.pt_to_numpy(image)
382
+ return image
383
+
384
+ def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
385
+ """
386
+ Create a mask.
387
+
388
+ Args:
389
+ image (`PIL.Image.Image`):
390
+ The image input, should be a PIL image.
391
+
392
+ Returns:
393
+ `PIL.Image.Image`:
394
+ The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1.
395
+ """
396
+ image[image < 0.5] = 0
397
+ image[image >= 0.5] = 1
398
+
399
+ return image
400
+
401
+ def get_default_height_width(
402
+ self,
403
+ image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
404
+ height: Optional[int] = None,
405
+ width: Optional[int] = None,
406
+ ) -> Tuple[int, int]:
407
+ """
408
+ This function return the height and width that are downscaled to the next integer multiple of
409
+ `vae_scale_factor`.
410
+
411
+ Args:
412
+ image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
413
+ The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
414
+ shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
415
+ have shape `[batch, channel, height, width]`.
416
+ height (`int`, *optional*, defaults to `None`):
417
+ The height in preprocessed image. If `None`, will use the height of `image` input.
418
+ width (`int`, *optional*`, defaults to `None`):
419
+ The width in preprocessed. If `None`, will use the width of the `image` input.
420
+ """
421
+
422
+ if height is None:
423
+ if isinstance(image, PIL.Image.Image):
424
+ height = image.height
425
+ elif isinstance(image, torch.Tensor):
426
+ height = image.shape[2]
427
+ else:
428
+ height = image.shape[1]
429
+
430
+ if width is None:
431
+ if isinstance(image, PIL.Image.Image):
432
+ width = image.width
433
+ elif isinstance(image, torch.Tensor):
434
+ width = image.shape[3]
435
+ else:
436
+ width = image.shape[2]
437
+
438
+ width, height = (
439
+ x - x % self.config.vae_scale_factor for x in (width, height)
440
+ ) # resize to integer multiple of vae_scale_factor
441
+
442
+ return height, width
443
+
444
+ def preprocess(
445
+ self,
446
+ image: PipelineImageInput,
447
+ height: Optional[int] = None,
448
+ width: Optional[int] = None,
449
+ resize_mode: str = "default", # "defalt", "fill", "crop"
450
+ crops_coords: Optional[Tuple[int, int, int, int]] = None,
451
+ ) -> torch.Tensor:
452
+ """
453
+ Preprocess the image input.
454
+
455
+ Args:
456
+ image (`pipeline_image_input`):
457
+ The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of supported formats.
458
+ height (`int`, *optional*, defaults to `None`):
459
+ The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default height.
460
+ width (`int`, *optional*`, defaults to `None`):
461
+ The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
462
+ resize_mode (`str`, *optional*, defaults to `default`):
463
+ The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit
464
+ within the specified width and height, and it may not maintaining the original aspect ratio.
465
+ If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
466
+ within the dimensions, filling empty with data from image.
467
+ If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image
468
+ within the dimensions, cropping the excess.
469
+ Note that resize_mode `fill` and `crop` are only supported for PIL image input.
470
+ crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
471
+ The crop coordinates for each image in the batch. If `None`, will not crop the image.
472
+ """
473
+ supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
474
+
475
+ # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
476
+ if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
477
+ if isinstance(image, torch.Tensor):
478
+ # if image is a pytorch tensor could have 2 possible shapes:
479
+ # 1. batch x height x width: we should insert the channel dimension at position 1
480
+ # 2. channnel x height x width: we should insert batch dimension at position 0,
481
+ # however, since both channel and batch dimension has same size 1, it is same to insert at position 1
482
+ # for simplicity, we insert a dimension of size 1 at position 1 for both cases
483
+ image = image.unsqueeze(1)
484
+ else:
485
+ # if it is a numpy array, it could have 2 possible shapes:
486
+ # 1. batch x height x width: insert channel dimension on last position
487
+ # 2. height x width x channel: insert batch dimension on first position
488
+ if image.shape[-1] == 1:
489
+ image = np.expand_dims(image, axis=0)
490
+ else:
491
+ image = np.expand_dims(image, axis=-1)
492
+
493
+ if isinstance(image, supported_formats):
494
+ image = [image]
495
+ elif not (isinstance(image, list) and all(isinstance(i, supported_formats) for i in image)):
496
+ raise ValueError(
497
+ f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support {', '.join(supported_formats)}"
498
+ )
499
+
500
+ if isinstance(image[0], PIL.Image.Image):
501
+ if crops_coords is not None:
502
+ image = [i.crop(crops_coords) for i in image]
503
+ if self.config.do_resize:
504
+ height, width = self.get_default_height_width(image[0], height, width)
505
+ image = [self.resize(i, height, width, resize_mode=resize_mode) for i in image]
506
+ if self.config.do_convert_rgb:
507
+ image = [self.convert_to_rgb(i) for i in image]
508
+ elif self.config.do_convert_grayscale:
509
+ image = [self.convert_to_grayscale(i) for i in image]
510
+ image = self.pil_to_numpy(image) # to np
511
+ image = self.numpy_to_pt(image) # to pt
512
+
513
+ elif isinstance(image[0], np.ndarray):
514
+ image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
515
+
516
+ image = self.numpy_to_pt(image)
517
+
518
+ height, width = self.get_default_height_width(image, height, width)
519
+ if self.config.do_resize:
520
+ image = self.resize(image, height, width)
521
+
522
+ elif isinstance(image[0], torch.Tensor):
523
+ image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
524
+
525
+ if self.config.do_convert_grayscale and image.ndim == 3:
526
+ image = image.unsqueeze(1)
527
+
528
+ channel = image.shape[1]
529
+ # don't need any preprocess if the image is latents
530
+ if channel == 4:
531
+ return image
532
+
533
+ height, width = self.get_default_height_width(image, height, width)
534
+ if self.config.do_resize:
535
+ image = self.resize(image, height, width)
536
+
537
+ # expected range [0,1], normalize to [-1,1]
538
+ do_normalize = self.config.do_normalize
539
+ if do_normalize and image.min() < 0:
540
+ warnings.warn(
541
+ "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
542
+ f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
543
+ FutureWarning,
544
+ )
545
+ do_normalize = False
546
+
547
+ if do_normalize:
548
+ image = self.normalize(image)
549
+
550
+ if self.config.do_binarize:
551
+ image = self.binarize(image)
552
+
553
+ return image
554
+
555
+ def postprocess(
556
+ self,
557
+ image: torch.FloatTensor,
558
+ output_type: str = "pil",
559
+ do_denormalize: Optional[List[bool]] = None,
560
+ ) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
561
+ """
562
+ Postprocess the image output from tensor to `output_type`.
563
+
564
+ Args:
565
+ image (`torch.FloatTensor`):
566
+ The image input, should be a pytorch tensor with shape `B x C x H x W`.
567
+ output_type (`str`, *optional*, defaults to `pil`):
568
+ The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
569
+ do_denormalize (`List[bool]`, *optional*, defaults to `None`):
570
+ Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
571
+ `VaeImageProcessor` config.
572
+
573
+ Returns:
574
+ `PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
575
+ The postprocessed image.
576
+ """
577
+ if not isinstance(image, torch.Tensor):
578
+ raise ValueError(
579
+ f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
580
+ )
581
+ if output_type not in ["latent", "pt", "np", "pil"]:
582
+ deprecation_message = (
583
+ f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
584
+ "`pil`, `np`, `pt`, `latent`"
585
+ )
586
+ deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
587
+ output_type = "np"
588
+
589
+ if output_type == "latent":
590
+ return image
591
+
592
+ if do_denormalize is None:
593
+ do_denormalize = [self.config.do_normalize] * image.shape[0]
594
+
595
+ image = torch.stack(
596
+ [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
597
+ )
598
+
599
+ if output_type == "pt":
600
+ return image
601
+
602
+ image = self.pt_to_numpy(image)
603
+
604
+ if output_type == "np":
605
+ return image
606
+
607
+ if output_type == "pil":
608
+ return self.numpy_to_pil(image)
609
+
610
+ def apply_overlay(
611
+ self,
612
+ mask: PIL.Image.Image,
613
+ init_image: PIL.Image.Image,
614
+ image: PIL.Image.Image,
615
+ crop_coords: Optional[Tuple[int, int, int, int]] = None,
616
+ ) -> PIL.Image.Image:
617
+ """
618
+ overlay the inpaint output to the original image
619
+ """
620
+
621
+ width, height = image.width, image.height
622
+
623
+ init_image = self.resize(init_image, width=width, height=height)
624
+ mask = self.resize(mask, width=width, height=height)
625
+
626
+ init_image_masked = PIL.Image.new("RGBa", (width, height))
627
+ init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L")))
628
+ init_image_masked = init_image_masked.convert("RGBA")
629
+
630
+ if crop_coords is not None:
631
+ x, y, x2, y2 = crop_coords
632
+ w = x2 - x
633
+ h = y2 - y
634
+ base_image = PIL.Image.new("RGBA", (width, height))
635
+ image = self.resize(image, height=h, width=w, resize_mode="crop")
636
+ base_image.paste(image, (x, y))
637
+ image = base_image.convert("RGB")
638
+
639
+ image = image.convert("RGBA")
640
+ image.alpha_composite(init_image_masked)
641
+ image = image.convert("RGB")
642
+
643
+ return image
644
+
645
+
646
+ class VaeImageProcessorLDM3D(VaeImageProcessor):
647
+ """
648
+ Image processor for VAE LDM3D.
649
+
650
+ Args:
651
+ do_resize (`bool`, *optional*, defaults to `True`):
652
+ Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
653
+ vae_scale_factor (`int`, *optional*, defaults to `8`):
654
+ VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
655
+ resample (`str`, *optional*, defaults to `lanczos`):
656
+ Resampling filter to use when resizing the image.
657
+ do_normalize (`bool`, *optional*, defaults to `True`):
658
+ Whether to normalize the image to [-1,1].
659
+ """
660
+
661
+ config_name = CONFIG_NAME
662
+
663
+ @register_to_config
664
+ def __init__(
665
+ self,
666
+ do_resize: bool = True,
667
+ vae_scale_factor: int = 8,
668
+ resample: str = "lanczos",
669
+ do_normalize: bool = True,
670
+ ):
671
+ super().__init__()
672
+
673
+ @staticmethod
674
+ def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
675
+ """
676
+ Convert a NumPy image or a batch of images to a PIL image.
677
+ """
678
+ if images.ndim == 3:
679
+ images = images[None, ...]
680
+ images = (images * 255).round().astype("uint8")
681
+ if images.shape[-1] == 1:
682
+ # special case for grayscale (single channel) images
683
+ pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
684
+ else:
685
+ pil_images = [Image.fromarray(image[:, :, :3]) for image in images]
686
+
687
+ return pil_images
688
+
689
+ @staticmethod
690
+ def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
691
+ """
692
+ Convert a PIL image or a list of PIL images to NumPy arrays.
693
+ """
694
+ if not isinstance(images, list):
695
+ images = [images]
696
+
697
+ images = [np.array(image).astype(np.float32) / (2**16 - 1) for image in images]
698
+ images = np.stack(images, axis=0)
699
+ return images
700
+
701
+ @staticmethod
702
+ def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
703
+ """
704
+ Args:
705
+ image: RGB-like depth image
706
+
707
+ Returns: depth map
708
+
709
+ """
710
+ return image[:, :, 1] * 2**8 + image[:, :, 2]
711
+
712
+ def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
713
+ """
714
+ Convert a NumPy depth image or a batch of images to a PIL image.
715
+ """
716
+ if images.ndim == 3:
717
+ images = images[None, ...]
718
+ images_depth = images[:, :, :, 3:]
719
+ if images.shape[-1] == 6:
720
+ images_depth = (images_depth * 255).round().astype("uint8")
721
+ pil_images = [
722
+ Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth
723
+ ]
724
+ elif images.shape[-1] == 4:
725
+ images_depth = (images_depth * 65535.0).astype(np.uint16)
726
+ pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth]
727
+ else:
728
+ raise Exception("Not supported")
729
+
730
+ return pil_images
731
+
732
+ def postprocess(
733
+ self,
734
+ image: torch.FloatTensor,
735
+ output_type: str = "pil",
736
+ do_denormalize: Optional[List[bool]] = None,
737
+ ) -> Union[PIL.Image.Image, np.ndarray, torch.FloatTensor]:
738
+ """
739
+ Postprocess the image output from tensor to `output_type`.
740
+
741
+ Args:
742
+ image (`torch.FloatTensor`):
743
+ The image input, should be a pytorch tensor with shape `B x C x H x W`.
744
+ output_type (`str`, *optional*, defaults to `pil`):
745
+ The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
746
+ do_denormalize (`List[bool]`, *optional*, defaults to `None`):
747
+ Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
748
+ `VaeImageProcessor` config.
749
+
750
+ Returns:
751
+ `PIL.Image.Image`, `np.ndarray` or `torch.FloatTensor`:
752
+ The postprocessed image.
753
+ """
754
+ if not isinstance(image, torch.Tensor):
755
+ raise ValueError(
756
+ f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
757
+ )
758
+ if output_type not in ["latent", "pt", "np", "pil"]:
759
+ deprecation_message = (
760
+ f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
761
+ "`pil`, `np`, `pt`, `latent`"
762
+ )
763
+ deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
764
+ output_type = "np"
765
+
766
+ if do_denormalize is None:
767
+ do_denormalize = [self.config.do_normalize] * image.shape[0]
768
+
769
+ image = torch.stack(
770
+ [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
771
+ )
772
+
773
+ image = self.pt_to_numpy(image)
774
+
775
+ if output_type == "np":
776
+ if image.shape[-1] == 6:
777
+ image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)
778
+ else:
779
+ image_depth = image[:, :, :, 3:]
780
+ return image[:, :, :, :3], image_depth
781
+
782
+ if output_type == "pil":
783
+ return self.numpy_to_pil(image), self.numpy_to_depth(image)
784
+ else:
785
+ raise Exception(f"This type {output_type} is not supported")
786
+
787
+ def preprocess(
788
+ self,
789
+ rgb: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
790
+ depth: Union[torch.FloatTensor, PIL.Image.Image, np.ndarray],
791
+ height: Optional[int] = None,
792
+ width: Optional[int] = None,
793
+ target_res: Optional[int] = None,
794
+ ) -> torch.Tensor:
795
+ """
796
+ Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors.
797
+ """
798
+ supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
799
+
800
+ # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
801
+ if self.config.do_convert_grayscale and isinstance(rgb, (torch.Tensor, np.ndarray)) and rgb.ndim == 3:
802
+ raise Exception("This is not yet supported")
803
+
804
+ if isinstance(rgb, supported_formats):
805
+ rgb = [rgb]
806
+ depth = [depth]
807
+ elif not (isinstance(rgb, list) and all(isinstance(i, supported_formats) for i in rgb)):
808
+ raise ValueError(
809
+ f"Input is in incorrect format: {[type(i) for i in rgb]}. Currently, we only support {', '.join(supported_formats)}"
810
+ )
811
+
812
+ if isinstance(rgb[0], PIL.Image.Image):
813
+ if self.config.do_convert_rgb:
814
+ raise Exception("This is not yet supported")
815
+ # rgb = [self.convert_to_rgb(i) for i in rgb]
816
+ # depth = [self.convert_to_depth(i) for i in depth] #TODO define convert_to_depth
817
+ if self.config.do_resize or target_res:
818
+ height, width = self.get_default_height_width(rgb[0], height, width) if not target_res else target_res
819
+ rgb = [self.resize(i, height, width) for i in rgb]
820
+ depth = [self.resize(i, height, width) for i in depth]
821
+ rgb = self.pil_to_numpy(rgb) # to np
822
+ rgb = self.numpy_to_pt(rgb) # to pt
823
+
824
+ depth = self.depth_pil_to_numpy(depth) # to np
825
+ depth = self.numpy_to_pt(depth) # to pt
826
+
827
+ elif isinstance(rgb[0], np.ndarray):
828
+ rgb = np.concatenate(rgb, axis=0) if rgb[0].ndim == 4 else np.stack(rgb, axis=0)
829
+ rgb = self.numpy_to_pt(rgb)
830
+ height, width = self.get_default_height_width(rgb, height, width)
831
+ if self.config.do_resize:
832
+ rgb = self.resize(rgb, height, width)
833
+
834
+ depth = np.concatenate(depth, axis=0) if rgb[0].ndim == 4 else np.stack(depth, axis=0)
835
+ depth = self.numpy_to_pt(depth)
836
+ height, width = self.get_default_height_width(depth, height, width)
837
+ if self.config.do_resize:
838
+ depth = self.resize(depth, height, width)
839
+
840
+ elif isinstance(rgb[0], torch.Tensor):
841
+ raise Exception("This is not yet supported")
842
+ # rgb = torch.cat(rgb, axis=0) if rgb[0].ndim == 4 else torch.stack(rgb, axis=0)
843
+
844
+ # if self.config.do_convert_grayscale and rgb.ndim == 3:
845
+ # rgb = rgb.unsqueeze(1)
846
+
847
+ # channel = rgb.shape[1]
848
+
849
+ # height, width = self.get_default_height_width(rgb, height, width)
850
+ # if self.config.do_resize:
851
+ # rgb = self.resize(rgb, height, width)
852
+
853
+ # depth = torch.cat(depth, axis=0) if depth[0].ndim == 4 else torch.stack(depth, axis=0)
854
+
855
+ # if self.config.do_convert_grayscale and depth.ndim == 3:
856
+ # depth = depth.unsqueeze(1)
857
+
858
+ # channel = depth.shape[1]
859
+ # # don't need any preprocess if the image is latents
860
+ # if depth == 4:
861
+ # return rgb, depth
862
+
863
+ # height, width = self.get_default_height_width(depth, height, width)
864
+ # if self.config.do_resize:
865
+ # depth = self.resize(depth, height, width)
866
+ # expected range [0,1], normalize to [-1,1]
867
+ do_normalize = self.config.do_normalize
868
+ if rgb.min() < 0 and do_normalize:
869
+ warnings.warn(
870
+ "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
871
+ f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{rgb.min()},{rgb.max()}]",
872
+ FutureWarning,
873
+ )
874
+ do_normalize = False
875
+
876
+ if do_normalize:
877
+ rgb = self.normalize(rgb)
878
+ depth = self.normalize(depth)
879
+
880
+ if self.config.do_binarize:
881
+ rgb = self.binarize(rgb)
882
+ depth = self.binarize(depth)
883
+
884
+ return rgb, depth
diffusers/loaders/__init__.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import TYPE_CHECKING
2
+
3
+ from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate
4
+ from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available
5
+
6
+
7
+ def text_encoder_lora_state_dict(text_encoder):
8
+ deprecate(
9
+ "text_encoder_load_state_dict in `models`",
10
+ "0.27.0",
11
+ "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
12
+ )
13
+ state_dict = {}
14
+
15
+ for name, module in text_encoder_attn_modules(text_encoder):
16
+ for k, v in module.q_proj.lora_linear_layer.state_dict().items():
17
+ state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v
18
+
19
+ for k, v in module.k_proj.lora_linear_layer.state_dict().items():
20
+ state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v
21
+
22
+ for k, v in module.v_proj.lora_linear_layer.state_dict().items():
23
+ state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v
24
+
25
+ for k, v in module.out_proj.lora_linear_layer.state_dict().items():
26
+ state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v
27
+
28
+ return state_dict
29
+
30
+
31
+ if is_transformers_available():
32
+
33
+ def text_encoder_attn_modules(text_encoder):
34
+ deprecate(
35
+ "text_encoder_attn_modules in `models`",
36
+ "0.27.0",
37
+ "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
38
+ )
39
+ from transformers import CLIPTextModel, CLIPTextModelWithProjection
40
+
41
+ attn_modules = []
42
+
43
+ if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
44
+ for i, layer in enumerate(text_encoder.text_model.encoder.layers):
45
+ name = f"text_model.encoder.layers.{i}.self_attn"
46
+ mod = layer.self_attn
47
+ attn_modules.append((name, mod))
48
+ else:
49
+ raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")
50
+
51
+ return attn_modules
52
+
53
+
54
+ _import_structure = {}
55
+
56
+ if is_torch_available():
57
+ _import_structure["single_file"] = ["FromOriginalControlnetMixin", "FromOriginalVAEMixin"]
58
+ _import_structure["unet"] = ["UNet2DConditionLoadersMixin"]
59
+ _import_structure["utils"] = ["AttnProcsLayers"]
60
+
61
+ if is_transformers_available():
62
+ _import_structure["single_file"].extend(["FromSingleFileMixin"])
63
+ _import_structure["lora"] = ["LoraLoaderMixin", "StableDiffusionXLLoraLoaderMixin"]
64
+ _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"]
65
+ _import_structure["ip_adapter"] = ["IPAdapterMixin"]
66
+
67
+ _import_structure["peft"] = ["PeftAdapterMixin"]
68
+
69
+
70
+ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
71
+ if is_torch_available():
72
+ from .single_file import FromOriginalControlnetMixin, FromOriginalVAEMixin
73
+ from .unet import UNet2DConditionLoadersMixin
74
+ from .utils import AttnProcsLayers
75
+
76
+ if is_transformers_available():
77
+ from .ip_adapter import IPAdapterMixin
78
+ from .lora import LoraLoaderMixin, StableDiffusionXLLoraLoaderMixin
79
+ from .single_file import FromSingleFileMixin
80
+ from .textual_inversion import TextualInversionLoaderMixin
81
+
82
+ from .peft import PeftAdapterMixin
83
+ else:
84
+ import sys
85
+
86
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diffusers/loaders/ip_adapter.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import os
15
+ from typing import Dict, Union
16
+
17
+ import torch
18
+ from huggingface_hub.utils import validate_hf_hub_args
19
+ from safetensors import safe_open
20
+
21
+ from ..utils import (
22
+ _get_model_file,
23
+ is_transformers_available,
24
+ logging,
25
+ )
26
+
27
+
28
+ if is_transformers_available():
29
+ from transformers import (
30
+ CLIPImageProcessor,
31
+ CLIPVisionModelWithProjection,
32
+ )
33
+
34
+ from ..models.attention_processor import (
35
+ IPAdapterAttnProcessor,
36
+ IPAdapterAttnProcessor2_0,
37
+ )
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+
42
+ class IPAdapterMixin:
43
+ """Mixin for handling IP Adapters."""
44
+
45
+ @validate_hf_hub_args
46
+ def load_ip_adapter(
47
+ self,
48
+ pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
49
+ subfolder: str,
50
+ weight_name: str,
51
+ **kwargs,
52
+ ):
53
+ """
54
+ Parameters:
55
+ pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
56
+ Can be either:
57
+
58
+ - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
59
+ the Hub.
60
+ - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
61
+ with [`ModelMixin.save_pretrained`].
62
+ - A [torch state
63
+ dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
64
+
65
+ cache_dir (`Union[str, os.PathLike]`, *optional*):
66
+ Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
67
+ is not used.
68
+ force_download (`bool`, *optional*, defaults to `False`):
69
+ Whether or not to force the (re-)download of the model weights and configuration files, overriding the
70
+ cached versions if they exist.
71
+ resume_download (`bool`, *optional*, defaults to `False`):
72
+ Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
73
+ incompletely downloaded files are deleted.
74
+ proxies (`Dict[str, str]`, *optional*):
75
+ A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
76
+ 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
77
+ local_files_only (`bool`, *optional*, defaults to `False`):
78
+ Whether to only load local model weights and configuration files or not. If set to `True`, the model
79
+ won't be downloaded from the Hub.
80
+ token (`str` or *bool*, *optional*):
81
+ The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
82
+ `diffusers-cli login` (stored in `~/.huggingface`) is used.
83
+ revision (`str`, *optional*, defaults to `"main"`):
84
+ The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
85
+ allowed by Git.
86
+ subfolder (`str`, *optional*, defaults to `""`):
87
+ The subfolder location of a model file within a larger model repository on the Hub or locally.
88
+ """
89
+
90
+ # Load the main state dict first.
91
+ cache_dir = kwargs.pop("cache_dir", None)
92
+ force_download = kwargs.pop("force_download", False)
93
+ resume_download = kwargs.pop("resume_download", False)
94
+ proxies = kwargs.pop("proxies", None)
95
+ local_files_only = kwargs.pop("local_files_only", None)
96
+ token = kwargs.pop("token", None)
97
+ revision = kwargs.pop("revision", None)
98
+
99
+ user_agent = {
100
+ "file_type": "attn_procs_weights",
101
+ "framework": "pytorch",
102
+ }
103
+
104
+ if not isinstance(pretrained_model_name_or_path_or_dict, dict):
105
+ model_file = _get_model_file(
106
+ pretrained_model_name_or_path_or_dict,
107
+ weights_name=weight_name,
108
+ cache_dir=cache_dir,
109
+ force_download=force_download,
110
+ resume_download=resume_download,
111
+ proxies=proxies,
112
+ local_files_only=local_files_only,
113
+ token=token,
114
+ revision=revision,
115
+ subfolder=subfolder,
116
+ user_agent=user_agent,
117
+ )
118
+ if weight_name.endswith(".safetensors"):
119
+ state_dict = {"image_proj": {}, "ip_adapter": {}}
120
+ with safe_open(model_file, framework="pt", device="cpu") as f:
121
+ for key in f.keys():
122
+ if key.startswith("image_proj."):
123
+ state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
124
+ elif key.startswith("ip_adapter."):
125
+ state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
126
+ else:
127
+ state_dict = torch.load(model_file, map_location="cpu")
128
+ else:
129
+ state_dict = pretrained_model_name_or_path_or_dict
130
+
131
+ keys = list(state_dict.keys())
132
+ if keys != ["image_proj", "ip_adapter"]:
133
+ raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
134
+
135
+ # load CLIP image encoder here if it has not been registered to the pipeline yet
136
+ if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
137
+ if not isinstance(pretrained_model_name_or_path_or_dict, dict):
138
+ logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
139
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(
140
+ pretrained_model_name_or_path_or_dict,
141
+ subfolder=os.path.join(subfolder, "image_encoder"),
142
+ ).to(self.device, dtype=self.dtype)
143
+ self.image_encoder = image_encoder
144
+ self.register_to_config(image_encoder=["transformers", "CLIPVisionModelWithProjection"])
145
+ else:
146
+ raise ValueError("`image_encoder` cannot be None when using IP Adapters.")
147
+
148
+ # create feature extractor if it has not been registered to the pipeline yet
149
+ if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
150
+ self.feature_extractor = CLIPImageProcessor()
151
+ self.register_to_config(feature_extractor=["transformers", "CLIPImageProcessor"])
152
+
153
+ # load ip-adapter into unet
154
+ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
155
+ unet._load_ip_adapter_weights(state_dict)
156
+
157
+ def set_ip_adapter_scale(self, scale):
158
+ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
159
+ for attn_processor in unet.attn_processors.values():
160
+ if isinstance(attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0)):
161
+ attn_processor.scale = scale
162
+
163
+ def unload_ip_adapter(self):
164
+ """
165
+ Unloads the IP Adapter weights
166
+
167
+ Examples:
168
+
169
+ ```python
170
+ >>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
171
+ >>> pipeline.unload_ip_adapter()
172
+ >>> ...
173
+ ```
174
+ """
175
+ # remove CLIP image encoder
176
+ if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
177
+ self.image_encoder = None
178
+ self.register_to_config(image_encoder=[None, None])
179
+
180
+ # remove feature extractor
181
+ if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
182
+ self.feature_extractor = None
183
+ self.register_to_config(feature_extractor=[None, None])
184
+
185
+ # remove hidden encoder
186
+ self.unet.encoder_hid_proj = None
187
+ self.config.encoder_hid_dim_type = None
188
+
189
+ # restore original Unet attention processors layers
190
+ self.unet.set_default_attn_processor()
diffusers/loaders/lora.py ADDED
@@ -0,0 +1,1553 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import inspect
15
+ import os
16
+ from contextlib import nullcontext
17
+ from typing import Callable, Dict, List, Optional, Union
18
+
19
+ import safetensors
20
+ import torch
21
+ from huggingface_hub import model_info
22
+ from huggingface_hub.constants import HF_HUB_OFFLINE
23
+ from huggingface_hub.utils import validate_hf_hub_args
24
+ from packaging import version
25
+ from torch import nn
26
+
27
+ from .. import __version__
28
+ from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
29
+ from ..utils import (
30
+ USE_PEFT_BACKEND,
31
+ _get_model_file,
32
+ convert_state_dict_to_diffusers,
33
+ convert_state_dict_to_peft,
34
+ convert_unet_state_dict_to_peft,
35
+ delete_adapter_layers,
36
+ deprecate,
37
+ get_adapter_name,
38
+ get_peft_kwargs,
39
+ is_accelerate_available,
40
+ is_transformers_available,
41
+ logging,
42
+ recurse_remove_peft_layers,
43
+ scale_lora_layers,
44
+ set_adapter_layers,
45
+ set_weights_and_activate_adapters,
46
+ )
47
+ from .lora_conversion_utils import _convert_kohya_lora_to_diffusers, _maybe_map_sgm_blocks_to_diffusers
48
+
49
+
50
+ if is_transformers_available():
51
+ from transformers import PreTrainedModel
52
+
53
+ from ..models.lora import PatchedLoraProjection, text_encoder_attn_modules, text_encoder_mlp_modules
54
+
55
+ if is_accelerate_available():
56
+ from accelerate import init_empty_weights
57
+ from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
58
+
59
+ logger = logging.get_logger(__name__)
60
+
61
+ TEXT_ENCODER_NAME = "text_encoder"
62
+ UNET_NAME = "unet"
63
+ TRANSFORMER_NAME = "transformer"
64
+
65
+ LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
66
+ LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
67
+
68
+ LORA_DEPRECATION_MESSAGE = "You are using an old version of LoRA backend. This will be deprecated in the next releases in favor of PEFT make sure to install the latest PEFT and transformers packages in the future."
69
+
70
+
71
+ class LoraLoaderMixin:
72
+ r"""
73
+ Load LoRA layers into [`UNet2DConditionModel`] and
74
+ [`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
75
+ """
76
+
77
+ text_encoder_name = TEXT_ENCODER_NAME
78
+ unet_name = UNET_NAME
79
+ transformer_name = TRANSFORMER_NAME
80
+ num_fused_loras = 0
81
+
82
+ def load_lora_weights(
83
+ self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
84
+ ):
85
+ """
86
+ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
87
+ `self.text_encoder`.
88
+
89
+ All kwargs are forwarded to `self.lora_state_dict`.
90
+
91
+ See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
92
+
93
+ See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
94
+ `self.unet`.
95
+
96
+ See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
97
+ into `self.text_encoder`.
98
+
99
+ Parameters:
100
+ pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
101
+ See [`~loaders.LoraLoaderMixin.lora_state_dict`].
102
+ kwargs (`dict`, *optional*):
103
+ See [`~loaders.LoraLoaderMixin.lora_state_dict`].
104
+ adapter_name (`str`, *optional*):
105
+ Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
106
+ `default_{i}` where i is the total number of adapters being loaded.
107
+ """
108
+ # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
109
+ state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
110
+
111
+ is_correct_format = all("lora" in key for key in state_dict.keys())
112
+ if not is_correct_format:
113
+ raise ValueError("Invalid LoRA checkpoint.")
114
+
115
+ low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
116
+
117
+ self.load_lora_into_unet(
118
+ state_dict,
119
+ network_alphas=network_alphas,
120
+ unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
121
+ low_cpu_mem_usage=low_cpu_mem_usage,
122
+ adapter_name=adapter_name,
123
+ _pipeline=self,
124
+ )
125
+ self.load_lora_into_text_encoder(
126
+ state_dict,
127
+ network_alphas=network_alphas,
128
+ text_encoder=getattr(self, self.text_encoder_name)
129
+ if not hasattr(self, "text_encoder")
130
+ else self.text_encoder,
131
+ lora_scale=self.lora_scale,
132
+ low_cpu_mem_usage=low_cpu_mem_usage,
133
+ adapter_name=adapter_name,
134
+ _pipeline=self,
135
+ )
136
+
137
+ @classmethod
138
+ @validate_hf_hub_args
139
+ def lora_state_dict(
140
+ cls,
141
+ pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
142
+ **kwargs,
143
+ ):
144
+ r"""
145
+ Return state dict for lora weights and the network alphas.
146
+
147
+ <Tip warning={true}>
148
+
149
+ We support loading A1111 formatted LoRA checkpoints in a limited capacity.
150
+
151
+ This function is experimental and might change in the future.
152
+
153
+ </Tip>
154
+
155
+ Parameters:
156
+ pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
157
+ Can be either:
158
+
159
+ - A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
160
+ the Hub.
161
+ - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
162
+ with [`ModelMixin.save_pretrained`].
163
+ - A [torch state
164
+ dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
165
+
166
+ cache_dir (`Union[str, os.PathLike]`, *optional*):
167
+ Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
168
+ is not used.
169
+ force_download (`bool`, *optional*, defaults to `False`):
170
+ Whether or not to force the (re-)download of the model weights and configuration files, overriding the
171
+ cached versions if they exist.
172
+ resume_download (`bool`, *optional*, defaults to `False`):
173
+ Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
174
+ incompletely downloaded files are deleted.
175
+ proxies (`Dict[str, str]`, *optional*):
176
+ A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
177
+ 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
178
+ local_files_only (`bool`, *optional*, defaults to `False`):
179
+ Whether to only load local model weights and configuration files or not. If set to `True`, the model
180
+ won't be downloaded from the Hub.
181
+ token (`str` or *bool*, *optional*):
182
+ The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
183
+ `diffusers-cli login` (stored in `~/.huggingface`) is used.
184
+ revision (`str`, *optional*, defaults to `"main"`):
185
+ The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
186
+ allowed by Git.
187
+ subfolder (`str`, *optional*, defaults to `""`):
188
+ The subfolder location of a model file within a larger model repository on the Hub or locally.
189
+ low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
190
+ Speed up model loading only loading the pretrained weights and not initializing the weights. This also
191
+ tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
192
+ Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
193
+ argument to `True` will raise an error.
194
+ mirror (`str`, *optional*):
195
+ Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
196
+ guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
197
+ information.
198
+
199
+ """
200
+ # Load the main state dict first which has the LoRA layers for either of
201
+ # UNet and text encoder or both.
202
+ cache_dir = kwargs.pop("cache_dir", None)
203
+ force_download = kwargs.pop("force_download", False)
204
+ resume_download = kwargs.pop("resume_download", False)
205
+ proxies = kwargs.pop("proxies", None)
206
+ local_files_only = kwargs.pop("local_files_only", None)
207
+ token = kwargs.pop("token", None)
208
+ revision = kwargs.pop("revision", None)
209
+ subfolder = kwargs.pop("subfolder", None)
210
+ weight_name = kwargs.pop("weight_name", None)
211
+ unet_config = kwargs.pop("unet_config", None)
212
+ use_safetensors = kwargs.pop("use_safetensors", None)
213
+
214
+ allow_pickle = False
215
+ if use_safetensors is None:
216
+ use_safetensors = True
217
+ allow_pickle = True
218
+
219
+ user_agent = {
220
+ "file_type": "attn_procs_weights",
221
+ "framework": "pytorch",
222
+ }
223
+
224
+ model_file = None
225
+ if not isinstance(pretrained_model_name_or_path_or_dict, dict):
226
+ # Let's first try to load .safetensors weights
227
+ if (use_safetensors and weight_name is None) or (
228
+ weight_name is not None and weight_name.endswith(".safetensors")
229
+ ):
230
+ try:
231
+ # Here we're relaxing the loading check to enable more Inference API
232
+ # friendliness where sometimes, it's not at all possible to automatically
233
+ # determine `weight_name`.
234
+ if weight_name is None:
235
+ weight_name = cls._best_guess_weight_name(
236
+ pretrained_model_name_or_path_or_dict,
237
+ file_extension=".safetensors",
238
+ local_files_only=local_files_only,
239
+ )
240
+ model_file = _get_model_file(
241
+ pretrained_model_name_or_path_or_dict,
242
+ weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
243
+ cache_dir=cache_dir,
244
+ force_download=force_download,
245
+ resume_download=resume_download,
246
+ proxies=proxies,
247
+ local_files_only=local_files_only,
248
+ token=token,
249
+ revision=revision,
250
+ subfolder=subfolder,
251
+ user_agent=user_agent,
252
+ )
253
+ state_dict = safetensors.torch.load_file(model_file, device="cpu")
254
+ except (IOError, safetensors.SafetensorError) as e:
255
+ if not allow_pickle:
256
+ raise e
257
+ # try loading non-safetensors weights
258
+ model_file = None
259
+ pass
260
+
261
+ if model_file is None:
262
+ if weight_name is None:
263
+ weight_name = cls._best_guess_weight_name(
264
+ pretrained_model_name_or_path_or_dict, file_extension=".bin", local_files_only=local_files_only
265
+ )
266
+ model_file = _get_model_file(
267
+ pretrained_model_name_or_path_or_dict,
268
+ weights_name=weight_name or LORA_WEIGHT_NAME,
269
+ cache_dir=cache_dir,
270
+ force_download=force_download,
271
+ resume_download=resume_download,
272
+ proxies=proxies,
273
+ local_files_only=local_files_only,
274
+ token=token,
275
+ revision=revision,
276
+ subfolder=subfolder,
277
+ user_agent=user_agent,
278
+ )
279
+ state_dict = torch.load(model_file, map_location="cpu")
280
+ else:
281
+ state_dict = pretrained_model_name_or_path_or_dict
282
+
283
+ network_alphas = None
284
+ # TODO: replace it with a method from `state_dict_utils`
285
+ if all(
286
+ (
287
+ k.startswith("lora_te_")
288
+ or k.startswith("lora_unet_")
289
+ or k.startswith("lora_te1_")
290
+ or k.startswith("lora_te2_")
291
+ )
292
+ for k in state_dict.keys()
293
+ ):
294
+ # Map SDXL blocks correctly.
295
+ if unet_config is not None:
296
+ # use unet config to remap block numbers
297
+ state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
298
+ state_dict, network_alphas = _convert_kohya_lora_to_diffusers(state_dict)
299
+
300
+ return state_dict, network_alphas
301
+
302
+ @classmethod
303
+ def _best_guess_weight_name(
304
+ cls, pretrained_model_name_or_path_or_dict, file_extension=".safetensors", local_files_only=False
305
+ ):
306
+ if local_files_only or HF_HUB_OFFLINE:
307
+ raise ValueError("When using the offline mode, you must specify a `weight_name`.")
308
+
309
+ targeted_files = []
310
+
311
+ if os.path.isfile(pretrained_model_name_or_path_or_dict):
312
+ return
313
+ elif os.path.isdir(pretrained_model_name_or_path_or_dict):
314
+ targeted_files = [
315
+ f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)
316
+ ]
317
+ else:
318
+ files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
319
+ targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]
320
+ if len(targeted_files) == 0:
321
+ return
322
+
323
+ # "scheduler" does not correspond to a LoRA checkpoint.
324
+ # "optimizer" does not correspond to a LoRA checkpoint
325
+ # only top-level checkpoints are considered and not the other ones, hence "checkpoint".
326
+ unallowed_substrings = {"scheduler", "optimizer", "checkpoint"}
327
+ targeted_files = list(
328
+ filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files)
329
+ )
330
+
331
+ if any(f.endswith(LORA_WEIGHT_NAME) for f in targeted_files):
332
+ targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME), targeted_files))
333
+ elif any(f.endswith(LORA_WEIGHT_NAME_SAFE) for f in targeted_files):
334
+ targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME_SAFE), targeted_files))
335
+
336
+ if len(targeted_files) > 1:
337
+ raise ValueError(
338
+ f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one `.safetensors` or `.bin` file in {pretrained_model_name_or_path_or_dict}."
339
+ )
340
+ weight_name = targeted_files[0]
341
+ return weight_name
342
+
343
+ @classmethod
344
+ def _optionally_disable_offloading(cls, _pipeline):
345
+ """
346
+ Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
347
+
348
+ Args:
349
+ _pipeline (`DiffusionPipeline`):
350
+ The pipeline to disable offloading for.
351
+
352
+ Returns:
353
+ tuple:
354
+ A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
355
+ """
356
+ is_model_cpu_offload = False
357
+ is_sequential_cpu_offload = False
358
+
359
+ if _pipeline is not None:
360
+ for _, component in _pipeline.components.items():
361
+ if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
362
+ if not is_model_cpu_offload:
363
+ is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload)
364
+ if not is_sequential_cpu_offload:
365
+ is_sequential_cpu_offload = isinstance(component._hf_hook, AlignDevicesHook)
366
+
367
+ logger.info(
368
+ "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
369
+ )
370
+ remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
371
+
372
+ return (is_model_cpu_offload, is_sequential_cpu_offload)
373
+
374
+ @classmethod
375
+ def load_lora_into_unet(
376
+ cls, state_dict, network_alphas, unet, low_cpu_mem_usage=None, adapter_name=None, _pipeline=None
377
+ ):
378
+ """
379
+ This will load the LoRA layers specified in `state_dict` into `unet`.
380
+
381
+ Parameters:
382
+ state_dict (`dict`):
383
+ A standard state dict containing the lora layer parameters. The keys can either be indexed directly
384
+ into the unet or prefixed with an additional `unet` which can be used to distinguish between text
385
+ encoder lora layers.
386
+ network_alphas (`Dict[str, float]`):
387
+ See `LoRALinearLayer` for more details.
388
+ unet (`UNet2DConditionModel`):
389
+ The UNet model to load the LoRA layers into.
390
+ low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
391
+ Speed up model loading only loading the pretrained weights and not initializing the weights. This also
392
+ tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
393
+ Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
394
+ argument to `True` will raise an error.
395
+ adapter_name (`str`, *optional*):
396
+ Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
397
+ `default_{i}` where i is the total number of adapters being loaded.
398
+ """
399
+ low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
400
+ # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
401
+ # then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
402
+ # their prefixes.
403
+ keys = list(state_dict.keys())
404
+
405
+ if all(key.startswith("unet.unet") for key in keys):
406
+ deprecation_message = "Keys starting with 'unet.unet' are deprecated."
407
+ deprecate("unet.unet keys", "0.27", deprecation_message)
408
+
409
+ if all(key.startswith(cls.unet_name) or key.startswith(cls.text_encoder_name) for key in keys):
410
+ # Load the layers corresponding to UNet.
411
+ logger.info(f"Loading {cls.unet_name}.")
412
+
413
+ unet_keys = [k for k in keys if k.startswith(cls.unet_name)]
414
+ state_dict = {k.replace(f"{cls.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}
415
+
416
+ if network_alphas is not None:
417
+ alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.unet_name)]
418
+ network_alphas = {
419
+ k.replace(f"{cls.unet_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
420
+ }
421
+
422
+ else:
423
+ # Otherwise, we're dealing with the old format. This means the `state_dict` should only
424
+ # contain the module names of the `unet` as its keys WITHOUT any prefix.
425
+ if not USE_PEFT_BACKEND:
426
+ warn_message = "You have saved the LoRA weights using the old format. To convert the old LoRA weights to the new format, you can first load them in a dictionary and then create a new dictionary like the following: `new_state_dict = {f'unet.{module_name}': params for module_name, params in old_state_dict.items()}`."
427
+ logger.warn(warn_message)
428
+
429
+ if USE_PEFT_BACKEND and len(state_dict.keys()) > 0:
430
+ from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
431
+
432
+ if adapter_name in getattr(unet, "peft_config", {}):
433
+ raise ValueError(
434
+ f"Adapter name {adapter_name} already in use in the Unet - please select a new adapter name."
435
+ )
436
+
437
+ state_dict = convert_unet_state_dict_to_peft(state_dict)
438
+
439
+ if network_alphas is not None:
440
+ # The alphas state dict have the same structure as Unet, thus we convert it to peft format using
441
+ # `convert_unet_state_dict_to_peft` method.
442
+ network_alphas = convert_unet_state_dict_to_peft(network_alphas)
443
+
444
+ rank = {}
445
+ for key, val in state_dict.items():
446
+ if "lora_B" in key:
447
+ rank[key] = val.shape[1]
448
+
449
+ lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True)
450
+ lora_config = LoraConfig(**lora_config_kwargs)
451
+
452
+ # adapter_name
453
+ if adapter_name is None:
454
+ adapter_name = get_adapter_name(unet)
455
+
456
+ # In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
457
+ # otherwise loading LoRA weights will lead to an error
458
+ is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
459
+
460
+ inject_adapter_in_model(lora_config, unet, adapter_name=adapter_name)
461
+ incompatible_keys = set_peft_model_state_dict(unet, state_dict, adapter_name)
462
+
463
+ if incompatible_keys is not None:
464
+ # check only for unexpected keys
465
+ unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
466
+ if unexpected_keys:
467
+ logger.warning(
468
+ f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
469
+ f" {unexpected_keys}. "
470
+ )
471
+
472
+ # Offload back.
473
+ if is_model_cpu_offload:
474
+ _pipeline.enable_model_cpu_offload()
475
+ elif is_sequential_cpu_offload:
476
+ _pipeline.enable_sequential_cpu_offload()
477
+ # Unsafe code />
478
+
479
+ unet.load_attn_procs(
480
+ state_dict, network_alphas=network_alphas, low_cpu_mem_usage=low_cpu_mem_usage, _pipeline=_pipeline
481
+ )
482
+
483
+ @classmethod
484
+ def load_lora_into_text_encoder(
485
+ cls,
486
+ state_dict,
487
+ network_alphas,
488
+ text_encoder,
489
+ prefix=None,
490
+ lora_scale=1.0,
491
+ low_cpu_mem_usage=None,
492
+ adapter_name=None,
493
+ _pipeline=None,
494
+ ):
495
+ """
496
+ This will load the LoRA layers specified in `state_dict` into `text_encoder`
497
+
498
+ Parameters:
499
+ state_dict (`dict`):
500
+ A standard state dict containing the lora layer parameters. The key should be prefixed with an
501
+ additional `text_encoder` to distinguish between unet lora layers.
502
+ network_alphas (`Dict[str, float]`):
503
+ See `LoRALinearLayer` for more details.
504
+ text_encoder (`CLIPTextModel`):
505
+ The text encoder model to load the LoRA layers into.
506
+ prefix (`str`):
507
+ Expected prefix of the `text_encoder` in the `state_dict`.
508
+ lora_scale (`float`):
509
+ How much to scale the output of the lora linear layer before it is added with the output of the regular
510
+ lora layer.
511
+ low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
512
+ Speed up model loading only loading the pretrained weights and not initializing the weights. This also
513
+ tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
514
+ Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
515
+ argument to `True` will raise an error.
516
+ adapter_name (`str`, *optional*):
517
+ Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
518
+ `default_{i}` where i is the total number of adapters being loaded.
519
+ """
520
+ low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
521
+
522
+ # If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
523
+ # then the `state_dict` keys should have `self.unet_name` and/or `self.text_encoder_name` as
524
+ # their prefixes.
525
+ keys = list(state_dict.keys())
526
+ prefix = cls.text_encoder_name if prefix is None else prefix
527
+
528
+ # Safe prefix to check with.
529
+ if any(cls.text_encoder_name in key for key in keys):
530
+ # Load the layers corresponding to text encoder and make necessary adjustments.
531
+ text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
532
+ text_encoder_lora_state_dict = {
533
+ k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
534
+ }
535
+
536
+ if len(text_encoder_lora_state_dict) > 0:
537
+ logger.info(f"Loading {prefix}.")
538
+ rank = {}
539
+ text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict)
540
+
541
+ if USE_PEFT_BACKEND:
542
+ # convert state dict
543
+ text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict)
544
+
545
+ for name, _ in text_encoder_attn_modules(text_encoder):
546
+ rank_key = f"{name}.out_proj.lora_B.weight"
547
+ rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1]
548
+
549
+ patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
550
+ if patch_mlp:
551
+ for name, _ in text_encoder_mlp_modules(text_encoder):
552
+ rank_key_fc1 = f"{name}.fc1.lora_B.weight"
553
+ rank_key_fc2 = f"{name}.fc2.lora_B.weight"
554
+
555
+ rank[rank_key_fc1] = text_encoder_lora_state_dict[rank_key_fc1].shape[1]
556
+ rank[rank_key_fc2] = text_encoder_lora_state_dict[rank_key_fc2].shape[1]
557
+ else:
558
+ for name, _ in text_encoder_attn_modules(text_encoder):
559
+ rank_key = f"{name}.out_proj.lora_linear_layer.up.weight"
560
+ rank.update({rank_key: text_encoder_lora_state_dict[rank_key].shape[1]})
561
+
562
+ patch_mlp = any(".mlp." in key for key in text_encoder_lora_state_dict.keys())
563
+ if patch_mlp:
564
+ for name, _ in text_encoder_mlp_modules(text_encoder):
565
+ rank_key_fc1 = f"{name}.fc1.lora_linear_layer.up.weight"
566
+ rank_key_fc2 = f"{name}.fc2.lora_linear_layer.up.weight"
567
+ rank[rank_key_fc1] = text_encoder_lora_state_dict[rank_key_fc1].shape[1]
568
+ rank[rank_key_fc2] = text_encoder_lora_state_dict[rank_key_fc2].shape[1]
569
+
570
+ if network_alphas is not None:
571
+ alpha_keys = [
572
+ k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix
573
+ ]
574
+ network_alphas = {
575
+ k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
576
+ }
577
+
578
+ if USE_PEFT_BACKEND:
579
+ from peft import LoraConfig
580
+
581
+ lora_config_kwargs = get_peft_kwargs(
582
+ rank, network_alphas, text_encoder_lora_state_dict, is_unet=False
583
+ )
584
+
585
+ lora_config = LoraConfig(**lora_config_kwargs)
586
+
587
+ # adapter_name
588
+ if adapter_name is None:
589
+ adapter_name = get_adapter_name(text_encoder)
590
+
591
+ is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
592
+
593
+ # inject LoRA layers and load the state dict
594
+ # in transformers we automatically check whether the adapter name is already in use or not
595
+ text_encoder.load_adapter(
596
+ adapter_name=adapter_name,
597
+ adapter_state_dict=text_encoder_lora_state_dict,
598
+ peft_config=lora_config,
599
+ )
600
+
601
+ # scale LoRA layers with `lora_scale`
602
+ scale_lora_layers(text_encoder, weight=lora_scale)
603
+ else:
604
+ cls._modify_text_encoder(
605
+ text_encoder,
606
+ lora_scale,
607
+ network_alphas,
608
+ rank=rank,
609
+ patch_mlp=patch_mlp,
610
+ low_cpu_mem_usage=low_cpu_mem_usage,
611
+ )
612
+
613
+ is_pipeline_offloaded = _pipeline is not None and any(
614
+ isinstance(c, torch.nn.Module) and hasattr(c, "_hf_hook")
615
+ for c in _pipeline.components.values()
616
+ )
617
+ if is_pipeline_offloaded and low_cpu_mem_usage:
618
+ low_cpu_mem_usage = True
619
+ logger.info(
620
+ f"Pipeline {_pipeline.__class__} is offloaded. Therefore low cpu mem usage loading is forced."
621
+ )
622
+
623
+ if low_cpu_mem_usage:
624
+ device = next(iter(text_encoder_lora_state_dict.values())).device
625
+ dtype = next(iter(text_encoder_lora_state_dict.values())).dtype
626
+ unexpected_keys = load_model_dict_into_meta(
627
+ text_encoder, text_encoder_lora_state_dict, device=device, dtype=dtype
628
+ )
629
+ else:
630
+ load_state_dict_results = text_encoder.load_state_dict(
631
+ text_encoder_lora_state_dict, strict=False
632
+ )
633
+ unexpected_keys = load_state_dict_results.unexpected_keys
634
+
635
+ if len(unexpected_keys) != 0:
636
+ raise ValueError(
637
+ f"failed to load text encoder state dict, unexpected keys: {load_state_dict_results.unexpected_keys}"
638
+ )
639
+
640
+ # <Unsafe code
641
+ # We can be sure that the following works as all we do is change the dtype and device of the text encoder
642
+ # Now we remove any existing hooks to
643
+ is_model_cpu_offload = False
644
+ is_sequential_cpu_offload = False
645
+ if _pipeline is not None:
646
+ for _, component in _pipeline.components.items():
647
+ if isinstance(component, torch.nn.Module):
648
+ if hasattr(component, "_hf_hook"):
649
+ is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
650
+ is_sequential_cpu_offload = isinstance(
651
+ getattr(component, "_hf_hook"), AlignDevicesHook
652
+ )
653
+ logger.info(
654
+ "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
655
+ )
656
+ remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
657
+
658
+ text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype)
659
+
660
+ # Offload back.
661
+ if is_model_cpu_offload:
662
+ _pipeline.enable_model_cpu_offload()
663
+ elif is_sequential_cpu_offload:
664
+ _pipeline.enable_sequential_cpu_offload()
665
+ # Unsafe code />
666
+
667
+ @classmethod
668
+ def load_lora_into_transformer(
669
+ cls, state_dict, network_alphas, transformer, low_cpu_mem_usage=None, adapter_name=None, _pipeline=None
670
+ ):
671
+ """
672
+ This will load the LoRA layers specified in `state_dict` into `transformer`.
673
+
674
+ Parameters:
675
+ state_dict (`dict`):
676
+ A standard state dict containing the lora layer parameters. The keys can either be indexed directly
677
+ into the unet or prefixed with an additional `unet` which can be used to distinguish between text
678
+ encoder lora layers.
679
+ network_alphas (`Dict[str, float]`):
680
+ See `LoRALinearLayer` for more details.
681
+ unet (`UNet2DConditionModel`):
682
+ The UNet model to load the LoRA layers into.
683
+ low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
684
+ Speed up model loading only loading the pretrained weights and not initializing the weights. This also
685
+ tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
686
+ Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
687
+ argument to `True` will raise an error.
688
+ adapter_name (`str`, *optional*):
689
+ Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
690
+ `default_{i}` where i is the total number of adapters being loaded.
691
+ """
692
+ low_cpu_mem_usage = low_cpu_mem_usage if low_cpu_mem_usage is not None else _LOW_CPU_MEM_USAGE_DEFAULT
693
+
694
+ keys = list(state_dict.keys())
695
+
696
+ transformer_keys = [k for k in keys if k.startswith(cls.transformer_name)]
697
+ state_dict = {
698
+ k.replace(f"{cls.transformer_name}.", ""): v for k, v in state_dict.items() if k in transformer_keys
699
+ }
700
+
701
+ if network_alphas is not None:
702
+ alpha_keys = [k for k in network_alphas.keys() if k.startswith(cls.transformer_name)]
703
+ network_alphas = {
704
+ k.replace(f"{cls.transformer_name}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
705
+ }
706
+
707
+ if len(state_dict.keys()) > 0:
708
+ from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
709
+
710
+ if adapter_name in getattr(transformer, "peft_config", {}):
711
+ raise ValueError(
712
+ f"Adapter name {adapter_name} already in use in the transformer - please select a new adapter name."
713
+ )
714
+
715
+ rank = {}
716
+ for key, val in state_dict.items():
717
+ if "lora_B" in key:
718
+ rank[key] = val.shape[1]
719
+
720
+ lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict)
721
+ lora_config = LoraConfig(**lora_config_kwargs)
722
+
723
+ # adapter_name
724
+ if adapter_name is None:
725
+ adapter_name = get_adapter_name(transformer)
726
+
727
+ # In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
728
+ # otherwise loading LoRA weights will lead to an error
729
+ is_model_cpu_offload, is_sequential_cpu_offload = cls._optionally_disable_offloading(_pipeline)
730
+
731
+ inject_adapter_in_model(lora_config, transformer, adapter_name=adapter_name)
732
+ incompatible_keys = set_peft_model_state_dict(transformer, state_dict, adapter_name)
733
+
734
+ if incompatible_keys is not None:
735
+ # check only for unexpected keys
736
+ unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
737
+ if unexpected_keys:
738
+ logger.warning(
739
+ f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
740
+ f" {unexpected_keys}. "
741
+ )
742
+
743
+ # Offload back.
744
+ if is_model_cpu_offload:
745
+ _pipeline.enable_model_cpu_offload()
746
+ elif is_sequential_cpu_offload:
747
+ _pipeline.enable_sequential_cpu_offload()
748
+ # Unsafe code />
749
+
750
+ @property
751
+ def lora_scale(self) -> float:
752
+ # property function that returns the lora scale which can be set at run time by the pipeline.
753
+ # if _lora_scale has not been set, return 1
754
+ return self._lora_scale if hasattr(self, "_lora_scale") else 1.0
755
+
756
+ def _remove_text_encoder_monkey_patch(self):
757
+ if USE_PEFT_BACKEND:
758
+ remove_method = recurse_remove_peft_layers
759
+ else:
760
+ remove_method = self._remove_text_encoder_monkey_patch_classmethod
761
+
762
+ if hasattr(self, "text_encoder"):
763
+ remove_method(self.text_encoder)
764
+
765
+ # In case text encoder have no Lora attached
766
+ if USE_PEFT_BACKEND and getattr(self.text_encoder, "peft_config", None) is not None:
767
+ del self.text_encoder.peft_config
768
+ self.text_encoder._hf_peft_config_loaded = None
769
+ if hasattr(self, "text_encoder_2"):
770
+ remove_method(self.text_encoder_2)
771
+ if USE_PEFT_BACKEND:
772
+ del self.text_encoder_2.peft_config
773
+ self.text_encoder_2._hf_peft_config_loaded = None
774
+
775
+ @classmethod
776
+ def _remove_text_encoder_monkey_patch_classmethod(cls, text_encoder):
777
+ deprecate("_remove_text_encoder_monkey_patch_classmethod", "0.27", LORA_DEPRECATION_MESSAGE)
778
+
779
+ for _, attn_module in text_encoder_attn_modules(text_encoder):
780
+ if isinstance(attn_module.q_proj, PatchedLoraProjection):
781
+ attn_module.q_proj.lora_linear_layer = None
782
+ attn_module.k_proj.lora_linear_layer = None
783
+ attn_module.v_proj.lora_linear_layer = None
784
+ attn_module.out_proj.lora_linear_layer = None
785
+
786
+ for _, mlp_module in text_encoder_mlp_modules(text_encoder):
787
+ if isinstance(mlp_module.fc1, PatchedLoraProjection):
788
+ mlp_module.fc1.lora_linear_layer = None
789
+ mlp_module.fc2.lora_linear_layer = None
790
+
791
+ @classmethod
792
+ def _modify_text_encoder(
793
+ cls,
794
+ text_encoder,
795
+ lora_scale=1,
796
+ network_alphas=None,
797
+ rank: Union[Dict[str, int], int] = 4,
798
+ dtype=None,
799
+ patch_mlp=False,
800
+ low_cpu_mem_usage=False,
801
+ ):
802
+ r"""
803
+ Monkey-patches the forward passes of attention modules of the text encoder.
804
+ """
805
+ deprecate("_modify_text_encoder", "0.27", LORA_DEPRECATION_MESSAGE)
806
+
807
+ def create_patched_linear_lora(model, network_alpha, rank, dtype, lora_parameters):
808
+ linear_layer = model.regular_linear_layer if isinstance(model, PatchedLoraProjection) else model
809
+ ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
810
+ with ctx():
811
+ model = PatchedLoraProjection(linear_layer, lora_scale, network_alpha, rank, dtype=dtype)
812
+
813
+ lora_parameters.extend(model.lora_linear_layer.parameters())
814
+ return model
815
+
816
+ # First, remove any monkey-patch that might have been applied before
817
+ cls._remove_text_encoder_monkey_patch_classmethod(text_encoder)
818
+
819
+ lora_parameters = []
820
+ network_alphas = {} if network_alphas is None else network_alphas
821
+ is_network_alphas_populated = len(network_alphas) > 0
822
+
823
+ for name, attn_module in text_encoder_attn_modules(text_encoder):
824
+ query_alpha = network_alphas.pop(name + ".to_q_lora.down.weight.alpha", None)
825
+ key_alpha = network_alphas.pop(name + ".to_k_lora.down.weight.alpha", None)
826
+ value_alpha = network_alphas.pop(name + ".to_v_lora.down.weight.alpha", None)
827
+ out_alpha = network_alphas.pop(name + ".to_out_lora.down.weight.alpha", None)
828
+
829
+ if isinstance(rank, dict):
830
+ current_rank = rank.pop(f"{name}.out_proj.lora_linear_layer.up.weight")
831
+ else:
832
+ current_rank = rank
833
+
834
+ attn_module.q_proj = create_patched_linear_lora(
835
+ attn_module.q_proj, query_alpha, current_rank, dtype, lora_parameters
836
+ )
837
+ attn_module.k_proj = create_patched_linear_lora(
838
+ attn_module.k_proj, key_alpha, current_rank, dtype, lora_parameters
839
+ )
840
+ attn_module.v_proj = create_patched_linear_lora(
841
+ attn_module.v_proj, value_alpha, current_rank, dtype, lora_parameters
842
+ )
843
+ attn_module.out_proj = create_patched_linear_lora(
844
+ attn_module.out_proj, out_alpha, current_rank, dtype, lora_parameters
845
+ )
846
+
847
+ if patch_mlp:
848
+ for name, mlp_module in text_encoder_mlp_modules(text_encoder):
849
+ fc1_alpha = network_alphas.pop(name + ".fc1.lora_linear_layer.down.weight.alpha", None)
850
+ fc2_alpha = network_alphas.pop(name + ".fc2.lora_linear_layer.down.weight.alpha", None)
851
+
852
+ current_rank_fc1 = rank.pop(f"{name}.fc1.lora_linear_layer.up.weight")
853
+ current_rank_fc2 = rank.pop(f"{name}.fc2.lora_linear_layer.up.weight")
854
+
855
+ mlp_module.fc1 = create_patched_linear_lora(
856
+ mlp_module.fc1, fc1_alpha, current_rank_fc1, dtype, lora_parameters
857
+ )
858
+ mlp_module.fc2 = create_patched_linear_lora(
859
+ mlp_module.fc2, fc2_alpha, current_rank_fc2, dtype, lora_parameters
860
+ )
861
+
862
+ if is_network_alphas_populated and len(network_alphas) > 0:
863
+ raise ValueError(
864
+ f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
865
+ )
866
+
867
+ return lora_parameters
868
+
869
+ @classmethod
870
+ def save_lora_weights(
871
+ cls,
872
+ save_directory: Union[str, os.PathLike],
873
+ unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
874
+ text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
875
+ transformer_lora_layers: Dict[str, torch.nn.Module] = None,
876
+ is_main_process: bool = True,
877
+ weight_name: str = None,
878
+ save_function: Callable = None,
879
+ safe_serialization: bool = True,
880
+ ):
881
+ r"""
882
+ Save the LoRA parameters corresponding to the UNet and text encoder.
883
+
884
+ Arguments:
885
+ save_directory (`str` or `os.PathLike`):
886
+ Directory to save LoRA parameters to. Will be created if it doesn't exist.
887
+ unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
888
+ State dict of the LoRA layers corresponding to the `unet`.
889
+ text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
890
+ State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
891
+ encoder LoRA state dict because it comes from 🤗 Transformers.
892
+ is_main_process (`bool`, *optional*, defaults to `True`):
893
+ Whether the process calling this is the main process or not. Useful during distributed training and you
894
+ need to call this function on all processes. In this case, set `is_main_process=True` only on the main
895
+ process to avoid race conditions.
896
+ save_function (`Callable`):
897
+ The function to use to save the state dictionary. Useful during distributed training when you need to
898
+ replace `torch.save` with another method. Can be configured with the environment variable
899
+ `DIFFUSERS_SAVE_MODE`.
900
+ safe_serialization (`bool`, *optional*, defaults to `True`):
901
+ Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
902
+ """
903
+ state_dict = {}
904
+
905
+ def pack_weights(layers, prefix):
906
+ layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
907
+ layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
908
+ return layers_state_dict
909
+
910
+ if not (unet_lora_layers or text_encoder_lora_layers or transformer_lora_layers):
911
+ raise ValueError(
912
+ "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers`, or `transformer_lora_layers`."
913
+ )
914
+
915
+ if unet_lora_layers:
916
+ state_dict.update(pack_weights(unet_lora_layers, cls.unet_name))
917
+
918
+ if text_encoder_lora_layers:
919
+ state_dict.update(pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
920
+
921
+ if transformer_lora_layers:
922
+ state_dict.update(pack_weights(transformer_lora_layers, "transformer"))
923
+
924
+ # Save the model
925
+ cls.write_lora_layers(
926
+ state_dict=state_dict,
927
+ save_directory=save_directory,
928
+ is_main_process=is_main_process,
929
+ weight_name=weight_name,
930
+ save_function=save_function,
931
+ safe_serialization=safe_serialization,
932
+ )
933
+
934
+ @staticmethod
935
+ def write_lora_layers(
936
+ state_dict: Dict[str, torch.Tensor],
937
+ save_directory: str,
938
+ is_main_process: bool,
939
+ weight_name: str,
940
+ save_function: Callable,
941
+ safe_serialization: bool,
942
+ ):
943
+ if os.path.isfile(save_directory):
944
+ logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
945
+ return
946
+
947
+ if save_function is None:
948
+ if safe_serialization:
949
+
950
+ def save_function(weights, filename):
951
+ return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
952
+
953
+ else:
954
+ save_function = torch.save
955
+
956
+ os.makedirs(save_directory, exist_ok=True)
957
+
958
+ if weight_name is None:
959
+ if safe_serialization:
960
+ weight_name = LORA_WEIGHT_NAME_SAFE
961
+ else:
962
+ weight_name = LORA_WEIGHT_NAME
963
+
964
+ save_function(state_dict, os.path.join(save_directory, weight_name))
965
+ logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
966
+
967
+ def unload_lora_weights(self):
968
+ """
969
+ Unloads the LoRA parameters.
970
+
971
+ Examples:
972
+
973
+ ```python
974
+ >>> # Assuming `pipeline` is already loaded with the LoRA parameters.
975
+ >>> pipeline.unload_lora_weights()
976
+ >>> ...
977
+ ```
978
+ """
979
+ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
980
+
981
+ if not USE_PEFT_BACKEND:
982
+ if version.parse(__version__) > version.parse("0.23"):
983
+ logger.warning(
984
+ "You are using `unload_lora_weights` to disable and unload lora weights. If you want to iteratively enable and disable adapter weights,"
985
+ "you can use `pipe.enable_lora()` or `pipe.disable_lora()`. After installing the latest version of PEFT."
986
+ )
987
+
988
+ for _, module in unet.named_modules():
989
+ if hasattr(module, "set_lora_layer"):
990
+ module.set_lora_layer(None)
991
+ else:
992
+ recurse_remove_peft_layers(unet)
993
+ if hasattr(unet, "peft_config"):
994
+ del unet.peft_config
995
+
996
+ # Safe to call the following regardless of LoRA.
997
+ self._remove_text_encoder_monkey_patch()
998
+
999
+ def fuse_lora(
1000
+ self,
1001
+ fuse_unet: bool = True,
1002
+ fuse_text_encoder: bool = True,
1003
+ lora_scale: float = 1.0,
1004
+ safe_fusing: bool = False,
1005
+ adapter_names: Optional[List[str]] = None,
1006
+ ):
1007
+ r"""
1008
+ Fuses the LoRA parameters into the original parameters of the corresponding blocks.
1009
+
1010
+ <Tip warning={true}>
1011
+
1012
+ This is an experimental API.
1013
+
1014
+ </Tip>
1015
+
1016
+ Args:
1017
+ fuse_unet (`bool`, defaults to `True`): Whether to fuse the UNet LoRA parameters.
1018
+ fuse_text_encoder (`bool`, defaults to `True`):
1019
+ Whether to fuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
1020
+ LoRA parameters then it won't have any effect.
1021
+ lora_scale (`float`, defaults to 1.0):
1022
+ Controls how much to influence the outputs with the LoRA parameters.
1023
+ safe_fusing (`bool`, defaults to `False`):
1024
+ Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
1025
+ adapter_names (`List[str]`, *optional*):
1026
+ Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
1027
+
1028
+ Example:
1029
+
1030
+ ```py
1031
+ from diffusers import DiffusionPipeline
1032
+ import torch
1033
+
1034
+ pipeline = DiffusionPipeline.from_pretrained(
1035
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
1036
+ ).to("cuda")
1037
+ pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
1038
+ pipeline.fuse_lora(lora_scale=0.7)
1039
+ ```
1040
+ """
1041
+ if fuse_unet or fuse_text_encoder:
1042
+ self.num_fused_loras += 1
1043
+ if self.num_fused_loras > 1:
1044
+ logger.warn(
1045
+ "The current API is supported for operating with a single LoRA file. You are trying to load and fuse more than one LoRA which is not well-supported.",
1046
+ )
1047
+
1048
+ if fuse_unet:
1049
+ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
1050
+ unet.fuse_lora(lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names)
1051
+
1052
+ if USE_PEFT_BACKEND:
1053
+ from peft.tuners.tuners_utils import BaseTunerLayer
1054
+
1055
+ def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, adapter_names=None):
1056
+ merge_kwargs = {"safe_merge": safe_fusing}
1057
+
1058
+ for module in text_encoder.modules():
1059
+ if isinstance(module, BaseTunerLayer):
1060
+ if lora_scale != 1.0:
1061
+ module.scale_layer(lora_scale)
1062
+
1063
+ # For BC with previous PEFT versions, we need to check the signature
1064
+ # of the `merge` method to see if it supports the `adapter_names` argument.
1065
+ supported_merge_kwargs = list(inspect.signature(module.merge).parameters)
1066
+ if "adapter_names" in supported_merge_kwargs:
1067
+ merge_kwargs["adapter_names"] = adapter_names
1068
+ elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None:
1069
+ raise ValueError(
1070
+ "The `adapter_names` argument is not supported with your PEFT version. "
1071
+ "Please upgrade to the latest version of PEFT. `pip install -U peft`"
1072
+ )
1073
+
1074
+ module.merge(**merge_kwargs)
1075
+
1076
+ else:
1077
+ deprecate("fuse_text_encoder_lora", "0.27", LORA_DEPRECATION_MESSAGE)
1078
+
1079
+ def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, **kwargs):
1080
+ if "adapter_names" in kwargs and kwargs["adapter_names"] is not None:
1081
+ raise ValueError(
1082
+ "The `adapter_names` argument is not supported in your environment. Please switch to PEFT "
1083
+ "backend to use this argument by installing latest PEFT and transformers."
1084
+ " `pip install -U peft transformers`"
1085
+ )
1086
+
1087
+ for _, attn_module in text_encoder_attn_modules(text_encoder):
1088
+ if isinstance(attn_module.q_proj, PatchedLoraProjection):
1089
+ attn_module.q_proj._fuse_lora(lora_scale, safe_fusing)
1090
+ attn_module.k_proj._fuse_lora(lora_scale, safe_fusing)
1091
+ attn_module.v_proj._fuse_lora(lora_scale, safe_fusing)
1092
+ attn_module.out_proj._fuse_lora(lora_scale, safe_fusing)
1093
+
1094
+ for _, mlp_module in text_encoder_mlp_modules(text_encoder):
1095
+ if isinstance(mlp_module.fc1, PatchedLoraProjection):
1096
+ mlp_module.fc1._fuse_lora(lora_scale, safe_fusing)
1097
+ mlp_module.fc2._fuse_lora(lora_scale, safe_fusing)
1098
+
1099
+ if fuse_text_encoder:
1100
+ if hasattr(self, "text_encoder"):
1101
+ fuse_text_encoder_lora(self.text_encoder, lora_scale, safe_fusing, adapter_names=adapter_names)
1102
+ if hasattr(self, "text_encoder_2"):
1103
+ fuse_text_encoder_lora(self.text_encoder_2, lora_scale, safe_fusing, adapter_names=adapter_names)
1104
+
1105
+ def unfuse_lora(self, unfuse_unet: bool = True, unfuse_text_encoder: bool = True):
1106
+ r"""
1107
+ Reverses the effect of
1108
+ [`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora).
1109
+
1110
+ <Tip warning={true}>
1111
+
1112
+ This is an experimental API.
1113
+
1114
+ </Tip>
1115
+
1116
+ Args:
1117
+ unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
1118
+ unfuse_text_encoder (`bool`, defaults to `True`):
1119
+ Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
1120
+ LoRA parameters then it won't have any effect.
1121
+ """
1122
+ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
1123
+ if unfuse_unet:
1124
+ if not USE_PEFT_BACKEND:
1125
+ unet.unfuse_lora()
1126
+ else:
1127
+ from peft.tuners.tuners_utils import BaseTunerLayer
1128
+
1129
+ for module in unet.modules():
1130
+ if isinstance(module, BaseTunerLayer):
1131
+ module.unmerge()
1132
+
1133
+ if USE_PEFT_BACKEND:
1134
+ from peft.tuners.tuners_utils import BaseTunerLayer
1135
+
1136
+ def unfuse_text_encoder_lora(text_encoder):
1137
+ for module in text_encoder.modules():
1138
+ if isinstance(module, BaseTunerLayer):
1139
+ module.unmerge()
1140
+
1141
+ else:
1142
+ deprecate("unfuse_text_encoder_lora", "0.27", LORA_DEPRECATION_MESSAGE)
1143
+
1144
+ def unfuse_text_encoder_lora(text_encoder):
1145
+ for _, attn_module in text_encoder_attn_modules(text_encoder):
1146
+ if isinstance(attn_module.q_proj, PatchedLoraProjection):
1147
+ attn_module.q_proj._unfuse_lora()
1148
+ attn_module.k_proj._unfuse_lora()
1149
+ attn_module.v_proj._unfuse_lora()
1150
+ attn_module.out_proj._unfuse_lora()
1151
+
1152
+ for _, mlp_module in text_encoder_mlp_modules(text_encoder):
1153
+ if isinstance(mlp_module.fc1, PatchedLoraProjection):
1154
+ mlp_module.fc1._unfuse_lora()
1155
+ mlp_module.fc2._unfuse_lora()
1156
+
1157
+ if unfuse_text_encoder:
1158
+ if hasattr(self, "text_encoder"):
1159
+ unfuse_text_encoder_lora(self.text_encoder)
1160
+ if hasattr(self, "text_encoder_2"):
1161
+ unfuse_text_encoder_lora(self.text_encoder_2)
1162
+
1163
+ self.num_fused_loras -= 1
1164
+
1165
+ def set_adapters_for_text_encoder(
1166
+ self,
1167
+ adapter_names: Union[List[str], str],
1168
+ text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821
1169
+ text_encoder_weights: List[float] = None,
1170
+ ):
1171
+ """
1172
+ Sets the adapter layers for the text encoder.
1173
+
1174
+ Args:
1175
+ adapter_names (`List[str]` or `str`):
1176
+ The names of the adapters to use.
1177
+ text_encoder (`torch.nn.Module`, *optional*):
1178
+ The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder`
1179
+ attribute.
1180
+ text_encoder_weights (`List[float]`, *optional*):
1181
+ The weights to use for the text encoder. If `None`, the weights are set to `1.0` for all the adapters.
1182
+ """
1183
+ if not USE_PEFT_BACKEND:
1184
+ raise ValueError("PEFT backend is required for this method.")
1185
+
1186
+ def process_weights(adapter_names, weights):
1187
+ if weights is None:
1188
+ weights = [1.0] * len(adapter_names)
1189
+ elif isinstance(weights, float):
1190
+ weights = [weights]
1191
+
1192
+ if len(adapter_names) != len(weights):
1193
+ raise ValueError(
1194
+ f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(weights)}"
1195
+ )
1196
+ return weights
1197
+
1198
+ adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
1199
+ text_encoder_weights = process_weights(adapter_names, text_encoder_weights)
1200
+ text_encoder = text_encoder or getattr(self, "text_encoder", None)
1201
+ if text_encoder is None:
1202
+ raise ValueError(
1203
+ "The pipeline does not have a default `pipe.text_encoder` class. Please make sure to pass a `text_encoder` instead."
1204
+ )
1205
+ set_weights_and_activate_adapters(text_encoder, adapter_names, text_encoder_weights)
1206
+
1207
+ def disable_lora_for_text_encoder(self, text_encoder: Optional["PreTrainedModel"] = None):
1208
+ """
1209
+ Disables the LoRA layers for the text encoder.
1210
+
1211
+ Args:
1212
+ text_encoder (`torch.nn.Module`, *optional*):
1213
+ The text encoder module to disable the LoRA layers for. If `None`, it will try to get the
1214
+ `text_encoder` attribute.
1215
+ """
1216
+ if not USE_PEFT_BACKEND:
1217
+ raise ValueError("PEFT backend is required for this method.")
1218
+
1219
+ text_encoder = text_encoder or getattr(self, "text_encoder", None)
1220
+ if text_encoder is None:
1221
+ raise ValueError("Text Encoder not found.")
1222
+ set_adapter_layers(text_encoder, enabled=False)
1223
+
1224
+ def enable_lora_for_text_encoder(self, text_encoder: Optional["PreTrainedModel"] = None):
1225
+ """
1226
+ Enables the LoRA layers for the text encoder.
1227
+
1228
+ Args:
1229
+ text_encoder (`torch.nn.Module`, *optional*):
1230
+ The text encoder module to enable the LoRA layers for. If `None`, it will try to get the `text_encoder`
1231
+ attribute.
1232
+ """
1233
+ if not USE_PEFT_BACKEND:
1234
+ raise ValueError("PEFT backend is required for this method.")
1235
+ text_encoder = text_encoder or getattr(self, "text_encoder", None)
1236
+ if text_encoder is None:
1237
+ raise ValueError("Text Encoder not found.")
1238
+ set_adapter_layers(self.text_encoder, enabled=True)
1239
+
1240
+ def set_adapters(
1241
+ self,
1242
+ adapter_names: Union[List[str], str],
1243
+ adapter_weights: Optional[List[float]] = None,
1244
+ ):
1245
+ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
1246
+ # Handle the UNET
1247
+ unet.set_adapters(adapter_names, adapter_weights)
1248
+
1249
+ # Handle the Text Encoder
1250
+ if hasattr(self, "text_encoder"):
1251
+ self.set_adapters_for_text_encoder(adapter_names, self.text_encoder, adapter_weights)
1252
+ if hasattr(self, "text_encoder_2"):
1253
+ self.set_adapters_for_text_encoder(adapter_names, self.text_encoder_2, adapter_weights)
1254
+
1255
+ def disable_lora(self):
1256
+ if not USE_PEFT_BACKEND:
1257
+ raise ValueError("PEFT backend is required for this method.")
1258
+
1259
+ # Disable unet adapters
1260
+ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
1261
+ unet.disable_lora()
1262
+
1263
+ # Disable text encoder adapters
1264
+ if hasattr(self, "text_encoder"):
1265
+ self.disable_lora_for_text_encoder(self.text_encoder)
1266
+ if hasattr(self, "text_encoder_2"):
1267
+ self.disable_lora_for_text_encoder(self.text_encoder_2)
1268
+
1269
+ def enable_lora(self):
1270
+ if not USE_PEFT_BACKEND:
1271
+ raise ValueError("PEFT backend is required for this method.")
1272
+
1273
+ # Enable unet adapters
1274
+ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
1275
+ unet.enable_lora()
1276
+
1277
+ # Enable text encoder adapters
1278
+ if hasattr(self, "text_encoder"):
1279
+ self.enable_lora_for_text_encoder(self.text_encoder)
1280
+ if hasattr(self, "text_encoder_2"):
1281
+ self.enable_lora_for_text_encoder(self.text_encoder_2)
1282
+
1283
+ def delete_adapters(self, adapter_names: Union[List[str], str]):
1284
+ """
1285
+ Args:
1286
+ Deletes the LoRA layers of `adapter_name` for the unet and text-encoder(s).
1287
+ adapter_names (`Union[List[str], str]`):
1288
+ The names of the adapter to delete. Can be a single string or a list of strings
1289
+ """
1290
+ if not USE_PEFT_BACKEND:
1291
+ raise ValueError("PEFT backend is required for this method.")
1292
+
1293
+ if isinstance(adapter_names, str):
1294
+ adapter_names = [adapter_names]
1295
+
1296
+ # Delete unet adapters
1297
+ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
1298
+ unet.delete_adapters(adapter_names)
1299
+
1300
+ for adapter_name in adapter_names:
1301
+ # Delete text encoder adapters
1302
+ if hasattr(self, "text_encoder"):
1303
+ delete_adapter_layers(self.text_encoder, adapter_name)
1304
+ if hasattr(self, "text_encoder_2"):
1305
+ delete_adapter_layers(self.text_encoder_2, adapter_name)
1306
+
1307
+ def get_active_adapters(self) -> List[str]:
1308
+ """
1309
+ Gets the list of the current active adapters.
1310
+
1311
+ Example:
1312
+
1313
+ ```python
1314
+ from diffusers import DiffusionPipeline
1315
+
1316
+ pipeline = DiffusionPipeline.from_pretrained(
1317
+ "stabilityai/stable-diffusion-xl-base-1.0",
1318
+ ).to("cuda")
1319
+ pipeline.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
1320
+ pipeline.get_active_adapters()
1321
+ ```
1322
+ """
1323
+ if not USE_PEFT_BACKEND:
1324
+ raise ValueError(
1325
+ "PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`"
1326
+ )
1327
+
1328
+ from peft.tuners.tuners_utils import BaseTunerLayer
1329
+
1330
+ active_adapters = []
1331
+ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
1332
+ for module in unet.modules():
1333
+ if isinstance(module, BaseTunerLayer):
1334
+ active_adapters = module.active_adapters
1335
+ break
1336
+
1337
+ return active_adapters
1338
+
1339
+ def get_list_adapters(self) -> Dict[str, List[str]]:
1340
+ """
1341
+ Gets the current list of all available adapters in the pipeline.
1342
+ """
1343
+ if not USE_PEFT_BACKEND:
1344
+ raise ValueError(
1345
+ "PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`"
1346
+ )
1347
+
1348
+ set_adapters = {}
1349
+
1350
+ if hasattr(self, "text_encoder") and hasattr(self.text_encoder, "peft_config"):
1351
+ set_adapters["text_encoder"] = list(self.text_encoder.peft_config.keys())
1352
+
1353
+ if hasattr(self, "text_encoder_2") and hasattr(self.text_encoder_2, "peft_config"):
1354
+ set_adapters["text_encoder_2"] = list(self.text_encoder_2.peft_config.keys())
1355
+
1356
+ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
1357
+ if hasattr(self, self.unet_name) and hasattr(unet, "peft_config"):
1358
+ set_adapters[self.unet_name] = list(self.unet.peft_config.keys())
1359
+
1360
+ return set_adapters
1361
+
1362
+ def set_lora_device(self, adapter_names: List[str], device: Union[torch.device, str, int]) -> None:
1363
+ """
1364
+ Moves the LoRAs listed in `adapter_names` to a target device. Useful for offloading the LoRA to the CPU in case
1365
+ you want to load multiple adapters and free some GPU memory.
1366
+
1367
+ Args:
1368
+ adapter_names (`List[str]`):
1369
+ List of adapters to send device to.
1370
+ device (`Union[torch.device, str, int]`):
1371
+ Device to send the adapters to. Can be either a torch device, a str or an integer.
1372
+ """
1373
+ if not USE_PEFT_BACKEND:
1374
+ raise ValueError("PEFT backend is required for this method.")
1375
+
1376
+ from peft.tuners.tuners_utils import BaseTunerLayer
1377
+
1378
+ # Handle the UNET
1379
+ unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
1380
+ for unet_module in unet.modules():
1381
+ if isinstance(unet_module, BaseTunerLayer):
1382
+ for adapter_name in adapter_names:
1383
+ unet_module.lora_A[adapter_name].to(device)
1384
+ unet_module.lora_B[adapter_name].to(device)
1385
+
1386
+ # Handle the text encoder
1387
+ modules_to_process = []
1388
+ if hasattr(self, "text_encoder"):
1389
+ modules_to_process.append(self.text_encoder)
1390
+
1391
+ if hasattr(self, "text_encoder_2"):
1392
+ modules_to_process.append(self.text_encoder_2)
1393
+
1394
+ for text_encoder in modules_to_process:
1395
+ # loop over submodules
1396
+ for text_encoder_module in text_encoder.modules():
1397
+ if isinstance(text_encoder_module, BaseTunerLayer):
1398
+ for adapter_name in adapter_names:
1399
+ text_encoder_module.lora_A[adapter_name].to(device)
1400
+ text_encoder_module.lora_B[adapter_name].to(device)
1401
+
1402
+
1403
+ class StableDiffusionXLLoraLoaderMixin(LoraLoaderMixin):
1404
+ """This class overrides `LoraLoaderMixin` with LoRA loading/saving code that's specific to SDXL"""
1405
+
1406
+ # Overrride to properly handle the loading and unloading of the additional text encoder.
1407
+ def load_lora_weights(
1408
+ self,
1409
+ pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
1410
+ adapter_name: Optional[str] = None,
1411
+ **kwargs,
1412
+ ):
1413
+ """
1414
+ Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
1415
+ `self.text_encoder`.
1416
+
1417
+ All kwargs are forwarded to `self.lora_state_dict`.
1418
+
1419
+ See [`~loaders.LoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
1420
+
1421
+ See [`~loaders.LoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is loaded into
1422
+ `self.unet`.
1423
+
1424
+ See [`~loaders.LoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state dict is loaded
1425
+ into `self.text_encoder`.
1426
+
1427
+ Parameters:
1428
+ pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
1429
+ See [`~loaders.LoraLoaderMixin.lora_state_dict`].
1430
+ adapter_name (`str`, *optional*):
1431
+ Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
1432
+ `default_{i}` where i is the total number of adapters being loaded.
1433
+ kwargs (`dict`, *optional*):
1434
+ See [`~loaders.LoraLoaderMixin.lora_state_dict`].
1435
+ """
1436
+ # We could have accessed the unet config from `lora_state_dict()` too. We pass
1437
+ # it here explicitly to be able to tell that it's coming from an SDXL
1438
+ # pipeline.
1439
+
1440
+ # First, ensure that the checkpoint is a compatible one and can be successfully loaded.
1441
+ state_dict, network_alphas = self.lora_state_dict(
1442
+ pretrained_model_name_or_path_or_dict,
1443
+ unet_config=self.unet.config,
1444
+ **kwargs,
1445
+ )
1446
+ is_correct_format = all("lora" in key for key in state_dict.keys())
1447
+ if not is_correct_format:
1448
+ raise ValueError("Invalid LoRA checkpoint.")
1449
+
1450
+ self.load_lora_into_unet(
1451
+ state_dict, network_alphas=network_alphas, unet=self.unet, adapter_name=adapter_name, _pipeline=self
1452
+ )
1453
+ text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
1454
+ if len(text_encoder_state_dict) > 0:
1455
+ self.load_lora_into_text_encoder(
1456
+ text_encoder_state_dict,
1457
+ network_alphas=network_alphas,
1458
+ text_encoder=self.text_encoder,
1459
+ prefix="text_encoder",
1460
+ lora_scale=self.lora_scale,
1461
+ adapter_name=adapter_name,
1462
+ _pipeline=self,
1463
+ )
1464
+
1465
+ text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
1466
+ if len(text_encoder_2_state_dict) > 0:
1467
+ self.load_lora_into_text_encoder(
1468
+ text_encoder_2_state_dict,
1469
+ network_alphas=network_alphas,
1470
+ text_encoder=self.text_encoder_2,
1471
+ prefix="text_encoder_2",
1472
+ lora_scale=self.lora_scale,
1473
+ adapter_name=adapter_name,
1474
+ _pipeline=self,
1475
+ )
1476
+
1477
+ @classmethod
1478
+ def save_lora_weights(
1479
+ cls,
1480
+ save_directory: Union[str, os.PathLike],
1481
+ unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1482
+ text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1483
+ text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
1484
+ is_main_process: bool = True,
1485
+ weight_name: str = None,
1486
+ save_function: Callable = None,
1487
+ safe_serialization: bool = True,
1488
+ ):
1489
+ r"""
1490
+ Save the LoRA parameters corresponding to the UNet and text encoder.
1491
+
1492
+ Arguments:
1493
+ save_directory (`str` or `os.PathLike`):
1494
+ Directory to save LoRA parameters to. Will be created if it doesn't exist.
1495
+ unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
1496
+ State dict of the LoRA layers corresponding to the `unet`.
1497
+ text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
1498
+ State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
1499
+ encoder LoRA state dict because it comes from 🤗 Transformers.
1500
+ is_main_process (`bool`, *optional*, defaults to `True`):
1501
+ Whether the process calling this is the main process or not. Useful during distributed training and you
1502
+ need to call this function on all processes. In this case, set `is_main_process=True` only on the main
1503
+ process to avoid race conditions.
1504
+ save_function (`Callable`):
1505
+ The function to use to save the state dictionary. Useful during distributed training when you need to
1506
+ replace `torch.save` with another method. Can be configured with the environment variable
1507
+ `DIFFUSERS_SAVE_MODE`.
1508
+ safe_serialization (`bool`, *optional*, defaults to `True`):
1509
+ Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
1510
+ """
1511
+ state_dict = {}
1512
+
1513
+ def pack_weights(layers, prefix):
1514
+ layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
1515
+ layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
1516
+ return layers_state_dict
1517
+
1518
+ if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
1519
+ raise ValueError(
1520
+ "You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
1521
+ )
1522
+
1523
+ if unet_lora_layers:
1524
+ state_dict.update(pack_weights(unet_lora_layers, "unet"))
1525
+
1526
+ if text_encoder_lora_layers and text_encoder_2_lora_layers:
1527
+ state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder"))
1528
+ state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
1529
+
1530
+ cls.write_lora_layers(
1531
+ state_dict=state_dict,
1532
+ save_directory=save_directory,
1533
+ is_main_process=is_main_process,
1534
+ weight_name=weight_name,
1535
+ save_function=save_function,
1536
+ safe_serialization=safe_serialization,
1537
+ )
1538
+
1539
+ def _remove_text_encoder_monkey_patch(self):
1540
+ if USE_PEFT_BACKEND:
1541
+ recurse_remove_peft_layers(self.text_encoder)
1542
+ # TODO: @younesbelkada handle this in transformers side
1543
+ if getattr(self.text_encoder, "peft_config", None) is not None:
1544
+ del self.text_encoder.peft_config
1545
+ self.text_encoder._hf_peft_config_loaded = None
1546
+
1547
+ recurse_remove_peft_layers(self.text_encoder_2)
1548
+ if getattr(self.text_encoder_2, "peft_config", None) is not None:
1549
+ del self.text_encoder_2.peft_config
1550
+ self.text_encoder_2._hf_peft_config_loaded = None
1551
+ else:
1552
+ self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder)
1553
+ self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2)
diffusers/loaders/lora_conversion_utils.py ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import re
16
+
17
+ from ..utils import logging
18
+
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+
23
+ def _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config, delimiter="_", block_slice_pos=5):
24
+ # 1. get all state_dict_keys
25
+ all_keys = list(state_dict.keys())
26
+ sgm_patterns = ["input_blocks", "middle_block", "output_blocks"]
27
+
28
+ # 2. check if needs remapping, if not return original dict
29
+ is_in_sgm_format = False
30
+ for key in all_keys:
31
+ if any(p in key for p in sgm_patterns):
32
+ is_in_sgm_format = True
33
+ break
34
+
35
+ if not is_in_sgm_format:
36
+ return state_dict
37
+
38
+ # 3. Else remap from SGM patterns
39
+ new_state_dict = {}
40
+ inner_block_map = ["resnets", "attentions", "upsamplers"]
41
+
42
+ # Retrieves # of down, mid and up blocks
43
+ input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()
44
+
45
+ for layer in all_keys:
46
+ if "text" in layer:
47
+ new_state_dict[layer] = state_dict.pop(layer)
48
+ else:
49
+ layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
50
+ if sgm_patterns[0] in layer:
51
+ input_block_ids.add(layer_id)
52
+ elif sgm_patterns[1] in layer:
53
+ middle_block_ids.add(layer_id)
54
+ elif sgm_patterns[2] in layer:
55
+ output_block_ids.add(layer_id)
56
+ else:
57
+ raise ValueError(f"Checkpoint not supported because layer {layer} not supported.")
58
+
59
+ input_blocks = {
60
+ layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
61
+ for layer_id in input_block_ids
62
+ }
63
+ middle_blocks = {
64
+ layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key]
65
+ for layer_id in middle_block_ids
66
+ }
67
+ output_blocks = {
68
+ layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key]
69
+ for layer_id in output_block_ids
70
+ }
71
+
72
+ # Rename keys accordingly
73
+ for i in input_block_ids:
74
+ block_id = (i - 1) // (unet_config.layers_per_block + 1)
75
+ layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1)
76
+
77
+ for key in input_blocks[i]:
78
+ inner_block_id = int(key.split(delimiter)[block_slice_pos])
79
+ inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers"
80
+ inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0"
81
+ new_key = delimiter.join(
82
+ key.split(delimiter)[: block_slice_pos - 1]
83
+ + [str(block_id), inner_block_key, inner_layers_in_block]
84
+ + key.split(delimiter)[block_slice_pos + 1 :]
85
+ )
86
+ new_state_dict[new_key] = state_dict.pop(key)
87
+
88
+ for i in middle_block_ids:
89
+ key_part = None
90
+ if i == 0:
91
+ key_part = [inner_block_map[0], "0"]
92
+ elif i == 1:
93
+ key_part = [inner_block_map[1], "0"]
94
+ elif i == 2:
95
+ key_part = [inner_block_map[0], "1"]
96
+ else:
97
+ raise ValueError(f"Invalid middle block id {i}.")
98
+
99
+ for key in middle_blocks[i]:
100
+ new_key = delimiter.join(
101
+ key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]
102
+ )
103
+ new_state_dict[new_key] = state_dict.pop(key)
104
+
105
+ for i in output_block_ids:
106
+ block_id = i // (unet_config.layers_per_block + 1)
107
+ layer_in_block_id = i % (unet_config.layers_per_block + 1)
108
+
109
+ for key in output_blocks[i]:
110
+ inner_block_id = int(key.split(delimiter)[block_slice_pos])
111
+ inner_block_key = inner_block_map[inner_block_id]
112
+ inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0"
113
+ new_key = delimiter.join(
114
+ key.split(delimiter)[: block_slice_pos - 1]
115
+ + [str(block_id), inner_block_key, inner_layers_in_block]
116
+ + key.split(delimiter)[block_slice_pos + 1 :]
117
+ )
118
+ new_state_dict[new_key] = state_dict.pop(key)
119
+
120
+ if len(state_dict) > 0:
121
+ raise ValueError("At this point all state dict entries have to be converted.")
122
+
123
+ return new_state_dict
124
+
125
+
126
+ def _convert_kohya_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_name="text_encoder"):
127
+ unet_state_dict = {}
128
+ te_state_dict = {}
129
+ te2_state_dict = {}
130
+ network_alphas = {}
131
+
132
+ # every down weight has a corresponding up weight and potentially an alpha weight
133
+ lora_keys = [k for k in state_dict.keys() if k.endswith("lora_down.weight")]
134
+ for key in lora_keys:
135
+ lora_name = key.split(".")[0]
136
+ lora_name_up = lora_name + ".lora_up.weight"
137
+ lora_name_alpha = lora_name + ".alpha"
138
+
139
+ if lora_name.startswith("lora_unet_"):
140
+ diffusers_name = key.replace("lora_unet_", "").replace("_", ".")
141
+
142
+ if "input.blocks" in diffusers_name:
143
+ diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
144
+ else:
145
+ diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
146
+
147
+ if "middle.block" in diffusers_name:
148
+ diffusers_name = diffusers_name.replace("middle.block", "mid_block")
149
+ else:
150
+ diffusers_name = diffusers_name.replace("mid.block", "mid_block")
151
+ if "output.blocks" in diffusers_name:
152
+ diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
153
+ else:
154
+ diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
155
+
156
+ diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
157
+ diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
158
+ diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
159
+ diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
160
+ diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
161
+ diffusers_name = diffusers_name.replace("proj.in", "proj_in")
162
+ diffusers_name = diffusers_name.replace("proj.out", "proj_out")
163
+ diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")
164
+
165
+ # SDXL specificity.
166
+ if "emb" in diffusers_name and "time.emb.proj" not in diffusers_name:
167
+ pattern = r"\.\d+(?=\D*$)"
168
+ diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
169
+ if ".in." in diffusers_name:
170
+ diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
171
+ if ".out." in diffusers_name:
172
+ diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
173
+ if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
174
+ diffusers_name = diffusers_name.replace("op", "conv")
175
+ if "skip" in diffusers_name:
176
+ diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")
177
+
178
+ # LyCORIS specificity.
179
+ if "time.emb.proj" in diffusers_name:
180
+ diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj")
181
+ if "conv.shortcut" in diffusers_name:
182
+ diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut")
183
+
184
+ # General coverage.
185
+ if "transformer_blocks" in diffusers_name:
186
+ if "attn1" in diffusers_name or "attn2" in diffusers_name:
187
+ diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
188
+ diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
189
+ unet_state_dict[diffusers_name] = state_dict.pop(key)
190
+ unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
191
+ elif "ff" in diffusers_name:
192
+ unet_state_dict[diffusers_name] = state_dict.pop(key)
193
+ unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
194
+ elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
195
+ unet_state_dict[diffusers_name] = state_dict.pop(key)
196
+ unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
197
+ else:
198
+ unet_state_dict[diffusers_name] = state_dict.pop(key)
199
+ unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
200
+
201
+ elif lora_name.startswith("lora_te_"):
202
+ diffusers_name = key.replace("lora_te_", "").replace("_", ".")
203
+ diffusers_name = diffusers_name.replace("text.model", "text_model")
204
+ diffusers_name = diffusers_name.replace("self.attn", "self_attn")
205
+ diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
206
+ diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
207
+ diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
208
+ diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
209
+ if "self_attn" in diffusers_name:
210
+ te_state_dict[diffusers_name] = state_dict.pop(key)
211
+ te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
212
+ elif "mlp" in diffusers_name:
213
+ # Be aware that this is the new diffusers convention and the rest of the code might
214
+ # not utilize it yet.
215
+ diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
216
+ te_state_dict[diffusers_name] = state_dict.pop(key)
217
+ te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
218
+
219
+ # (sayakpaul): Duplicate code. Needs to be cleaned.
220
+ elif lora_name.startswith("lora_te1_"):
221
+ diffusers_name = key.replace("lora_te1_", "").replace("_", ".")
222
+ diffusers_name = diffusers_name.replace("text.model", "text_model")
223
+ diffusers_name = diffusers_name.replace("self.attn", "self_attn")
224
+ diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
225
+ diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
226
+ diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
227
+ diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
228
+ if "self_attn" in diffusers_name:
229
+ te_state_dict[diffusers_name] = state_dict.pop(key)
230
+ te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
231
+ elif "mlp" in diffusers_name:
232
+ # Be aware that this is the new diffusers convention and the rest of the code might
233
+ # not utilize it yet.
234
+ diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
235
+ te_state_dict[diffusers_name] = state_dict.pop(key)
236
+ te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
237
+
238
+ # (sayakpaul): Duplicate code. Needs to be cleaned.
239
+ elif lora_name.startswith("lora_te2_"):
240
+ diffusers_name = key.replace("lora_te2_", "").replace("_", ".")
241
+ diffusers_name = diffusers_name.replace("text.model", "text_model")
242
+ diffusers_name = diffusers_name.replace("self.attn", "self_attn")
243
+ diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
244
+ diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
245
+ diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
246
+ diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
247
+ if "self_attn" in diffusers_name:
248
+ te2_state_dict[diffusers_name] = state_dict.pop(key)
249
+ te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
250
+ elif "mlp" in diffusers_name:
251
+ # Be aware that this is the new diffusers convention and the rest of the code might
252
+ # not utilize it yet.
253
+ diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
254
+ te2_state_dict[diffusers_name] = state_dict.pop(key)
255
+ te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
256
+
257
+ # Rename the alphas so that they can be mapped appropriately.
258
+ if lora_name_alpha in state_dict:
259
+ alpha = state_dict.pop(lora_name_alpha).item()
260
+ if lora_name_alpha.startswith("lora_unet_"):
261
+ prefix = "unet."
262
+ elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
263
+ prefix = "text_encoder."
264
+ else:
265
+ prefix = "text_encoder_2."
266
+ new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
267
+ network_alphas.update({new_name: alpha})
268
+
269
+ if len(state_dict) > 0:
270
+ raise ValueError(f"The following keys have not been correctly be renamed: \n\n {', '.join(state_dict.keys())}")
271
+
272
+ logger.info("Kohya-style checkpoint detected.")
273
+ unet_state_dict = {f"{unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
274
+ te_state_dict = {f"{text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()}
275
+ te2_state_dict = (
276
+ {f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()}
277
+ if len(te2_state_dict) > 0
278
+ else None
279
+ )
280
+ if te2_state_dict is not None:
281
+ te_state_dict.update(te2_state_dict)
282
+
283
+ new_state_dict = {**unet_state_dict, **te_state_dict}
284
+ return new_state_dict, network_alphas
diffusers/loaders/peft.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ from typing import List, Union
16
+
17
+ from ..utils import MIN_PEFT_VERSION, check_peft_version, is_peft_available
18
+
19
+
20
+ class PeftAdapterMixin:
21
+ """
22
+ A class containing all functions for loading and using adapters weights that are supported in PEFT library. For
23
+ more details about adapters and injecting them on a transformer-based model, check out the documentation of PEFT
24
+ library: https://huggingface.co/docs/peft/index.
25
+
26
+
27
+ With this mixin, if the correct PEFT version is installed, it is possible to:
28
+
29
+ - Attach new adapters in the model.
30
+ - Attach multiple adapters and iteratively activate / deactivate them.
31
+ - Activate / deactivate all adapters from the model.
32
+ - Get a list of the active adapters.
33
+ """
34
+
35
+ _hf_peft_config_loaded = False
36
+
37
+ def add_adapter(self, adapter_config, adapter_name: str = "default") -> None:
38
+ r"""
39
+ Adds a new adapter to the current model for training. If no adapter name is passed, a default name is assigned
40
+ to the adapter to follow the convention of the PEFT library.
41
+
42
+ If you are not familiar with adapters and PEFT methods, we invite you to read more about them in the PEFT
43
+ [documentation](https://huggingface.co/docs/peft).
44
+
45
+ Args:
46
+ adapter_config (`[~peft.PeftConfig]`):
47
+ The configuration of the adapter to add; supported adapters are non-prefix tuning and adaption prompt
48
+ methods.
49
+ adapter_name (`str`, *optional*, defaults to `"default"`):
50
+ The name of the adapter to add. If no name is passed, a default name is assigned to the adapter.
51
+ """
52
+ check_peft_version(min_version=MIN_PEFT_VERSION)
53
+
54
+ if not is_peft_available():
55
+ raise ImportError("PEFT is not available. Please install PEFT to use this function: `pip install peft`.")
56
+
57
+ from peft import PeftConfig, inject_adapter_in_model
58
+
59
+ if not self._hf_peft_config_loaded:
60
+ self._hf_peft_config_loaded = True
61
+ elif adapter_name in self.peft_config:
62
+ raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.")
63
+
64
+ if not isinstance(adapter_config, PeftConfig):
65
+ raise ValueError(
66
+ f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead."
67
+ )
68
+
69
+ # Unlike transformers, here we don't need to retrieve the name_or_path of the unet as the loading logic is
70
+ # handled by the `load_lora_layers` or `LoraLoaderMixin`. Therefore we set it to `None` here.
71
+ adapter_config.base_model_name_or_path = None
72
+ inject_adapter_in_model(adapter_config, self, adapter_name)
73
+ self.set_adapter(adapter_name)
74
+
75
+ def set_adapter(self, adapter_name: Union[str, List[str]]) -> None:
76
+ """
77
+ Sets a specific adapter by forcing the model to only use that adapter and disables the other adapters.
78
+
79
+ If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
80
+ official documentation: https://huggingface.co/docs/peft
81
+
82
+ Args:
83
+ adapter_name (Union[str, List[str]])):
84
+ The list of adapters to set or the adapter name in case of single adapter.
85
+ """
86
+ check_peft_version(min_version=MIN_PEFT_VERSION)
87
+
88
+ if not self._hf_peft_config_loaded:
89
+ raise ValueError("No adapter loaded. Please load an adapter first.")
90
+
91
+ if isinstance(adapter_name, str):
92
+ adapter_name = [adapter_name]
93
+
94
+ missing = set(adapter_name) - set(self.peft_config)
95
+ if len(missing) > 0:
96
+ raise ValueError(
97
+ f"Following adapter(s) could not be found: {', '.join(missing)}. Make sure you are passing the correct adapter name(s)."
98
+ f" current loaded adapters are: {list(self.peft_config.keys())}"
99
+ )
100
+
101
+ from peft.tuners.tuners_utils import BaseTunerLayer
102
+
103
+ _adapters_has_been_set = False
104
+
105
+ for _, module in self.named_modules():
106
+ if isinstance(module, BaseTunerLayer):
107
+ if hasattr(module, "set_adapter"):
108
+ module.set_adapter(adapter_name)
109
+ # Previous versions of PEFT does not support multi-adapter inference
110
+ elif not hasattr(module, "set_adapter") and len(adapter_name) != 1:
111
+ raise ValueError(
112
+ "You are trying to set multiple adapters and you have a PEFT version that does not support multi-adapter inference. Please upgrade to the latest version of PEFT."
113
+ " `pip install -U peft` or `pip install -U git+https://github.com/huggingface/peft.git`"
114
+ )
115
+ else:
116
+ module.active_adapter = adapter_name
117
+ _adapters_has_been_set = True
118
+
119
+ if not _adapters_has_been_set:
120
+ raise ValueError(
121
+ "Did not succeeded in setting the adapter. Please make sure you are using a model that supports adapters."
122
+ )
123
+
124
+ def disable_adapters(self) -> None:
125
+ r"""
126
+ Disable all adapters attached to the model and fallback to inference with the base model only.
127
+
128
+ If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
129
+ official documentation: https://huggingface.co/docs/peft
130
+ """
131
+ check_peft_version(min_version=MIN_PEFT_VERSION)
132
+
133
+ if not self._hf_peft_config_loaded:
134
+ raise ValueError("No adapter loaded. Please load an adapter first.")
135
+
136
+ from peft.tuners.tuners_utils import BaseTunerLayer
137
+
138
+ for _, module in self.named_modules():
139
+ if isinstance(module, BaseTunerLayer):
140
+ if hasattr(module, "enable_adapters"):
141
+ module.enable_adapters(enabled=False)
142
+ else:
143
+ # support for older PEFT versions
144
+ module.disable_adapters = True
145
+
146
+ def enable_adapters(self) -> None:
147
+ """
148
+ Enable adapters that are attached to the model. The model will use `self.active_adapters()` to retrieve the
149
+ list of adapters to enable.
150
+
151
+ If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
152
+ official documentation: https://huggingface.co/docs/peft
153
+ """
154
+ check_peft_version(min_version=MIN_PEFT_VERSION)
155
+
156
+ if not self._hf_peft_config_loaded:
157
+ raise ValueError("No adapter loaded. Please load an adapter first.")
158
+
159
+ from peft.tuners.tuners_utils import BaseTunerLayer
160
+
161
+ for _, module in self.named_modules():
162
+ if isinstance(module, BaseTunerLayer):
163
+ if hasattr(module, "enable_adapters"):
164
+ module.enable_adapters(enabled=True)
165
+ else:
166
+ # support for older PEFT versions
167
+ module.disable_adapters = False
168
+
169
+ def active_adapters(self) -> List[str]:
170
+ """
171
+ Gets the current list of active adapters of the model.
172
+
173
+ If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
174
+ official documentation: https://huggingface.co/docs/peft
175
+ """
176
+ check_peft_version(min_version=MIN_PEFT_VERSION)
177
+
178
+ if not is_peft_available():
179
+ raise ImportError("PEFT is not available. Please install PEFT to use this function: `pip install peft`.")
180
+
181
+ if not self._hf_peft_config_loaded:
182
+ raise ValueError("No adapter loaded. Please load an adapter first.")
183
+
184
+ from peft.tuners.tuners_utils import BaseTunerLayer
185
+
186
+ for _, module in self.named_modules():
187
+ if isinstance(module, BaseTunerLayer):
188
+ return module.active_adapter
diffusers/loaders/single_file.py ADDED
@@ -0,0 +1,637 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from contextlib import nullcontext
15
+ from io import BytesIO
16
+ from pathlib import Path
17
+
18
+ import requests
19
+ import torch
20
+ from huggingface_hub import hf_hub_download
21
+ from huggingface_hub.utils import validate_hf_hub_args
22
+
23
+ from ..utils import (
24
+ deprecate,
25
+ is_accelerate_available,
26
+ is_omegaconf_available,
27
+ is_transformers_available,
28
+ logging,
29
+ )
30
+ from ..utils.import_utils import BACKENDS_MAPPING
31
+
32
+
33
+ if is_transformers_available():
34
+ pass
35
+
36
+ if is_accelerate_available():
37
+ from accelerate import init_empty_weights
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+
42
+ class FromSingleFileMixin:
43
+ """
44
+ Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
45
+ """
46
+
47
+ @classmethod
48
+ def from_ckpt(cls, *args, **kwargs):
49
+ deprecation_message = "The function `from_ckpt` is deprecated in favor of `from_single_file` and will be removed in diffusers v.0.21. Please make sure to use `StableDiffusionPipeline.from_single_file(...)` instead."
50
+ deprecate("from_ckpt", "0.21.0", deprecation_message, standard_warn=False)
51
+ return cls.from_single_file(*args, **kwargs)
52
+
53
+ @classmethod
54
+ @validate_hf_hub_args
55
+ def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
56
+ r"""
57
+ Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
58
+ format. The pipeline is set in evaluation mode (`model.eval()`) by default.
59
+
60
+ Parameters:
61
+ pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
62
+ Can be either:
63
+ - A link to the `.ckpt` file (for example
64
+ `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
65
+ - A path to a *file* containing all pipeline weights.
66
+ torch_dtype (`str` or `torch.dtype`, *optional*):
67
+ Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
68
+ dtype is automatically derived from the model's weights.
69
+ force_download (`bool`, *optional*, defaults to `False`):
70
+ Whether or not to force the (re-)download of the model weights and configuration files, overriding the
71
+ cached versions if they exist.
72
+ cache_dir (`Union[str, os.PathLike]`, *optional*):
73
+ Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
74
+ is not used.
75
+ resume_download (`bool`, *optional*, defaults to `False`):
76
+ Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
77
+ incompletely downloaded files are deleted.
78
+ proxies (`Dict[str, str]`, *optional*):
79
+ A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
80
+ 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
81
+ local_files_only (`bool`, *optional*, defaults to `False`):
82
+ Whether to only load local model weights and configuration files or not. If set to `True`, the model
83
+ won't be downloaded from the Hub.
84
+ token (`str` or *bool*, *optional*):
85
+ The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
86
+ `diffusers-cli login` (stored in `~/.huggingface`) is used.
87
+ revision (`str`, *optional*, defaults to `"main"`):
88
+ The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
89
+ allowed by Git.
90
+ use_safetensors (`bool`, *optional*, defaults to `None`):
91
+ If set to `None`, the safetensors weights are downloaded if they're available **and** if the
92
+ safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
93
+ weights. If set to `False`, safetensors weights are not loaded.
94
+ extract_ema (`bool`, *optional*, defaults to `False`):
95
+ Whether to extract the EMA weights or not. Pass `True` to extract the EMA weights which usually yield
96
+ higher quality images for inference. Non-EMA weights are usually better for continuing finetuning.
97
+ upcast_attention (`bool`, *optional*, defaults to `None`):
98
+ Whether the attention computation should always be upcasted.
99
+ image_size (`int`, *optional*, defaults to 512):
100
+ The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
101
+ Diffusion v2 base model. Use 768 for Stable Diffusion v2.
102
+ prediction_type (`str`, *optional*):
103
+ The prediction type the model was trained on. Use `'epsilon'` for all Stable Diffusion v1 models and
104
+ the Stable Diffusion v2 base model. Use `'v_prediction'` for Stable Diffusion v2.
105
+ num_in_channels (`int`, *optional*, defaults to `None`):
106
+ The number of input channels. If `None`, it is automatically inferred.
107
+ scheduler_type (`str`, *optional*, defaults to `"pndm"`):
108
+ Type of scheduler to use. Should be one of `["pndm", "lms", "heun", "euler", "euler-ancestral", "dpm",
109
+ "ddim"]`.
110
+ load_safety_checker (`bool`, *optional*, defaults to `True`):
111
+ Whether to load the safety checker or not.
112
+ text_encoder ([`~transformers.CLIPTextModel`], *optional*, defaults to `None`):
113
+ An instance of `CLIPTextModel` to use, specifically the
114
+ [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. If this
115
+ parameter is `None`, the function loads a new instance of `CLIPTextModel` by itself if needed.
116
+ vae (`AutoencoderKL`, *optional*, defaults to `None`):
117
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. If
118
+ this parameter is `None`, the function will load a new instance of [CLIP] by itself, if needed.
119
+ tokenizer ([`~transformers.CLIPTokenizer`], *optional*, defaults to `None`):
120
+ An instance of `CLIPTokenizer` to use. If this parameter is `None`, the function loads a new instance
121
+ of `CLIPTokenizer` by itself if needed.
122
+ original_config_file (`str`):
123
+ Path to `.yaml` config file corresponding to the original architecture. If `None`, will be
124
+ automatically inferred by looking for a key that only exists in SD2.0 models.
125
+ kwargs (remaining dictionary of keyword arguments, *optional*):
126
+ Can be used to overwrite load and saveable variables (for example the pipeline components of the
127
+ specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
128
+ method. See example below for more information.
129
+
130
+ Examples:
131
+
132
+ ```py
133
+ >>> from diffusers import StableDiffusionPipeline
134
+
135
+ >>> # Download pipeline from huggingface.co and cache.
136
+ >>> pipeline = StableDiffusionPipeline.from_single_file(
137
+ ... "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
138
+ ... )
139
+
140
+ >>> # Download pipeline from local file
141
+ >>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
142
+ >>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly")
143
+
144
+ >>> # Enable float16 and move to GPU
145
+ >>> pipeline = StableDiffusionPipeline.from_single_file(
146
+ ... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
147
+ ... torch_dtype=torch.float16,
148
+ ... )
149
+ >>> pipeline.to("cuda")
150
+ ```
151
+ """
152
+ # import here to avoid circular dependency
153
+ from ..pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
154
+
155
+ original_config_file = kwargs.pop("original_config_file", None)
156
+ config_files = kwargs.pop("config_files", None)
157
+ cache_dir = kwargs.pop("cache_dir", None)
158
+ resume_download = kwargs.pop("resume_download", False)
159
+ force_download = kwargs.pop("force_download", False)
160
+ proxies = kwargs.pop("proxies", None)
161
+ local_files_only = kwargs.pop("local_files_only", None)
162
+ token = kwargs.pop("token", None)
163
+ revision = kwargs.pop("revision", None)
164
+ extract_ema = kwargs.pop("extract_ema", False)
165
+ image_size = kwargs.pop("image_size", None)
166
+ scheduler_type = kwargs.pop("scheduler_type", "pndm")
167
+ num_in_channels = kwargs.pop("num_in_channels", None)
168
+ upcast_attention = kwargs.pop("upcast_attention", None)
169
+ load_safety_checker = kwargs.pop("load_safety_checker", True)
170
+ prediction_type = kwargs.pop("prediction_type", None)
171
+ text_encoder = kwargs.pop("text_encoder", None)
172
+ text_encoder_2 = kwargs.pop("text_encoder_2", None)
173
+ vae = kwargs.pop("vae", None)
174
+ controlnet = kwargs.pop("controlnet", None)
175
+ adapter = kwargs.pop("adapter", None)
176
+ tokenizer = kwargs.pop("tokenizer", None)
177
+ tokenizer_2 = kwargs.pop("tokenizer_2", None)
178
+
179
+ torch_dtype = kwargs.pop("torch_dtype", None)
180
+
181
+ use_safetensors = kwargs.pop("use_safetensors", None)
182
+
183
+ pipeline_name = cls.__name__
184
+ file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
185
+ from_safetensors = file_extension == "safetensors"
186
+
187
+ if from_safetensors and use_safetensors is False:
188
+ raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
189
+
190
+ # TODO: For now we only support stable diffusion
191
+ stable_unclip = None
192
+ model_type = None
193
+
194
+ if pipeline_name in [
195
+ "StableDiffusionControlNetPipeline",
196
+ "StableDiffusionControlNetImg2ImgPipeline",
197
+ "StableDiffusionControlNetInpaintPipeline",
198
+ ]:
199
+ from ..models.controlnet import ControlNetModel
200
+ from ..pipelines.controlnet.multicontrolnet import MultiControlNetModel
201
+
202
+ # list/tuple or a single instance of ControlNetModel or MultiControlNetModel
203
+ if not (
204
+ isinstance(controlnet, (ControlNetModel, MultiControlNetModel))
205
+ or isinstance(controlnet, (list, tuple))
206
+ and isinstance(controlnet[0], ControlNetModel)
207
+ ):
208
+ raise ValueError("ControlNet needs to be passed if loading from ControlNet pipeline.")
209
+ elif "StableDiffusion" in pipeline_name:
210
+ # Model type will be inferred from the checkpoint.
211
+ pass
212
+ elif pipeline_name == "StableUnCLIPPipeline":
213
+ model_type = "FrozenOpenCLIPEmbedder"
214
+ stable_unclip = "txt2img"
215
+ elif pipeline_name == "StableUnCLIPImg2ImgPipeline":
216
+ model_type = "FrozenOpenCLIPEmbedder"
217
+ stable_unclip = "img2img"
218
+ elif pipeline_name == "PaintByExamplePipeline":
219
+ model_type = "PaintByExample"
220
+ elif pipeline_name == "LDMTextToImagePipeline":
221
+ model_type = "LDMTextToImage"
222
+ else:
223
+ raise ValueError(f"Unhandled pipeline class: {pipeline_name}")
224
+
225
+ # remove huggingface url
226
+ has_valid_url_prefix = False
227
+ valid_url_prefixes = ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]
228
+ for prefix in valid_url_prefixes:
229
+ if pretrained_model_link_or_path.startswith(prefix):
230
+ pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
231
+ has_valid_url_prefix = True
232
+
233
+ # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
234
+ ckpt_path = Path(pretrained_model_link_or_path)
235
+ if not ckpt_path.is_file():
236
+ if not has_valid_url_prefix:
237
+ raise ValueError(
238
+ f"The provided path is either not a file or a valid huggingface URL was not provided. Valid URLs begin with {', '.join(valid_url_prefixes)}"
239
+ )
240
+
241
+ # get repo_id and (potentially nested) file path of ckpt in repo
242
+ repo_id = "/".join(ckpt_path.parts[:2])
243
+ file_path = "/".join(ckpt_path.parts[2:])
244
+
245
+ if file_path.startswith("blob/"):
246
+ file_path = file_path[len("blob/") :]
247
+
248
+ if file_path.startswith("main/"):
249
+ file_path = file_path[len("main/") :]
250
+
251
+ pretrained_model_link_or_path = hf_hub_download(
252
+ repo_id,
253
+ filename=file_path,
254
+ cache_dir=cache_dir,
255
+ resume_download=resume_download,
256
+ proxies=proxies,
257
+ local_files_only=local_files_only,
258
+ token=token,
259
+ revision=revision,
260
+ force_download=force_download,
261
+ )
262
+
263
+ pipe = download_from_original_stable_diffusion_ckpt(
264
+ pretrained_model_link_or_path,
265
+ pipeline_class=cls,
266
+ model_type=model_type,
267
+ stable_unclip=stable_unclip,
268
+ controlnet=controlnet,
269
+ adapter=adapter,
270
+ from_safetensors=from_safetensors,
271
+ extract_ema=extract_ema,
272
+ image_size=image_size,
273
+ scheduler_type=scheduler_type,
274
+ num_in_channels=num_in_channels,
275
+ upcast_attention=upcast_attention,
276
+ load_safety_checker=load_safety_checker,
277
+ prediction_type=prediction_type,
278
+ text_encoder=text_encoder,
279
+ text_encoder_2=text_encoder_2,
280
+ vae=vae,
281
+ tokenizer=tokenizer,
282
+ tokenizer_2=tokenizer_2,
283
+ original_config_file=original_config_file,
284
+ config_files=config_files,
285
+ local_files_only=local_files_only,
286
+ )
287
+
288
+ if torch_dtype is not None:
289
+ pipe.to(dtype=torch_dtype)
290
+
291
+ return pipe
292
+
293
+
294
+ class FromOriginalVAEMixin:
295
+ """
296
+ Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into an [`AutoencoderKL`].
297
+ """
298
+
299
+ @classmethod
300
+ @validate_hf_hub_args
301
+ def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
302
+ r"""
303
+ Instantiate a [`AutoencoderKL`] from pretrained ControlNet weights saved in the original `.ckpt` or
304
+ `.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
305
+
306
+ Parameters:
307
+ pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
308
+ Can be either:
309
+ - A link to the `.ckpt` file (for example
310
+ `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
311
+ - A path to a *file* containing all pipeline weights.
312
+ torch_dtype (`str` or `torch.dtype`, *optional*):
313
+ Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
314
+ dtype is automatically derived from the model's weights.
315
+ force_download (`bool`, *optional*, defaults to `False`):
316
+ Whether or not to force the (re-)download of the model weights and configuration files, overriding the
317
+ cached versions if they exist.
318
+ cache_dir (`Union[str, os.PathLike]`, *optional*):
319
+ Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
320
+ is not used.
321
+ resume_download (`bool`, *optional*, defaults to `False`):
322
+ Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
323
+ incompletely downloaded files are deleted.
324
+ proxies (`Dict[str, str]`, *optional*):
325
+ A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
326
+ 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
327
+ local_files_only (`bool`, *optional*, defaults to `False`):
328
+ Whether to only load local model weights and configuration files or not. If set to True, the model
329
+ won't be downloaded from the Hub.
330
+ token (`str` or *bool*, *optional*):
331
+ The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
332
+ `diffusers-cli login` (stored in `~/.huggingface`) is used.
333
+ revision (`str`, *optional*, defaults to `"main"`):
334
+ The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
335
+ allowed by Git.
336
+ image_size (`int`, *optional*, defaults to 512):
337
+ The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
338
+ Diffusion v2 base model. Use 768 for Stable Diffusion v2.
339
+ use_safetensors (`bool`, *optional*, defaults to `None`):
340
+ If set to `None`, the safetensors weights are downloaded if they're available **and** if the
341
+ safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
342
+ weights. If set to `False`, safetensors weights are not loaded.
343
+ upcast_attention (`bool`, *optional*, defaults to `None`):
344
+ Whether the attention computation should always be upcasted.
345
+ scaling_factor (`float`, *optional*, defaults to 0.18215):
346
+ The component-wise standard deviation of the trained latent space computed using the first batch of the
347
+ training set. This is used to scale the latent space to have unit variance when training the diffusion
348
+ model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
349
+ diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z
350
+ = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution
351
+ Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
352
+ kwargs (remaining dictionary of keyword arguments, *optional*):
353
+ Can be used to overwrite load and saveable variables (for example the pipeline components of the
354
+ specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
355
+ method. See example below for more information.
356
+
357
+ <Tip warning={true}>
358
+
359
+ Make sure to pass both `image_size` and `scaling_factor` to `from_single_file()` if you're loading
360
+ a VAE from SDXL or a Stable Diffusion v2 model or higher.
361
+
362
+ </Tip>
363
+
364
+ Examples:
365
+
366
+ ```py
367
+ from diffusers import AutoencoderKL
368
+
369
+ url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors" # can also be local file
370
+ model = AutoencoderKL.from_single_file(url)
371
+ ```
372
+ """
373
+ if not is_omegaconf_available():
374
+ raise ValueError(BACKENDS_MAPPING["omegaconf"][1])
375
+
376
+ from omegaconf import OmegaConf
377
+
378
+ from ..models import AutoencoderKL
379
+
380
+ # import here to avoid circular dependency
381
+ from ..pipelines.stable_diffusion.convert_from_ckpt import (
382
+ convert_ldm_vae_checkpoint,
383
+ create_vae_diffusers_config,
384
+ )
385
+
386
+ config_file = kwargs.pop("config_file", None)
387
+ cache_dir = kwargs.pop("cache_dir", None)
388
+ resume_download = kwargs.pop("resume_download", False)
389
+ force_download = kwargs.pop("force_download", False)
390
+ proxies = kwargs.pop("proxies", None)
391
+ local_files_only = kwargs.pop("local_files_only", None)
392
+ token = kwargs.pop("token", None)
393
+ revision = kwargs.pop("revision", None)
394
+ image_size = kwargs.pop("image_size", None)
395
+ scaling_factor = kwargs.pop("scaling_factor", None)
396
+ kwargs.pop("upcast_attention", None)
397
+
398
+ torch_dtype = kwargs.pop("torch_dtype", None)
399
+
400
+ use_safetensors = kwargs.pop("use_safetensors", None)
401
+
402
+ file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
403
+ from_safetensors = file_extension == "safetensors"
404
+
405
+ if from_safetensors and use_safetensors is False:
406
+ raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
407
+
408
+ # remove huggingface url
409
+ for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
410
+ if pretrained_model_link_or_path.startswith(prefix):
411
+ pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
412
+
413
+ # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
414
+ ckpt_path = Path(pretrained_model_link_or_path)
415
+ if not ckpt_path.is_file():
416
+ # get repo_id and (potentially nested) file path of ckpt in repo
417
+ repo_id = "/".join(ckpt_path.parts[:2])
418
+ file_path = "/".join(ckpt_path.parts[2:])
419
+
420
+ if file_path.startswith("blob/"):
421
+ file_path = file_path[len("blob/") :]
422
+
423
+ if file_path.startswith("main/"):
424
+ file_path = file_path[len("main/") :]
425
+
426
+ pretrained_model_link_or_path = hf_hub_download(
427
+ repo_id,
428
+ filename=file_path,
429
+ cache_dir=cache_dir,
430
+ resume_download=resume_download,
431
+ proxies=proxies,
432
+ local_files_only=local_files_only,
433
+ token=token,
434
+ revision=revision,
435
+ force_download=force_download,
436
+ )
437
+
438
+ if from_safetensors:
439
+ from safetensors import safe_open
440
+
441
+ checkpoint = {}
442
+ with safe_open(pretrained_model_link_or_path, framework="pt", device="cpu") as f:
443
+ for key in f.keys():
444
+ checkpoint[key] = f.get_tensor(key)
445
+ else:
446
+ checkpoint = torch.load(pretrained_model_link_or_path, map_location="cpu")
447
+
448
+ if "state_dict" in checkpoint:
449
+ checkpoint = checkpoint["state_dict"]
450
+
451
+ if config_file is None:
452
+ config_url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml"
453
+ config_file = BytesIO(requests.get(config_url).content)
454
+
455
+ original_config = OmegaConf.load(config_file)
456
+
457
+ # default to sd-v1-5
458
+ image_size = image_size or 512
459
+
460
+ vae_config = create_vae_diffusers_config(original_config, image_size=image_size)
461
+ converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config)
462
+
463
+ if scaling_factor is None:
464
+ if (
465
+ "model" in original_config
466
+ and "params" in original_config.model
467
+ and "scale_factor" in original_config.model.params
468
+ ):
469
+ vae_scaling_factor = original_config.model.params.scale_factor
470
+ else:
471
+ vae_scaling_factor = 0.18215 # default SD scaling factor
472
+
473
+ vae_config["scaling_factor"] = vae_scaling_factor
474
+
475
+ ctx = init_empty_weights if is_accelerate_available() else nullcontext
476
+ with ctx():
477
+ vae = AutoencoderKL(**vae_config)
478
+
479
+ if is_accelerate_available():
480
+ from ..models.modeling_utils import load_model_dict_into_meta
481
+
482
+ load_model_dict_into_meta(vae, converted_vae_checkpoint, device="cpu")
483
+ else:
484
+ vae.load_state_dict(converted_vae_checkpoint)
485
+
486
+ if torch_dtype is not None:
487
+ vae.to(dtype=torch_dtype)
488
+
489
+ return vae
490
+
491
+
492
+ class FromOriginalControlnetMixin:
493
+ """
494
+ Load pretrained ControlNet weights saved in the `.ckpt` or `.safetensors` format into a [`ControlNetModel`].
495
+ """
496
+
497
+ @classmethod
498
+ @validate_hf_hub_args
499
+ def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
500
+ r"""
501
+ Instantiate a [`ControlNetModel`] from pretrained ControlNet weights saved in the original `.ckpt` or
502
+ `.safetensors` format. The pipeline is set in evaluation mode (`model.eval()`) by default.
503
+
504
+ Parameters:
505
+ pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
506
+ Can be either:
507
+ - A link to the `.ckpt` file (for example
508
+ `"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
509
+ - A path to a *file* containing all pipeline weights.
510
+ torch_dtype (`str` or `torch.dtype`, *optional*):
511
+ Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
512
+ dtype is automatically derived from the model's weights.
513
+ force_download (`bool`, *optional*, defaults to `False`):
514
+ Whether or not to force the (re-)download of the model weights and configuration files, overriding the
515
+ cached versions if they exist.
516
+ cache_dir (`Union[str, os.PathLike]`, *optional*):
517
+ Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
518
+ is not used.
519
+ resume_download (`bool`, *optional*, defaults to `False`):
520
+ Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
521
+ incompletely downloaded files are deleted.
522
+ proxies (`Dict[str, str]`, *optional*):
523
+ A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
524
+ 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
525
+ local_files_only (`bool`, *optional*, defaults to `False`):
526
+ Whether to only load local model weights and configuration files or not. If set to True, the model
527
+ won't be downloaded from the Hub.
528
+ token (`str` or *bool*, *optional*):
529
+ The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
530
+ `diffusers-cli login` (stored in `~/.huggingface`) is used.
531
+ revision (`str`, *optional*, defaults to `"main"`):
532
+ The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
533
+ allowed by Git.
534
+ use_safetensors (`bool`, *optional*, defaults to `None`):
535
+ If set to `None`, the safetensors weights are downloaded if they're available **and** if the
536
+ safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
537
+ weights. If set to `False`, safetensors weights are not loaded.
538
+ image_size (`int`, *optional*, defaults to 512):
539
+ The image size the model was trained on. Use 512 for all Stable Diffusion v1 models and the Stable
540
+ Diffusion v2 base model. Use 768 for Stable Diffusion v2.
541
+ upcast_attention (`bool`, *optional*, defaults to `None`):
542
+ Whether the attention computation should always be upcasted.
543
+ kwargs (remaining dictionary of keyword arguments, *optional*):
544
+ Can be used to overwrite load and saveable variables (for example the pipeline components of the
545
+ specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
546
+ method. See example below for more information.
547
+
548
+ Examples:
549
+
550
+ ```py
551
+ from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
552
+
553
+ url = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" # can also be a local path
554
+ model = ControlNetModel.from_single_file(url)
555
+
556
+ url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors" # can also be a local path
557
+ pipe = StableDiffusionControlNetPipeline.from_single_file(url, controlnet=controlnet)
558
+ ```
559
+ """
560
+ # import here to avoid circular dependency
561
+ from ..pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
562
+
563
+ config_file = kwargs.pop("config_file", None)
564
+ cache_dir = kwargs.pop("cache_dir", None)
565
+ resume_download = kwargs.pop("resume_download", False)
566
+ force_download = kwargs.pop("force_download", False)
567
+ proxies = kwargs.pop("proxies", None)
568
+ local_files_only = kwargs.pop("local_files_only", None)
569
+ token = kwargs.pop("token", None)
570
+ num_in_channels = kwargs.pop("num_in_channels", None)
571
+ use_linear_projection = kwargs.pop("use_linear_projection", None)
572
+ revision = kwargs.pop("revision", None)
573
+ extract_ema = kwargs.pop("extract_ema", False)
574
+ image_size = kwargs.pop("image_size", None)
575
+ upcast_attention = kwargs.pop("upcast_attention", None)
576
+
577
+ torch_dtype = kwargs.pop("torch_dtype", None)
578
+
579
+ use_safetensors = kwargs.pop("use_safetensors", None)
580
+
581
+ file_extension = pretrained_model_link_or_path.rsplit(".", 1)[-1]
582
+ from_safetensors = file_extension == "safetensors"
583
+
584
+ if from_safetensors and use_safetensors is False:
585
+ raise ValueError("Make sure to install `safetensors` with `pip install safetensors`.")
586
+
587
+ # remove huggingface url
588
+ for prefix in ["https://huggingface.co/", "huggingface.co/", "hf.co/", "https://hf.co/"]:
589
+ if pretrained_model_link_or_path.startswith(prefix):
590
+ pretrained_model_link_or_path = pretrained_model_link_or_path[len(prefix) :]
591
+
592
+ # Code based on diffusers.pipelines.pipeline_utils.DiffusionPipeline.from_pretrained
593
+ ckpt_path = Path(pretrained_model_link_or_path)
594
+ if not ckpt_path.is_file():
595
+ # get repo_id and (potentially nested) file path of ckpt in repo
596
+ repo_id = "/".join(ckpt_path.parts[:2])
597
+ file_path = "/".join(ckpt_path.parts[2:])
598
+
599
+ if file_path.startswith("blob/"):
600
+ file_path = file_path[len("blob/") :]
601
+
602
+ if file_path.startswith("main/"):
603
+ file_path = file_path[len("main/") :]
604
+
605
+ pretrained_model_link_or_path = hf_hub_download(
606
+ repo_id,
607
+ filename=file_path,
608
+ cache_dir=cache_dir,
609
+ resume_download=resume_download,
610
+ proxies=proxies,
611
+ local_files_only=local_files_only,
612
+ token=token,
613
+ revision=revision,
614
+ force_download=force_download,
615
+ )
616
+
617
+ if config_file is None:
618
+ config_url = "https://raw.githubusercontent.com/lllyasviel/ControlNet/main/models/cldm_v15.yaml"
619
+ config_file = BytesIO(requests.get(config_url).content)
620
+
621
+ image_size = image_size or 512
622
+
623
+ controlnet = download_controlnet_from_original_ckpt(
624
+ pretrained_model_link_or_path,
625
+ original_config_file=config_file,
626
+ image_size=image_size,
627
+ extract_ema=extract_ema,
628
+ num_in_channels=num_in_channels,
629
+ upcast_attention=upcast_attention,
630
+ from_safetensors=from_safetensors,
631
+ use_linear_projection=use_linear_projection,
632
+ )
633
+
634
+ if torch_dtype is not None:
635
+ controlnet.to(dtype=torch_dtype)
636
+
637
+ return controlnet
diffusers/loaders/textual_inversion.py ADDED
@@ -0,0 +1,455 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Dict, List, Optional, Union
15
+
16
+ import safetensors
17
+ import torch
18
+ from huggingface_hub.utils import validate_hf_hub_args
19
+ from torch import nn
20
+
21
+ from ..utils import _get_model_file, is_accelerate_available, is_transformers_available, logging
22
+
23
+
24
+ if is_transformers_available():
25
+ from transformers import PreTrainedModel, PreTrainedTokenizer
26
+
27
+ if is_accelerate_available():
28
+ from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
29
+
30
+ logger = logging.get_logger(__name__)
31
+
32
+ TEXT_INVERSION_NAME = "learned_embeds.bin"
33
+ TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"
34
+
35
+
36
+ @validate_hf_hub_args
37
+ def load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs):
38
+ cache_dir = kwargs.pop("cache_dir", None)
39
+ force_download = kwargs.pop("force_download", False)
40
+ resume_download = kwargs.pop("resume_download", False)
41
+ proxies = kwargs.pop("proxies", None)
42
+ local_files_only = kwargs.pop("local_files_only", None)
43
+ token = kwargs.pop("token", None)
44
+ revision = kwargs.pop("revision", None)
45
+ subfolder = kwargs.pop("subfolder", None)
46
+ weight_name = kwargs.pop("weight_name", None)
47
+ use_safetensors = kwargs.pop("use_safetensors", None)
48
+
49
+ allow_pickle = False
50
+ if use_safetensors is None:
51
+ use_safetensors = True
52
+ allow_pickle = True
53
+
54
+ user_agent = {
55
+ "file_type": "text_inversion",
56
+ "framework": "pytorch",
57
+ }
58
+ state_dicts = []
59
+ for pretrained_model_name_or_path in pretrained_model_name_or_paths:
60
+ if not isinstance(pretrained_model_name_or_path, (dict, torch.Tensor)):
61
+ # 3.1. Load textual inversion file
62
+ model_file = None
63
+
64
+ # Let's first try to load .safetensors weights
65
+ if (use_safetensors and weight_name is None) or (
66
+ weight_name is not None and weight_name.endswith(".safetensors")
67
+ ):
68
+ try:
69
+ model_file = _get_model_file(
70
+ pretrained_model_name_or_path,
71
+ weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
72
+ cache_dir=cache_dir,
73
+ force_download=force_download,
74
+ resume_download=resume_download,
75
+ proxies=proxies,
76
+ local_files_only=local_files_only,
77
+ token=token,
78
+ revision=revision,
79
+ subfolder=subfolder,
80
+ user_agent=user_agent,
81
+ )
82
+ state_dict = safetensors.torch.load_file(model_file, device="cpu")
83
+ except Exception as e:
84
+ if not allow_pickle:
85
+ raise e
86
+
87
+ model_file = None
88
+
89
+ if model_file is None:
90
+ model_file = _get_model_file(
91
+ pretrained_model_name_or_path,
92
+ weights_name=weight_name or TEXT_INVERSION_NAME,
93
+ cache_dir=cache_dir,
94
+ force_download=force_download,
95
+ resume_download=resume_download,
96
+ proxies=proxies,
97
+ local_files_only=local_files_only,
98
+ token=token,
99
+ revision=revision,
100
+ subfolder=subfolder,
101
+ user_agent=user_agent,
102
+ )
103
+ state_dict = torch.load(model_file, map_location="cpu")
104
+ else:
105
+ state_dict = pretrained_model_name_or_path
106
+
107
+ state_dicts.append(state_dict)
108
+
109
+ return state_dicts
110
+
111
+
112
+ class TextualInversionLoaderMixin:
113
+ r"""
114
+ Load Textual Inversion tokens and embeddings to the tokenizer and text encoder.
115
+ """
116
+
117
+ def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): # noqa: F821
118
+ r"""
119
+ Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
120
+ be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
121
+ inversion token or if the textual inversion token is a single vector, the input prompt is returned.
122
+
123
+ Parameters:
124
+ prompt (`str` or list of `str`):
125
+ The prompt or prompts to guide the image generation.
126
+ tokenizer (`PreTrainedTokenizer`):
127
+ The tokenizer responsible for encoding the prompt into input tokens.
128
+
129
+ Returns:
130
+ `str` or list of `str`: The converted prompt
131
+ """
132
+ if not isinstance(prompt, List):
133
+ prompts = [prompt]
134
+ else:
135
+ prompts = prompt
136
+
137
+ prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]
138
+
139
+ if not isinstance(prompt, List):
140
+ return prompts[0]
141
+
142
+ return prompts
143
+
144
+ def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"): # noqa: F821
145
+ r"""
146
+ Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
147
+ to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
148
+ is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
149
+ inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.
150
+
151
+ Parameters:
152
+ prompt (`str`):
153
+ The prompt to guide the image generation.
154
+ tokenizer (`PreTrainedTokenizer`):
155
+ The tokenizer responsible for encoding the prompt into input tokens.
156
+
157
+ Returns:
158
+ `str`: The converted prompt
159
+ """
160
+ tokens = tokenizer.tokenize(prompt)
161
+ unique_tokens = set(tokens)
162
+ for token in unique_tokens:
163
+ if token in tokenizer.added_tokens_encoder:
164
+ replacement = token
165
+ i = 1
166
+ while f"{token}_{i}" in tokenizer.added_tokens_encoder:
167
+ replacement += f" {token}_{i}"
168
+ i += 1
169
+
170
+ prompt = prompt.replace(token, replacement)
171
+
172
+ return prompt
173
+
174
+ def _check_text_inv_inputs(self, tokenizer, text_encoder, pretrained_model_name_or_paths, tokens):
175
+ if tokenizer is None:
176
+ raise ValueError(
177
+ f"{self.__class__.__name__} requires `self.tokenizer` or passing a `tokenizer` of type `PreTrainedTokenizer` for calling"
178
+ f" `{self.load_textual_inversion.__name__}`"
179
+ )
180
+
181
+ if text_encoder is None:
182
+ raise ValueError(
183
+ f"{self.__class__.__name__} requires `self.text_encoder` or passing a `text_encoder` of type `PreTrainedModel` for calling"
184
+ f" `{self.load_textual_inversion.__name__}`"
185
+ )
186
+
187
+ if len(pretrained_model_name_or_paths) > 1 and len(pretrained_model_name_or_paths) != len(tokens):
188
+ raise ValueError(
189
+ f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)} "
190
+ f"Make sure both lists have the same length."
191
+ )
192
+
193
+ valid_tokens = [t for t in tokens if t is not None]
194
+ if len(set(valid_tokens)) < len(valid_tokens):
195
+ raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")
196
+
197
+ @staticmethod
198
+ def _retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer):
199
+ all_tokens = []
200
+ all_embeddings = []
201
+ for state_dict, token in zip(state_dicts, tokens):
202
+ if isinstance(state_dict, torch.Tensor):
203
+ if token is None:
204
+ raise ValueError(
205
+ "You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
206
+ )
207
+ loaded_token = token
208
+ embedding = state_dict
209
+ elif len(state_dict) == 1:
210
+ # diffusers
211
+ loaded_token, embedding = next(iter(state_dict.items()))
212
+ elif "string_to_param" in state_dict:
213
+ # A1111
214
+ loaded_token = state_dict["name"]
215
+ embedding = state_dict["string_to_param"]["*"]
216
+ else:
217
+ raise ValueError(
218
+ f"Loaded state dictonary is incorrect: {state_dict}. \n\n"
219
+ "Please verify that the loaded state dictionary of the textual embedding either only has a single key or includes the `string_to_param`"
220
+ " input key."
221
+ )
222
+
223
+ if token is not None and loaded_token != token:
224
+ logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
225
+ else:
226
+ token = loaded_token
227
+
228
+ if token in tokenizer.get_vocab():
229
+ raise ValueError(
230
+ f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
231
+ )
232
+
233
+ all_tokens.append(token)
234
+ all_embeddings.append(embedding)
235
+
236
+ return all_tokens, all_embeddings
237
+
238
+ @staticmethod
239
+ def _extend_tokens_and_embeddings(tokens, embeddings, tokenizer):
240
+ all_tokens = []
241
+ all_embeddings = []
242
+
243
+ for embedding, token in zip(embeddings, tokens):
244
+ if f"{token}_1" in tokenizer.get_vocab():
245
+ multi_vector_tokens = [token]
246
+ i = 1
247
+ while f"{token}_{i}" in tokenizer.added_tokens_encoder:
248
+ multi_vector_tokens.append(f"{token}_{i}")
249
+ i += 1
250
+
251
+ raise ValueError(
252
+ f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
253
+ )
254
+
255
+ is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
256
+ if is_multi_vector:
257
+ all_tokens += [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
258
+ all_embeddings += [e for e in embedding] # noqa: C416
259
+ else:
260
+ all_tokens += [token]
261
+ all_embeddings += [embedding[0]] if len(embedding.shape) > 1 else [embedding]
262
+
263
+ return all_tokens, all_embeddings
264
+
265
+ @validate_hf_hub_args
266
+ def load_textual_inversion(
267
+ self,
268
+ pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
269
+ token: Optional[Union[str, List[str]]] = None,
270
+ tokenizer: Optional["PreTrainedTokenizer"] = None, # noqa: F821
271
+ text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821
272
+ **kwargs,
273
+ ):
274
+ r"""
275
+ Load Textual Inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
276
+ Automatic1111 formats are supported).
277
+
278
+ Parameters:
279
+ pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
280
+ Can be either one of the following or a list of them:
281
+
282
+ - A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
283
+ pretrained model hosted on the Hub.
284
+ - A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
285
+ inversion weights.
286
+ - A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
287
+ - A [torch state
288
+ dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
289
+
290
+ token (`str` or `List[str]`, *optional*):
291
+ Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
292
+ list, then `token` must also be a list of equal length.
293
+ text_encoder ([`~transformers.CLIPTextModel`], *optional*):
294
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
295
+ If not specified, function will take self.tokenizer.
296
+ tokenizer ([`~transformers.CLIPTokenizer`], *optional*):
297
+ A `CLIPTokenizer` to tokenize text. If not specified, function will take self.tokenizer.
298
+ weight_name (`str`, *optional*):
299
+ Name of a custom weight file. This should be used when:
300
+
301
+ - The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
302
+ name such as `text_inv.bin`.
303
+ - The saved textual inversion file is in the Automatic1111 format.
304
+ cache_dir (`Union[str, os.PathLike]`, *optional*):
305
+ Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
306
+ is not used.
307
+ force_download (`bool`, *optional*, defaults to `False`):
308
+ Whether or not to force the (re-)download of the model weights and configuration files, overriding the
309
+ cached versions if they exist.
310
+ resume_download (`bool`, *optional*, defaults to `False`):
311
+ Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
312
+ incompletely downloaded files are deleted.
313
+ proxies (`Dict[str, str]`, *optional*):
314
+ A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
315
+ 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
316
+ local_files_only (`bool`, *optional*, defaults to `False`):
317
+ Whether to only load local model weights and configuration files or not. If set to `True`, the model
318
+ won't be downloaded from the Hub.
319
+ token (`str` or *bool*, *optional*):
320
+ The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
321
+ `diffusers-cli login` (stored in `~/.huggingface`) is used.
322
+ revision (`str`, *optional*, defaults to `"main"`):
323
+ The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
324
+ allowed by Git.
325
+ subfolder (`str`, *optional*, defaults to `""`):
326
+ The subfolder location of a model file within a larger model repository on the Hub or locally.
327
+ mirror (`str`, *optional*):
328
+ Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
329
+ guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
330
+ information.
331
+
332
+ Example:
333
+
334
+ To load a Textual Inversion embedding vector in 🤗 Diffusers format:
335
+
336
+ ```py
337
+ from diffusers import StableDiffusionPipeline
338
+ import torch
339
+
340
+ model_id = "runwayml/stable-diffusion-v1-5"
341
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
342
+
343
+ pipe.load_textual_inversion("sd-concepts-library/cat-toy")
344
+
345
+ prompt = "A <cat-toy> backpack"
346
+
347
+ image = pipe(prompt, num_inference_steps=50).images[0]
348
+ image.save("cat-backpack.png")
349
+ ```
350
+
351
+ To load a Textual Inversion embedding vector in Automatic1111 format, make sure to download the vector first
352
+ (for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
353
+ locally:
354
+
355
+ ```py
356
+ from diffusers import StableDiffusionPipeline
357
+ import torch
358
+
359
+ model_id = "runwayml/stable-diffusion-v1-5"
360
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
361
+
362
+ pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
363
+
364
+ prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."
365
+
366
+ image = pipe(prompt, num_inference_steps=50).images[0]
367
+ image.save("character.png")
368
+ ```
369
+
370
+ """
371
+ # 1. Set correct tokenizer and text encoder
372
+ tokenizer = tokenizer or getattr(self, "tokenizer", None)
373
+ text_encoder = text_encoder or getattr(self, "text_encoder", None)
374
+
375
+ # 2. Normalize inputs
376
+ pretrained_model_name_or_paths = (
377
+ [pretrained_model_name_or_path]
378
+ if not isinstance(pretrained_model_name_or_path, list)
379
+ else pretrained_model_name_or_path
380
+ )
381
+ tokens = [token] if not isinstance(token, list) else token
382
+ if tokens[0] is None:
383
+ tokens = tokens * len(pretrained_model_name_or_paths)
384
+
385
+ # 3. Check inputs
386
+ self._check_text_inv_inputs(tokenizer, text_encoder, pretrained_model_name_or_paths, tokens)
387
+
388
+ # 4. Load state dicts of textual embeddings
389
+ state_dicts = load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs)
390
+
391
+ # 4.1 Handle the special case when state_dict is a tensor that contains n embeddings for n tokens
392
+ if len(tokens) > 1 and len(state_dicts) == 1:
393
+ if isinstance(state_dicts[0], torch.Tensor):
394
+ state_dicts = list(state_dicts[0])
395
+ if len(tokens) != len(state_dicts):
396
+ raise ValueError(
397
+ f"You have passed a state_dict contains {len(state_dicts)} embeddings, and list of tokens of length {len(tokens)} "
398
+ f"Make sure both have the same length."
399
+ )
400
+
401
+ # 4. Retrieve tokens and embeddings
402
+ tokens, embeddings = self._retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer)
403
+
404
+ # 5. Extend tokens and embeddings for multi vector
405
+ tokens, embeddings = self._extend_tokens_and_embeddings(tokens, embeddings, tokenizer)
406
+
407
+ # 6. Make sure all embeddings have the correct size
408
+ expected_emb_dim = text_encoder.get_input_embeddings().weight.shape[-1]
409
+ if any(expected_emb_dim != emb.shape[-1] for emb in embeddings):
410
+ raise ValueError(
411
+ "Loaded embeddings are of incorrect shape. Expected each textual inversion embedding "
412
+ "to be of shape {input_embeddings.shape[-1]}, but are {embeddings.shape[-1]} "
413
+ )
414
+
415
+ # 7. Now we can be sure that loading the embedding matrix works
416
+ # < Unsafe code:
417
+
418
+ # 7.1 Offload all hooks in case the pipeline was cpu offloaded before make sure, we offload and onload again
419
+ is_model_cpu_offload = False
420
+ is_sequential_cpu_offload = False
421
+ for _, component in self.components.items():
422
+ if isinstance(component, nn.Module):
423
+ if hasattr(component, "_hf_hook"):
424
+ is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
425
+ is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
426
+ logger.info(
427
+ "Accelerate hooks detected. Since you have called `load_textual_inversion()`, the previous hooks will be first removed. Then the textual inversion parameters will be loaded and the hooks will be applied again."
428
+ )
429
+ remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
430
+
431
+ # 7.2 save expected device and dtype
432
+ device = text_encoder.device
433
+ dtype = text_encoder.dtype
434
+
435
+ # 7.3 Increase token embedding matrix
436
+ text_encoder.resize_token_embeddings(len(tokenizer) + len(tokens))
437
+ input_embeddings = text_encoder.get_input_embeddings().weight
438
+
439
+ # 7.4 Load token and embedding
440
+ for token, embedding in zip(tokens, embeddings):
441
+ # add tokens and get ids
442
+ tokenizer.add_tokens(token)
443
+ token_id = tokenizer.convert_tokens_to_ids(token)
444
+ input_embeddings.data[token_id] = embedding
445
+ logger.info(f"Loaded textual inversion embedding for {token}.")
446
+
447
+ input_embeddings.to(dtype=dtype, device=device)
448
+
449
+ # 7.5 Offload the model again
450
+ if is_model_cpu_offload:
451
+ self.enable_model_cpu_offload()
452
+ elif is_sequential_cpu_offload:
453
+ self.enable_sequential_cpu_offload()
454
+
455
+ # / Unsafe Code >
diffusers/loaders/unet.py ADDED
@@ -0,0 +1,828 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import inspect
15
+ import os
16
+ from collections import defaultdict
17
+ from contextlib import nullcontext
18
+ from functools import partial
19
+ from typing import Callable, Dict, List, Optional, Union
20
+
21
+ import safetensors
22
+ import torch
23
+ import torch.nn.functional as F
24
+ from huggingface_hub.utils import validate_hf_hub_args
25
+ from torch import nn
26
+
27
+ from ..models.embeddings import ImageProjection, IPAdapterFullImageProjection, IPAdapterPlusImageProjection
28
+ from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
29
+ from ..utils import (
30
+ USE_PEFT_BACKEND,
31
+ _get_model_file,
32
+ delete_adapter_layers,
33
+ is_accelerate_available,
34
+ logging,
35
+ set_adapter_layers,
36
+ set_weights_and_activate_adapters,
37
+ )
38
+ from .utils import AttnProcsLayers
39
+
40
+
41
+ if is_accelerate_available():
42
+ from accelerate import init_empty_weights
43
+ from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+
48
+ TEXT_ENCODER_NAME = "text_encoder"
49
+ UNET_NAME = "unet"
50
+
51
+ LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
52
+ LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
53
+
54
+ CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
55
+ CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"
56
+
57
+
58
+ class UNet2DConditionLoadersMixin:
59
+ """
60
+ Load LoRA layers into a [`UNet2DCondtionModel`].
61
+ """
62
+
63
+ text_encoder_name = TEXT_ENCODER_NAME
64
+ unet_name = UNET_NAME
65
+
66
+ @validate_hf_hub_args
67
+ def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
68
+ r"""
69
+ Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
70
+ defined in
71
+ [`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
72
+ and be a `torch.nn.Module` class.
73
+
74
+ Parameters:
75
+ pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
76
+ Can be either:
77
+
78
+ - A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
79
+ the Hub.
80
+ - A path to a directory (for example `./my_model_directory`) containing the model weights saved
81
+ with [`ModelMixin.save_pretrained`].
82
+ - A [torch state
83
+ dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
84
+
85
+ cache_dir (`Union[str, os.PathLike]`, *optional*):
86
+ Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
87
+ is not used.
88
+ force_download (`bool`, *optional*, defaults to `False`):
89
+ Whether or not to force the (re-)download of the model weights and configuration files, overriding the
90
+ cached versions if they exist.
91
+ resume_download (`bool`, *optional*, defaults to `False`):
92
+ Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
93
+ incompletely downloaded files are deleted.
94
+ proxies (`Dict[str, str]`, *optional*):
95
+ A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
96
+ 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
97
+ local_files_only (`bool`, *optional*, defaults to `False`):
98
+ Whether to only load local model weights and configuration files or not. If set to `True`, the model
99
+ won't be downloaded from the Hub.
100
+ token (`str` or *bool*, *optional*):
101
+ The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
102
+ `diffusers-cli login` (stored in `~/.huggingface`) is used.
103
+ low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
104
+ Speed up model loading only loading the pretrained weights and not initializing the weights. This also
105
+ tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
106
+ Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
107
+ argument to `True` will raise an error.
108
+ revision (`str`, *optional*, defaults to `"main"`):
109
+ The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
110
+ allowed by Git.
111
+ subfolder (`str`, *optional*, defaults to `""`):
112
+ The subfolder location of a model file within a larger model repository on the Hub or locally.
113
+ mirror (`str`, *optional*):
114
+ Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
115
+ guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
116
+ information.
117
+
118
+ Example:
119
+
120
+ ```py
121
+ from diffusers import AutoPipelineForText2Image
122
+ import torch
123
+
124
+ pipeline = AutoPipelineForText2Image.from_pretrained(
125
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
126
+ ).to("cuda")
127
+ pipeline.unet.load_attn_procs(
128
+ "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
129
+ )
130
+ ```
131
+ """
132
+ from ..models.attention_processor import CustomDiffusionAttnProcessor
133
+ from ..models.lora import LoRACompatibleConv, LoRACompatibleLinear, LoRAConv2dLayer, LoRALinearLayer
134
+
135
+ cache_dir = kwargs.pop("cache_dir", None)
136
+ force_download = kwargs.pop("force_download", False)
137
+ resume_download = kwargs.pop("resume_download", False)
138
+ proxies = kwargs.pop("proxies", None)
139
+ local_files_only = kwargs.pop("local_files_only", None)
140
+ token = kwargs.pop("token", None)
141
+ revision = kwargs.pop("revision", None)
142
+ subfolder = kwargs.pop("subfolder", None)
143
+ weight_name = kwargs.pop("weight_name", None)
144
+ use_safetensors = kwargs.pop("use_safetensors", None)
145
+ low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
146
+ # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
147
+ # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
148
+ network_alphas = kwargs.pop("network_alphas", None)
149
+
150
+ _pipeline = kwargs.pop("_pipeline", None)
151
+
152
+ is_network_alphas_none = network_alphas is None
153
+
154
+ allow_pickle = False
155
+
156
+ if use_safetensors is None:
157
+ use_safetensors = True
158
+ allow_pickle = True
159
+
160
+ user_agent = {
161
+ "file_type": "attn_procs_weights",
162
+ "framework": "pytorch",
163
+ }
164
+
165
+ if low_cpu_mem_usage and not is_accelerate_available():
166
+ low_cpu_mem_usage = False
167
+ logger.warning(
168
+ "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
169
+ " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
170
+ " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
171
+ " install accelerate\n```\n."
172
+ )
173
+
174
+ model_file = None
175
+ if not isinstance(pretrained_model_name_or_path_or_dict, dict):
176
+ # Let's first try to load .safetensors weights
177
+ if (use_safetensors and weight_name is None) or (
178
+ weight_name is not None and weight_name.endswith(".safetensors")
179
+ ):
180
+ try:
181
+ model_file = _get_model_file(
182
+ pretrained_model_name_or_path_or_dict,
183
+ weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
184
+ cache_dir=cache_dir,
185
+ force_download=force_download,
186
+ resume_download=resume_download,
187
+ proxies=proxies,
188
+ local_files_only=local_files_only,
189
+ token=token,
190
+ revision=revision,
191
+ subfolder=subfolder,
192
+ user_agent=user_agent,
193
+ )
194
+ state_dict = safetensors.torch.load_file(model_file, device="cpu")
195
+ except IOError as e:
196
+ if not allow_pickle:
197
+ raise e
198
+ # try loading non-safetensors weights
199
+ pass
200
+ if model_file is None:
201
+ model_file = _get_model_file(
202
+ pretrained_model_name_or_path_or_dict,
203
+ weights_name=weight_name or LORA_WEIGHT_NAME,
204
+ cache_dir=cache_dir,
205
+ force_download=force_download,
206
+ resume_download=resume_download,
207
+ proxies=proxies,
208
+ local_files_only=local_files_only,
209
+ token=token,
210
+ revision=revision,
211
+ subfolder=subfolder,
212
+ user_agent=user_agent,
213
+ )
214
+ state_dict = torch.load(model_file, map_location="cpu")
215
+ else:
216
+ state_dict = pretrained_model_name_or_path_or_dict
217
+
218
+ # fill attn processors
219
+ lora_layers_list = []
220
+
221
+ is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys()) and not USE_PEFT_BACKEND
222
+ is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
223
+
224
+ if is_lora:
225
+ # correct keys
226
+ state_dict, network_alphas = self.convert_state_dict_legacy_attn_format(state_dict, network_alphas)
227
+
228
+ if network_alphas is not None:
229
+ network_alphas_keys = list(network_alphas.keys())
230
+ used_network_alphas_keys = set()
231
+
232
+ lora_grouped_dict = defaultdict(dict)
233
+ mapped_network_alphas = {}
234
+
235
+ all_keys = list(state_dict.keys())
236
+ for key in all_keys:
237
+ value = state_dict.pop(key)
238
+ attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
239
+ lora_grouped_dict[attn_processor_key][sub_key] = value
240
+
241
+ # Create another `mapped_network_alphas` dictionary so that we can properly map them.
242
+ if network_alphas is not None:
243
+ for k in network_alphas_keys:
244
+ if k.replace(".alpha", "") in key:
245
+ mapped_network_alphas.update({attn_processor_key: network_alphas.get(k)})
246
+ used_network_alphas_keys.add(k)
247
+
248
+ if not is_network_alphas_none:
249
+ if len(set(network_alphas_keys) - used_network_alphas_keys) > 0:
250
+ raise ValueError(
251
+ f"The `network_alphas` has to be empty at this point but has the following keys \n\n {', '.join(network_alphas.keys())}"
252
+ )
253
+
254
+ if len(state_dict) > 0:
255
+ raise ValueError(
256
+ f"The `state_dict` has to be empty at this point but has the following keys \n\n {', '.join(state_dict.keys())}"
257
+ )
258
+
259
+ for key, value_dict in lora_grouped_dict.items():
260
+ attn_processor = self
261
+ for sub_key in key.split("."):
262
+ attn_processor = getattr(attn_processor, sub_key)
263
+
264
+ # Process non-attention layers, which don't have to_{k,v,q,out_proj}_lora layers
265
+ # or add_{k,v,q,out_proj}_proj_lora layers.
266
+ rank = value_dict["lora.down.weight"].shape[0]
267
+
268
+ if isinstance(attn_processor, LoRACompatibleConv):
269
+ in_features = attn_processor.in_channels
270
+ out_features = attn_processor.out_channels
271
+ kernel_size = attn_processor.kernel_size
272
+
273
+ ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
274
+ with ctx():
275
+ lora = LoRAConv2dLayer(
276
+ in_features=in_features,
277
+ out_features=out_features,
278
+ rank=rank,
279
+ kernel_size=kernel_size,
280
+ stride=attn_processor.stride,
281
+ padding=attn_processor.padding,
282
+ network_alpha=mapped_network_alphas.get(key),
283
+ )
284
+ elif isinstance(attn_processor, LoRACompatibleLinear):
285
+ ctx = init_empty_weights if low_cpu_mem_usage else nullcontext
286
+ with ctx():
287
+ lora = LoRALinearLayer(
288
+ attn_processor.in_features,
289
+ attn_processor.out_features,
290
+ rank,
291
+ mapped_network_alphas.get(key),
292
+ )
293
+ else:
294
+ raise ValueError(f"Module {key} is not a LoRACompatibleConv or LoRACompatibleLinear module.")
295
+
296
+ value_dict = {k.replace("lora.", ""): v for k, v in value_dict.items()}
297
+ lora_layers_list.append((attn_processor, lora))
298
+
299
+ if low_cpu_mem_usage:
300
+ device = next(iter(value_dict.values())).device
301
+ dtype = next(iter(value_dict.values())).dtype
302
+ load_model_dict_into_meta(lora, value_dict, device=device, dtype=dtype)
303
+ else:
304
+ lora.load_state_dict(value_dict)
305
+
306
+ elif is_custom_diffusion:
307
+ attn_processors = {}
308
+ custom_diffusion_grouped_dict = defaultdict(dict)
309
+ for key, value in state_dict.items():
310
+ if len(value) == 0:
311
+ custom_diffusion_grouped_dict[key] = {}
312
+ else:
313
+ if "to_out" in key:
314
+ attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
315
+ else:
316
+ attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
317
+ custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value
318
+
319
+ for key, value_dict in custom_diffusion_grouped_dict.items():
320
+ if len(value_dict) == 0:
321
+ attn_processors[key] = CustomDiffusionAttnProcessor(
322
+ train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
323
+ )
324
+ else:
325
+ cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
326
+ hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
327
+ train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
328
+ attn_processors[key] = CustomDiffusionAttnProcessor(
329
+ train_kv=True,
330
+ train_q_out=train_q_out,
331
+ hidden_size=hidden_size,
332
+ cross_attention_dim=cross_attention_dim,
333
+ )
334
+ attn_processors[key].load_state_dict(value_dict)
335
+ elif USE_PEFT_BACKEND:
336
+ # In that case we have nothing to do as loading the adapter weights is already handled above by `set_peft_model_state_dict`
337
+ # on the Unet
338
+ pass
339
+ else:
340
+ raise ValueError(
341
+ f"{model_file} does not seem to be in the correct format expected by LoRA or Custom Diffusion training."
342
+ )
343
+
344
+ # <Unsafe code
345
+ # We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
346
+ # Now we remove any existing hooks to
347
+ is_model_cpu_offload = False
348
+ is_sequential_cpu_offload = False
349
+
350
+ # For PEFT backend the Unet is already offloaded at this stage as it is handled inside `lora_lora_weights_into_unet`
351
+ if not USE_PEFT_BACKEND:
352
+ if _pipeline is not None:
353
+ for _, component in _pipeline.components.items():
354
+ if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
355
+ is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
356
+ is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
357
+
358
+ logger.info(
359
+ "Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
360
+ )
361
+ remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
362
+
363
+ # only custom diffusion needs to set attn processors
364
+ if is_custom_diffusion:
365
+ self.set_attn_processor(attn_processors)
366
+
367
+ # set lora layers
368
+ for target_module, lora_layer in lora_layers_list:
369
+ target_module.set_lora_layer(lora_layer)
370
+
371
+ self.to(dtype=self.dtype, device=self.device)
372
+
373
+ # Offload back.
374
+ if is_model_cpu_offload:
375
+ _pipeline.enable_model_cpu_offload()
376
+ elif is_sequential_cpu_offload:
377
+ _pipeline.enable_sequential_cpu_offload()
378
+ # Unsafe code />
379
+
380
+ def convert_state_dict_legacy_attn_format(self, state_dict, network_alphas):
381
+ is_new_lora_format = all(
382
+ key.startswith(self.unet_name) or key.startswith(self.text_encoder_name) for key in state_dict.keys()
383
+ )
384
+ if is_new_lora_format:
385
+ # Strip the `"unet"` prefix.
386
+ is_text_encoder_present = any(key.startswith(self.text_encoder_name) for key in state_dict.keys())
387
+ if is_text_encoder_present:
388
+ warn_message = "The state_dict contains LoRA params corresponding to the text encoder which are not being used here. To use both UNet and text encoder related LoRA params, use [`pipe.load_lora_weights()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraLoaderMixin.load_lora_weights)."
389
+ logger.warn(warn_message)
390
+ unet_keys = [k for k in state_dict.keys() if k.startswith(self.unet_name)]
391
+ state_dict = {k.replace(f"{self.unet_name}.", ""): v for k, v in state_dict.items() if k in unet_keys}
392
+
393
+ # change processor format to 'pure' LoRACompatibleLinear format
394
+ if any("processor" in k.split(".") for k in state_dict.keys()):
395
+
396
+ def format_to_lora_compatible(key):
397
+ if "processor" not in key.split("."):
398
+ return key
399
+ return key.replace(".processor", "").replace("to_out_lora", "to_out.0.lora").replace("_lora", ".lora")
400
+
401
+ state_dict = {format_to_lora_compatible(k): v for k, v in state_dict.items()}
402
+
403
+ if network_alphas is not None:
404
+ network_alphas = {format_to_lora_compatible(k): v for k, v in network_alphas.items()}
405
+ return state_dict, network_alphas
406
+
407
+ def save_attn_procs(
408
+ self,
409
+ save_directory: Union[str, os.PathLike],
410
+ is_main_process: bool = True,
411
+ weight_name: str = None,
412
+ save_function: Callable = None,
413
+ safe_serialization: bool = True,
414
+ **kwargs,
415
+ ):
416
+ r"""
417
+ Save attention processor layers to a directory so that it can be reloaded with the
418
+ [`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
419
+
420
+ Arguments:
421
+ save_directory (`str` or `os.PathLike`):
422
+ Directory to save an attention processor to (will be created if it doesn't exist).
423
+ is_main_process (`bool`, *optional*, defaults to `True`):
424
+ Whether the process calling this is the main process or not. Useful during distributed training and you
425
+ need to call this function on all processes. In this case, set `is_main_process=True` only on the main
426
+ process to avoid race conditions.
427
+ save_function (`Callable`):
428
+ The function to use to save the state dictionary. Useful during distributed training when you need to
429
+ replace `torch.save` with another method. Can be configured with the environment variable
430
+ `DIFFUSERS_SAVE_MODE`.
431
+ safe_serialization (`bool`, *optional*, defaults to `True`):
432
+ Whether to save the model using `safetensors` or with `pickle`.
433
+
434
+ Example:
435
+
436
+ ```py
437
+ import torch
438
+ from diffusers import DiffusionPipeline
439
+
440
+ pipeline = DiffusionPipeline.from_pretrained(
441
+ "CompVis/stable-diffusion-v1-4",
442
+ torch_dtype=torch.float16,
443
+ ).to("cuda")
444
+ pipeline.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
445
+ pipeline.unet.save_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
446
+ ```
447
+ """
448
+ from ..models.attention_processor import (
449
+ CustomDiffusionAttnProcessor,
450
+ CustomDiffusionAttnProcessor2_0,
451
+ CustomDiffusionXFormersAttnProcessor,
452
+ )
453
+
454
+ if os.path.isfile(save_directory):
455
+ logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
456
+ return
457
+
458
+ if save_function is None:
459
+ if safe_serialization:
460
+
461
+ def save_function(weights, filename):
462
+ return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
463
+
464
+ else:
465
+ save_function = torch.save
466
+
467
+ os.makedirs(save_directory, exist_ok=True)
468
+
469
+ is_custom_diffusion = any(
470
+ isinstance(
471
+ x,
472
+ (CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor),
473
+ )
474
+ for (_, x) in self.attn_processors.items()
475
+ )
476
+ if is_custom_diffusion:
477
+ model_to_save = AttnProcsLayers(
478
+ {
479
+ y: x
480
+ for (y, x) in self.attn_processors.items()
481
+ if isinstance(
482
+ x,
483
+ (
484
+ CustomDiffusionAttnProcessor,
485
+ CustomDiffusionAttnProcessor2_0,
486
+ CustomDiffusionXFormersAttnProcessor,
487
+ ),
488
+ )
489
+ }
490
+ )
491
+ state_dict = model_to_save.state_dict()
492
+ for name, attn in self.attn_processors.items():
493
+ if len(attn.state_dict()) == 0:
494
+ state_dict[name] = {}
495
+ else:
496
+ model_to_save = AttnProcsLayers(self.attn_processors)
497
+ state_dict = model_to_save.state_dict()
498
+
499
+ if weight_name is None:
500
+ if safe_serialization:
501
+ weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
502
+ else:
503
+ weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
504
+
505
+ # Save the model
506
+ save_function(state_dict, os.path.join(save_directory, weight_name))
507
+ logger.info(f"Model weights saved in {os.path.join(save_directory, weight_name)}")
508
+
509
+ def fuse_lora(self, lora_scale=1.0, safe_fusing=False, adapter_names=None):
510
+ self.lora_scale = lora_scale
511
+ self._safe_fusing = safe_fusing
512
+ self.apply(partial(self._fuse_lora_apply, adapter_names=adapter_names))
513
+
514
+ def _fuse_lora_apply(self, module, adapter_names=None):
515
+ if not USE_PEFT_BACKEND:
516
+ if hasattr(module, "_fuse_lora"):
517
+ module._fuse_lora(self.lora_scale, self._safe_fusing)
518
+
519
+ if adapter_names is not None:
520
+ raise ValueError(
521
+ "The `adapter_names` argument is not supported in your environment. Please switch"
522
+ " to PEFT backend to use this argument by installing latest PEFT and transformers."
523
+ " `pip install -U peft transformers`"
524
+ )
525
+ else:
526
+ from peft.tuners.tuners_utils import BaseTunerLayer
527
+
528
+ merge_kwargs = {"safe_merge": self._safe_fusing}
529
+
530
+ if isinstance(module, BaseTunerLayer):
531
+ if self.lora_scale != 1.0:
532
+ module.scale_layer(self.lora_scale)
533
+
534
+ # For BC with prevous PEFT versions, we need to check the signature
535
+ # of the `merge` method to see if it supports the `adapter_names` argument.
536
+ supported_merge_kwargs = list(inspect.signature(module.merge).parameters)
537
+ if "adapter_names" in supported_merge_kwargs:
538
+ merge_kwargs["adapter_names"] = adapter_names
539
+ elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None:
540
+ raise ValueError(
541
+ "The `adapter_names` argument is not supported with your PEFT version. Please upgrade"
542
+ " to the latest version of PEFT. `pip install -U peft`"
543
+ )
544
+
545
+ module.merge(**merge_kwargs)
546
+
547
+ def unfuse_lora(self):
548
+ self.apply(self._unfuse_lora_apply)
549
+
550
+ def _unfuse_lora_apply(self, module):
551
+ if not USE_PEFT_BACKEND:
552
+ if hasattr(module, "_unfuse_lora"):
553
+ module._unfuse_lora()
554
+ else:
555
+ from peft.tuners.tuners_utils import BaseTunerLayer
556
+
557
+ if isinstance(module, BaseTunerLayer):
558
+ module.unmerge()
559
+
560
+ def set_adapters(
561
+ self,
562
+ adapter_names: Union[List[str], str],
563
+ weights: Optional[Union[List[float], float]] = None,
564
+ ):
565
+ """
566
+ Set the currently active adapters for use in the UNet.
567
+
568
+ Args:
569
+ adapter_names (`List[str]` or `str`):
570
+ The names of the adapters to use.
571
+ adapter_weights (`Union[List[float], float]`, *optional*):
572
+ The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
573
+ adapters.
574
+
575
+ Example:
576
+
577
+ ```py
578
+ from diffusers import AutoPipelineForText2Image
579
+ import torch
580
+
581
+ pipeline = AutoPipelineForText2Image.from_pretrained(
582
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
583
+ ).to("cuda")
584
+ pipeline.load_lora_weights(
585
+ "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
586
+ )
587
+ pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
588
+ pipeline.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
589
+ ```
590
+ """
591
+ if not USE_PEFT_BACKEND:
592
+ raise ValueError("PEFT backend is required for `set_adapters()`.")
593
+
594
+ adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
595
+
596
+ if weights is None:
597
+ weights = [1.0] * len(adapter_names)
598
+ elif isinstance(weights, float):
599
+ weights = [weights] * len(adapter_names)
600
+
601
+ if len(adapter_names) != len(weights):
602
+ raise ValueError(
603
+ f"Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(weights)}."
604
+ )
605
+
606
+ set_weights_and_activate_adapters(self, adapter_names, weights)
607
+
608
+ def disable_lora(self):
609
+ """
610
+ Disable the UNet's active LoRA layers.
611
+
612
+ Example:
613
+
614
+ ```py
615
+ from diffusers import AutoPipelineForText2Image
616
+ import torch
617
+
618
+ pipeline = AutoPipelineForText2Image.from_pretrained(
619
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
620
+ ).to("cuda")
621
+ pipeline.load_lora_weights(
622
+ "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
623
+ )
624
+ pipeline.disable_lora()
625
+ ```
626
+ """
627
+ if not USE_PEFT_BACKEND:
628
+ raise ValueError("PEFT backend is required for this method.")
629
+ set_adapter_layers(self, enabled=False)
630
+
631
+ def enable_lora(self):
632
+ """
633
+ Enable the UNet's active LoRA layers.
634
+
635
+ Example:
636
+
637
+ ```py
638
+ from diffusers import AutoPipelineForText2Image
639
+ import torch
640
+
641
+ pipeline = AutoPipelineForText2Image.from_pretrained(
642
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
643
+ ).to("cuda")
644
+ pipeline.load_lora_weights(
645
+ "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
646
+ )
647
+ pipeline.enable_lora()
648
+ ```
649
+ """
650
+ if not USE_PEFT_BACKEND:
651
+ raise ValueError("PEFT backend is required for this method.")
652
+ set_adapter_layers(self, enabled=True)
653
+
654
+ def delete_adapters(self, adapter_names: Union[List[str], str]):
655
+ """
656
+ Delete an adapter's LoRA layers from the UNet.
657
+
658
+ Args:
659
+ adapter_names (`Union[List[str], str]`):
660
+ The names (single string or list of strings) of the adapter to delete.
661
+
662
+ Example:
663
+
664
+ ```py
665
+ from diffusers import AutoPipelineForText2Image
666
+ import torch
667
+
668
+ pipeline = AutoPipelineForText2Image.from_pretrained(
669
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
670
+ ).to("cuda")
671
+ pipeline.load_lora_weights(
672
+ "jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_names="cinematic"
673
+ )
674
+ pipeline.delete_adapters("cinematic")
675
+ ```
676
+ """
677
+ if not USE_PEFT_BACKEND:
678
+ raise ValueError("PEFT backend is required for this method.")
679
+
680
+ if isinstance(adapter_names, str):
681
+ adapter_names = [adapter_names]
682
+
683
+ for adapter_name in adapter_names:
684
+ delete_adapter_layers(self, adapter_name)
685
+
686
+ # Pop also the corresponding adapter from the config
687
+ if hasattr(self, "peft_config"):
688
+ self.peft_config.pop(adapter_name, None)
689
+
690
+ def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict):
691
+ updated_state_dict = {}
692
+ image_projection = None
693
+
694
+ if "proj.weight" in state_dict:
695
+ # IP-Adapter
696
+ num_image_text_embeds = 4
697
+ clip_embeddings_dim = state_dict["proj.weight"].shape[-1]
698
+ cross_attention_dim = state_dict["proj.weight"].shape[0] // 4
699
+
700
+ image_projection = ImageProjection(
701
+ cross_attention_dim=cross_attention_dim,
702
+ image_embed_dim=clip_embeddings_dim,
703
+ num_image_text_embeds=num_image_text_embeds,
704
+ )
705
+
706
+ for key, value in state_dict.items():
707
+ diffusers_name = key.replace("proj", "image_embeds")
708
+ updated_state_dict[diffusers_name] = value
709
+
710
+ elif "proj.3.weight" in state_dict:
711
+ # IP-Adapter Full
712
+ clip_embeddings_dim = state_dict["proj.0.weight"].shape[0]
713
+ cross_attention_dim = state_dict["proj.3.weight"].shape[0]
714
+
715
+ image_projection = IPAdapterFullImageProjection(
716
+ cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim
717
+ )
718
+
719
+ for key, value in state_dict.items():
720
+ diffusers_name = key.replace("proj.0", "ff.net.0.proj")
721
+ diffusers_name = diffusers_name.replace("proj.2", "ff.net.2")
722
+ diffusers_name = diffusers_name.replace("proj.3", "norm")
723
+ updated_state_dict[diffusers_name] = value
724
+
725
+ else:
726
+ # IP-Adapter Plus
727
+ num_image_text_embeds = state_dict["latents"].shape[1]
728
+ embed_dims = state_dict["proj_in.weight"].shape[1]
729
+ output_dims = state_dict["proj_out.weight"].shape[0]
730
+ hidden_dims = state_dict["latents"].shape[2]
731
+ heads = state_dict["layers.0.0.to_q.weight"].shape[0] // 64
732
+
733
+ image_projection = IPAdapterPlusImageProjection(
734
+ embed_dims=embed_dims,
735
+ output_dims=output_dims,
736
+ hidden_dims=hidden_dims,
737
+ heads=heads,
738
+ num_queries=num_image_text_embeds,
739
+ )
740
+
741
+ for key, value in state_dict.items():
742
+ diffusers_name = key.replace("0.to", "2.to")
743
+ diffusers_name = diffusers_name.replace("1.0.weight", "3.0.weight")
744
+ diffusers_name = diffusers_name.replace("1.0.bias", "3.0.bias")
745
+ diffusers_name = diffusers_name.replace("1.1.weight", "3.1.net.0.proj.weight")
746
+ diffusers_name = diffusers_name.replace("1.3.weight", "3.1.net.2.weight")
747
+
748
+ if "norm1" in diffusers_name:
749
+ updated_state_dict[diffusers_name.replace("0.norm1", "0")] = value
750
+ elif "norm2" in diffusers_name:
751
+ updated_state_dict[diffusers_name.replace("0.norm2", "1")] = value
752
+ elif "to_kv" in diffusers_name:
753
+ v_chunk = value.chunk(2, dim=0)
754
+ updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0]
755
+ updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1]
756
+ elif "to_out" in diffusers_name:
757
+ updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value
758
+ else:
759
+ updated_state_dict[diffusers_name] = value
760
+
761
+ image_projection.load_state_dict(updated_state_dict)
762
+ return image_projection
763
+
764
+ def _load_ip_adapter_weights(self, state_dict):
765
+ from ..models.attention_processor import (
766
+ AttnProcessor,
767
+ AttnProcessor2_0,
768
+ IPAdapterAttnProcessor,
769
+ IPAdapterAttnProcessor2_0,
770
+ )
771
+
772
+ if "proj.weight" in state_dict["image_proj"]:
773
+ # IP-Adapter
774
+ num_image_text_embeds = 4
775
+ elif "proj.3.weight" in state_dict["image_proj"]:
776
+ # IP-Adapter Full Face
777
+ num_image_text_embeds = 257 # 256 CLIP tokens + 1 CLS token
778
+ else:
779
+ # IP-Adapter Plus
780
+ num_image_text_embeds = state_dict["image_proj"]["latents"].shape[1]
781
+
782
+ # Set encoder_hid_proj after loading ip_adapter weights,
783
+ # because `IPAdapterPlusImageProjection` also has `attn_processors`.
784
+ self.encoder_hid_proj = None
785
+
786
+ # set ip-adapter cross-attention processors & load state_dict
787
+ attn_procs = {}
788
+ key_id = 1
789
+ for name in self.attn_processors.keys():
790
+ cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim
791
+ if name.startswith("mid_block"):
792
+ hidden_size = self.config.block_out_channels[-1]
793
+ elif name.startswith("up_blocks"):
794
+ block_id = int(name[len("up_blocks.")])
795
+ hidden_size = list(reversed(self.config.block_out_channels))[block_id]
796
+ elif name.startswith("down_blocks"):
797
+ block_id = int(name[len("down_blocks.")])
798
+ hidden_size = self.config.block_out_channels[block_id]
799
+ if cross_attention_dim is None or "motion_modules" in name:
800
+ attn_processor_class = (
801
+ AttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else AttnProcessor
802
+ )
803
+ attn_procs[name] = attn_processor_class()
804
+ else:
805
+ attn_processor_class = (
806
+ IPAdapterAttnProcessor2_0 if hasattr(F, "scaled_dot_product_attention") else IPAdapterAttnProcessor
807
+ )
808
+ attn_procs[name] = attn_processor_class(
809
+ hidden_size=hidden_size,
810
+ cross_attention_dim=cross_attention_dim,
811
+ scale=1.0,
812
+ num_tokens=num_image_text_embeds,
813
+ ).to(dtype=self.dtype, device=self.device)
814
+
815
+ value_dict = {}
816
+ for k, w in attn_procs[name].state_dict().items():
817
+ value_dict.update({f"{k}": state_dict["ip_adapter"][f"{key_id}.{k}"]})
818
+
819
+ attn_procs[name].load_state_dict(value_dict)
820
+ key_id += 2
821
+
822
+ self.set_attn_processor(attn_procs)
823
+
824
+ # convert IP-Adapter Image Projection layers to diffusers
825
+ image_projection = self._convert_ip_adapter_image_proj_to_diffusers(state_dict["image_proj"])
826
+
827
+ self.encoder_hid_proj = image_projection.to(device=self.device, dtype=self.dtype)
828
+ self.config.encoder_hid_dim_type = "ip_image_proj"
diffusers/loaders/utils.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Dict
16
+
17
+ import torch
18
+
19
+
20
+ class AttnProcsLayers(torch.nn.Module):
21
+ def __init__(self, state_dict: Dict[str, torch.Tensor]):
22
+ super().__init__()
23
+ self.layers = torch.nn.ModuleList(state_dict.values())
24
+ self.mapping = dict(enumerate(state_dict.keys()))
25
+ self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
26
+
27
+ # .processor for unet, .self_attn for text encoder
28
+ self.split_keys = [".processor", ".self_attn"]
29
+
30
+ # we add a hook to state_dict() and load_state_dict() so that the
31
+ # naming fits with `unet.attn_processors`
32
+ def map_to(module, state_dict, *args, **kwargs):
33
+ new_state_dict = {}
34
+ for key, value in state_dict.items():
35
+ num = int(key.split(".")[1]) # 0 is always "layers"
36
+ new_key = key.replace(f"layers.{num}", module.mapping[num])
37
+ new_state_dict[new_key] = value
38
+
39
+ return new_state_dict
40
+
41
+ def remap_key(key, state_dict):
42
+ for k in self.split_keys:
43
+ if k in key:
44
+ return key.split(k)[0] + k
45
+
46
+ raise ValueError(
47
+ f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
48
+ )
49
+
50
+ def map_from(module, state_dict, *args, **kwargs):
51
+ all_keys = list(state_dict.keys())
52
+ for key in all_keys:
53
+ replace_key = remap_key(key, state_dict)
54
+ new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
55
+ state_dict[new_key] = state_dict[key]
56
+ del state_dict[key]
57
+
58
+ self._register_state_dict_hook(map_to)
59
+ self._register_load_state_dict_pre_hook(map_from, with_module=True)
diffusers/models/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Models
2
+
3
+ For more detail on the models, please refer to the [docs](https://huggingface.co/docs/diffusers/api/models/overview).
diffusers/models/__init__.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import TYPE_CHECKING
16
+
17
+ from ..utils import (
18
+ DIFFUSERS_SLOW_IMPORT,
19
+ _LazyModule,
20
+ is_flax_available,
21
+ is_torch_available,
22
+ )
23
+
24
+
25
+ _import_structure = {}
26
+
27
+ if is_torch_available():
28
+ _import_structure["adapter"] = ["MultiAdapter", "T2IAdapter"]
29
+ _import_structure["autoencoders.autoencoder_asym_kl"] = ["AsymmetricAutoencoderKL"]
30
+ _import_structure["autoencoders.autoencoder_kl"] = ["AutoencoderKL"]
31
+ _import_structure["autoencoders.autoencoder_kl_temporal_decoder"] = ["AutoencoderKLTemporalDecoder"]
32
+ _import_structure["autoencoders.autoencoder_tiny"] = ["AutoencoderTiny"]
33
+ _import_structure["autoencoders.consistency_decoder_vae"] = ["ConsistencyDecoderVAE"]
34
+ _import_structure["controlnet"] = ["ControlNetModel"]
35
+ _import_structure["dual_transformer_2d"] = ["DualTransformer2DModel"]
36
+ _import_structure["embeddings"] = ["ImageProjection"]
37
+ _import_structure["modeling_utils"] = ["ModelMixin"]
38
+ _import_structure["prior_transformer"] = ["PriorTransformer"]
39
+ _import_structure["t5_film_transformer"] = ["T5FilmDecoder"]
40
+ _import_structure["transformer_2d"] = ["Transformer2DModel"]
41
+ _import_structure["transformer_temporal"] = ["TransformerTemporalModel"]
42
+ _import_structure["unet_1d"] = ["UNet1DModel"]
43
+ _import_structure["unet_2d"] = ["UNet2DModel"]
44
+ _import_structure["unet_2d_condition"] = ["UNet2DConditionModel"]
45
+ _import_structure["unet_3d_condition"] = ["UNet3DConditionModel"]
46
+ _import_structure["unet_kandinsky3"] = ["Kandinsky3UNet"]
47
+ _import_structure["unet_motion_model"] = ["MotionAdapter", "UNetMotionModel"]
48
+ _import_structure["unet_spatio_temporal_condition"] = ["UNetSpatioTemporalConditionModel"]
49
+ _import_structure["uvit_2d"] = ["UVit2DModel"]
50
+ _import_structure["vq_model"] = ["VQModel"]
51
+
52
+ if is_flax_available():
53
+ _import_structure["controlnet_flax"] = ["FlaxControlNetModel"]
54
+ _import_structure["unet_2d_condition_flax"] = ["FlaxUNet2DConditionModel"]
55
+ _import_structure["vae_flax"] = ["FlaxAutoencoderKL"]
56
+
57
+
58
+ if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
59
+ if is_torch_available():
60
+ from .adapter import MultiAdapter, T2IAdapter
61
+ from .autoencoders import (
62
+ AsymmetricAutoencoderKL,
63
+ AutoencoderKL,
64
+ AutoencoderKLTemporalDecoder,
65
+ AutoencoderTiny,
66
+ ConsistencyDecoderVAE,
67
+ )
68
+ from .controlnet import ControlNetModel
69
+ from .dual_transformer_2d import DualTransformer2DModel
70
+ from .embeddings import ImageProjection
71
+ from .modeling_utils import ModelMixin
72
+ from .prior_transformer import PriorTransformer
73
+ from .t5_film_transformer import T5FilmDecoder
74
+ from .transformer_2d import Transformer2DModel
75
+ from .transformer_temporal import TransformerTemporalModel
76
+ from .unet_1d import UNet1DModel
77
+ from .unet_2d import UNet2DModel
78
+ from .unet_2d_condition import UNet2DConditionModel
79
+ from .unet_3d_condition import UNet3DConditionModel
80
+ from .unet_kandinsky3 import Kandinsky3UNet
81
+ from .unet_motion_model import MotionAdapter, UNetMotionModel
82
+ from .unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel
83
+ from .uvit_2d import UVit2DModel
84
+ from .vq_model import VQModel
85
+
86
+ if is_flax_available():
87
+ from .controlnet_flax import FlaxControlNetModel
88
+ from .unet_2d_condition_flax import FlaxUNet2DConditionModel
89
+ from .vae_flax import FlaxAutoencoderKL
90
+
91
+ else:
92
+ import sys
93
+
94
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
diffusers/models/activations.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 HuggingFace Inc.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import torch
17
+ import torch.nn.functional as F
18
+ from torch import nn
19
+
20
+ from ..utils import USE_PEFT_BACKEND
21
+ from .lora import LoRACompatibleLinear
22
+
23
+
24
+ ACTIVATION_FUNCTIONS = {
25
+ "swish": nn.SiLU(),
26
+ "silu": nn.SiLU(),
27
+ "mish": nn.Mish(),
28
+ "gelu": nn.GELU(),
29
+ "relu": nn.ReLU(),
30
+ }
31
+
32
+
33
+ def get_activation(act_fn: str) -> nn.Module:
34
+ """Helper function to get activation function from string.
35
+
36
+ Args:
37
+ act_fn (str): Name of activation function.
38
+
39
+ Returns:
40
+ nn.Module: Activation function.
41
+ """
42
+
43
+ act_fn = act_fn.lower()
44
+ if act_fn in ACTIVATION_FUNCTIONS:
45
+ return ACTIVATION_FUNCTIONS[act_fn]
46
+ else:
47
+ raise ValueError(f"Unsupported activation function: {act_fn}")
48
+
49
+
50
+ class GELU(nn.Module):
51
+ r"""
52
+ GELU activation function with tanh approximation support with `approximate="tanh"`.
53
+
54
+ Parameters:
55
+ dim_in (`int`): The number of channels in the input.
56
+ dim_out (`int`): The number of channels in the output.
57
+ approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation.
58
+ bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
59
+ """
60
+
61
+ def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True):
62
+ super().__init__()
63
+ self.proj = nn.Linear(dim_in, dim_out, bias=bias)
64
+ self.approximate = approximate
65
+
66
+ def gelu(self, gate: torch.Tensor) -> torch.Tensor:
67
+ if gate.device.type != "mps":
68
+ return F.gelu(gate, approximate=self.approximate)
69
+ # mps: gelu is not implemented for float16
70
+ return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
71
+
72
+ def forward(self, hidden_states):
73
+ hidden_states = self.proj(hidden_states)
74
+ hidden_states = self.gelu(hidden_states)
75
+ return hidden_states
76
+
77
+
78
+ class GEGLU(nn.Module):
79
+ r"""
80
+ A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function.
81
+
82
+ Parameters:
83
+ dim_in (`int`): The number of channels in the input.
84
+ dim_out (`int`): The number of channels in the output.
85
+ bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
86
+ """
87
+
88
+ def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
89
+ super().__init__()
90
+ linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
91
+
92
+ self.proj = linear_cls(dim_in, dim_out * 2, bias=bias)
93
+
94
+ def gelu(self, gate: torch.Tensor) -> torch.Tensor:
95
+ if gate.device.type != "mps":
96
+ return F.gelu(gate)
97
+ # mps: gelu is not implemented for float16
98
+ return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
99
+
100
+ def forward(self, hidden_states, scale: float = 1.0):
101
+ args = () if USE_PEFT_BACKEND else (scale,)
102
+ hidden_states, gate = self.proj(hidden_states, *args).chunk(2, dim=-1)
103
+ return hidden_states * self.gelu(gate)
104
+
105
+
106
+ class ApproximateGELU(nn.Module):
107
+ r"""
108
+ The approximate form of the Gaussian Error Linear Unit (GELU). For more details, see section 2 of this
109
+ [paper](https://arxiv.org/abs/1606.08415).
110
+
111
+ Parameters:
112
+ dim_in (`int`): The number of channels in the input.
113
+ dim_out (`int`): The number of channels in the output.
114
+ bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
115
+ """
116
+
117
+ def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
118
+ super().__init__()
119
+ self.proj = nn.Linear(dim_in, dim_out, bias=bias)
120
+
121
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
122
+ x = self.proj(x)
123
+ return x * torch.sigmoid(1.702 * x)
diffusers/models/adapter.py ADDED
@@ -0,0 +1,584 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import os
15
+ from typing import Callable, List, Optional, Union
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+
20
+ from ..configuration_utils import ConfigMixin, register_to_config
21
+ from ..utils import logging
22
+ from .modeling_utils import ModelMixin
23
+
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ class MultiAdapter(ModelMixin):
29
+ r"""
30
+ MultiAdapter is a wrapper model that contains multiple adapter models and merges their outputs according to
31
+ user-assigned weighting.
32
+
33
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
34
+ implements for all the model (such as downloading or saving, etc.)
35
+
36
+ Parameters:
37
+ adapters (`List[T2IAdapter]`, *optional*, defaults to None):
38
+ A list of `T2IAdapter` model instances.
39
+ """
40
+
41
+ def __init__(self, adapters: List["T2IAdapter"]):
42
+ super(MultiAdapter, self).__init__()
43
+
44
+ self.num_adapter = len(adapters)
45
+ self.adapters = nn.ModuleList(adapters)
46
+
47
+ if len(adapters) == 0:
48
+ raise ValueError("Expecting at least one adapter")
49
+
50
+ if len(adapters) == 1:
51
+ raise ValueError("For a single adapter, please use the `T2IAdapter` class instead of `MultiAdapter`")
52
+
53
+ # The outputs from each adapter are added together with a weight.
54
+ # This means that the change in dimensions from downsampling must
55
+ # be the same for all adapters. Inductively, it also means the
56
+ # downscale_factor and total_downscale_factor must be the same for all
57
+ # adapters.
58
+ first_adapter_total_downscale_factor = adapters[0].total_downscale_factor
59
+ first_adapter_downscale_factor = adapters[0].downscale_factor
60
+ for idx in range(1, len(adapters)):
61
+ if (
62
+ adapters[idx].total_downscale_factor != first_adapter_total_downscale_factor
63
+ or adapters[idx].downscale_factor != first_adapter_downscale_factor
64
+ ):
65
+ raise ValueError(
66
+ f"Expecting all adapters to have the same downscaling behavior, but got:\n"
67
+ f"adapters[0].total_downscale_factor={first_adapter_total_downscale_factor}\n"
68
+ f"adapters[0].downscale_factor={first_adapter_downscale_factor}\n"
69
+ f"adapter[`{idx}`].total_downscale_factor={adapters[idx].total_downscale_factor}\n"
70
+ f"adapter[`{idx}`].downscale_factor={adapters[idx].downscale_factor}"
71
+ )
72
+
73
+ self.total_downscale_factor = first_adapter_total_downscale_factor
74
+ self.downscale_factor = first_adapter_downscale_factor
75
+
76
+ def forward(self, xs: torch.Tensor, adapter_weights: Optional[List[float]] = None) -> List[torch.Tensor]:
77
+ r"""
78
+ Args:
79
+ xs (`torch.Tensor`):
80
+ (batch, channel, height, width) input images for multiple adapter models concated along dimension 1,
81
+ `channel` should equal to `num_adapter` * "number of channel of image".
82
+ adapter_weights (`List[float]`, *optional*, defaults to None):
83
+ List of floats representing the weight which will be multiply to each adapter's output before adding
84
+ them together.
85
+ """
86
+ if adapter_weights is None:
87
+ adapter_weights = torch.tensor([1 / self.num_adapter] * self.num_adapter)
88
+ else:
89
+ adapter_weights = torch.tensor(adapter_weights)
90
+
91
+ accume_state = None
92
+ for x, w, adapter in zip(xs, adapter_weights, self.adapters):
93
+ features = adapter(x)
94
+ if accume_state is None:
95
+ accume_state = features
96
+ for i in range(len(accume_state)):
97
+ accume_state[i] = w * accume_state[i]
98
+ else:
99
+ for i in range(len(features)):
100
+ accume_state[i] += w * features[i]
101
+ return accume_state
102
+
103
+ def save_pretrained(
104
+ self,
105
+ save_directory: Union[str, os.PathLike],
106
+ is_main_process: bool = True,
107
+ save_function: Callable = None,
108
+ safe_serialization: bool = True,
109
+ variant: Optional[str] = None,
110
+ ):
111
+ """
112
+ Save a model and its configuration file to a directory, so that it can be re-loaded using the
113
+ `[`~models.adapter.MultiAdapter.from_pretrained`]` class method.
114
+
115
+ Arguments:
116
+ save_directory (`str` or `os.PathLike`):
117
+ Directory to which to save. Will be created if it doesn't exist.
118
+ is_main_process (`bool`, *optional*, defaults to `True`):
119
+ Whether the process calling this is the main process or not. Useful when in distributed training like
120
+ TPUs and need to call this function on all processes. In this case, set `is_main_process=True` only on
121
+ the main process to avoid race conditions.
122
+ save_function (`Callable`):
123
+ The function to use to save the state dictionary. Useful on distributed training like TPUs when one
124
+ need to replace `torch.save` by another method. Can be configured with the environment variable
125
+ `DIFFUSERS_SAVE_MODE`.
126
+ safe_serialization (`bool`, *optional*, defaults to `True`):
127
+ Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
128
+ variant (`str`, *optional*):
129
+ If specified, weights are saved in the format pytorch_model.<variant>.bin.
130
+ """
131
+ idx = 0
132
+ model_path_to_save = save_directory
133
+ for adapter in self.adapters:
134
+ adapter.save_pretrained(
135
+ model_path_to_save,
136
+ is_main_process=is_main_process,
137
+ save_function=save_function,
138
+ safe_serialization=safe_serialization,
139
+ variant=variant,
140
+ )
141
+
142
+ idx += 1
143
+ model_path_to_save = model_path_to_save + f"_{idx}"
144
+
145
+ @classmethod
146
+ def from_pretrained(cls, pretrained_model_path: Optional[Union[str, os.PathLike]], **kwargs):
147
+ r"""
148
+ Instantiate a pretrained MultiAdapter model from multiple pre-trained adapter models.
149
+
150
+ The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
151
+ the model, you should first set it back in training mode with `model.train()`.
152
+
153
+ The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
154
+ pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
155
+ task.
156
+
157
+ The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
158
+ weights are discarded.
159
+
160
+ Parameters:
161
+ pretrained_model_path (`os.PathLike`):
162
+ A path to a *directory* containing model weights saved using
163
+ [`~diffusers.models.adapter.MultiAdapter.save_pretrained`], e.g., `./my_model_directory/adapter`.
164
+ torch_dtype (`str` or `torch.dtype`, *optional*):
165
+ Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
166
+ will be automatically derived from the model's weights.
167
+ output_loading_info(`bool`, *optional*, defaults to `False`):
168
+ Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
169
+ device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
170
+ A map that specifies where each submodule should go. It doesn't need to be refined to each
171
+ parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
172
+ same device.
173
+
174
+ To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
175
+ more information about each option see [designing a device
176
+ map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
177
+ max_memory (`Dict`, *optional*):
178
+ A dictionary device identifier to maximum memory. Will default to the maximum memory available for each
179
+ GPU and the available CPU RAM if unset.
180
+ low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
181
+ Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
182
+ also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
183
+ model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
184
+ setting this argument to `True` will raise an error.
185
+ variant (`str`, *optional*):
186
+ If specified load weights from `variant` filename, *e.g.* pytorch_model.<variant>.bin. `variant` is
187
+ ignored when using `from_flax`.
188
+ use_safetensors (`bool`, *optional*, defaults to `None`):
189
+ If set to `None`, the `safetensors` weights will be downloaded if they're available **and** if the
190
+ `safetensors` library is installed. If set to `True`, the model will be forcibly loaded from
191
+ `safetensors` weights. If set to `False`, loading will *not* use `safetensors`.
192
+ """
193
+ idx = 0
194
+ adapters = []
195
+
196
+ # load adapter and append to list until no adapter directory exists anymore
197
+ # first adapter has to be saved under `./mydirectory/adapter` to be compliant with `DiffusionPipeline.from_pretrained`
198
+ # second, third, ... adapters have to be saved under `./mydirectory/adapter_1`, `./mydirectory/adapter_2`, ...
199
+ model_path_to_load = pretrained_model_path
200
+ while os.path.isdir(model_path_to_load):
201
+ adapter = T2IAdapter.from_pretrained(model_path_to_load, **kwargs)
202
+ adapters.append(adapter)
203
+
204
+ idx += 1
205
+ model_path_to_load = pretrained_model_path + f"_{idx}"
206
+
207
+ logger.info(f"{len(adapters)} adapters loaded from {pretrained_model_path}.")
208
+
209
+ if len(adapters) == 0:
210
+ raise ValueError(
211
+ f"No T2IAdapters found under {os.path.dirname(pretrained_model_path)}. Expected at least {pretrained_model_path + '_0'}."
212
+ )
213
+
214
+ return cls(adapters)
215
+
216
+
217
+ class T2IAdapter(ModelMixin, ConfigMixin):
218
+ r"""
219
+ A simple ResNet-like model that accepts images containing control signals such as keyposes and depth. The model
220
+ generates multiple feature maps that are used as additional conditioning in [`UNet2DConditionModel`]. The model's
221
+ architecture follows the original implementation of
222
+ [Adapter](https://github.com/TencentARC/T2I-Adapter/blob/686de4681515662c0ac2ffa07bf5dda83af1038a/ldm/modules/encoders/adapter.py#L97)
223
+ and
224
+ [AdapterLight](https://github.com/TencentARC/T2I-Adapter/blob/686de4681515662c0ac2ffa07bf5dda83af1038a/ldm/modules/encoders/adapter.py#L235).
225
+
226
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library
227
+ implements for all the model (such as downloading or saving, etc.)
228
+
229
+ Parameters:
230
+ in_channels (`int`, *optional*, defaults to 3):
231
+ Number of channels of Aapter's input(*control image*). Set this parameter to 1 if you're using gray scale
232
+ image as *control image*.
233
+ channels (`List[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
234
+ The number of channel of each downsample block's output hidden state. The `len(block_out_channels)` will
235
+ also determine the number of downsample blocks in the Adapter.
236
+ num_res_blocks (`int`, *optional*, defaults to 2):
237
+ Number of ResNet blocks in each downsample block.
238
+ downscale_factor (`int`, *optional*, defaults to 8):
239
+ A factor that determines the total downscale factor of the Adapter.
240
+ adapter_type (`str`, *optional*, defaults to `full_adapter`):
241
+ The type of Adapter to use. Choose either `full_adapter` or `full_adapter_xl` or `light_adapter`.
242
+ """
243
+
244
+ @register_to_config
245
+ def __init__(
246
+ self,
247
+ in_channels: int = 3,
248
+ channels: List[int] = [320, 640, 1280, 1280],
249
+ num_res_blocks: int = 2,
250
+ downscale_factor: int = 8,
251
+ adapter_type: str = "full_adapter",
252
+ ):
253
+ super().__init__()
254
+
255
+ if adapter_type == "full_adapter":
256
+ self.adapter = FullAdapter(in_channels, channels, num_res_blocks, downscale_factor)
257
+ elif adapter_type == "full_adapter_xl":
258
+ self.adapter = FullAdapterXL(in_channels, channels, num_res_blocks, downscale_factor)
259
+ elif adapter_type == "light_adapter":
260
+ self.adapter = LightAdapter(in_channels, channels, num_res_blocks, downscale_factor)
261
+ else:
262
+ raise ValueError(
263
+ f"Unsupported adapter_type: '{adapter_type}'. Choose either 'full_adapter' or "
264
+ "'full_adapter_xl' or 'light_adapter'."
265
+ )
266
+
267
+ def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
268
+ r"""
269
+ This function processes the input tensor `x` through the adapter model and returns a list of feature tensors,
270
+ each representing information extracted at a different scale from the input. The length of the list is
271
+ determined by the number of downsample blocks in the Adapter, as specified by the `channels` and
272
+ `num_res_blocks` parameters during initialization.
273
+ """
274
+ return self.adapter(x)
275
+
276
+ @property
277
+ def total_downscale_factor(self):
278
+ return self.adapter.total_downscale_factor
279
+
280
+ @property
281
+ def downscale_factor(self):
282
+ """The downscale factor applied in the T2I-Adapter's initial pixel unshuffle operation. If an input image's dimensions are
283
+ not evenly divisible by the downscale_factor then an exception will be raised.
284
+ """
285
+ return self.adapter.unshuffle.downscale_factor
286
+
287
+
288
+ # full adapter
289
+
290
+
291
+ class FullAdapter(nn.Module):
292
+ r"""
293
+ See [`T2IAdapter`] for more information.
294
+ """
295
+
296
+ def __init__(
297
+ self,
298
+ in_channels: int = 3,
299
+ channels: List[int] = [320, 640, 1280, 1280],
300
+ num_res_blocks: int = 2,
301
+ downscale_factor: int = 8,
302
+ ):
303
+ super().__init__()
304
+
305
+ in_channels = in_channels * downscale_factor**2
306
+
307
+ self.unshuffle = nn.PixelUnshuffle(downscale_factor)
308
+ self.conv_in = nn.Conv2d(in_channels, channels[0], kernel_size=3, padding=1)
309
+
310
+ self.body = nn.ModuleList(
311
+ [
312
+ AdapterBlock(channels[0], channels[0], num_res_blocks),
313
+ *[
314
+ AdapterBlock(channels[i - 1], channels[i], num_res_blocks, down=True)
315
+ for i in range(1, len(channels))
316
+ ],
317
+ ]
318
+ )
319
+
320
+ self.total_downscale_factor = downscale_factor * 2 ** (len(channels) - 1)
321
+
322
+ def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
323
+ r"""
324
+ This method processes the input tensor `x` through the FullAdapter model and performs operations including
325
+ pixel unshuffling, convolution, and a stack of AdapterBlocks. It returns a list of feature tensors, each
326
+ capturing information at a different stage of processing within the FullAdapter model. The number of feature
327
+ tensors in the list is determined by the number of downsample blocks specified during initialization.
328
+ """
329
+ x = self.unshuffle(x)
330
+ x = self.conv_in(x)
331
+
332
+ features = []
333
+
334
+ for block in self.body:
335
+ x = block(x)
336
+ features.append(x)
337
+
338
+ return features
339
+
340
+
341
+ class FullAdapterXL(nn.Module):
342
+ r"""
343
+ See [`T2IAdapter`] for more information.
344
+ """
345
+
346
+ def __init__(
347
+ self,
348
+ in_channels: int = 3,
349
+ channels: List[int] = [320, 640, 1280, 1280],
350
+ num_res_blocks: int = 2,
351
+ downscale_factor: int = 16,
352
+ ):
353
+ super().__init__()
354
+
355
+ in_channels = in_channels * downscale_factor**2
356
+
357
+ self.unshuffle = nn.PixelUnshuffle(downscale_factor)
358
+ self.conv_in = nn.Conv2d(in_channels, channels[0], kernel_size=3, padding=1)
359
+
360
+ self.body = []
361
+ # blocks to extract XL features with dimensions of [320, 64, 64], [640, 64, 64], [1280, 32, 32], [1280, 32, 32]
362
+ for i in range(len(channels)):
363
+ if i == 1:
364
+ self.body.append(AdapterBlock(channels[i - 1], channels[i], num_res_blocks))
365
+ elif i == 2:
366
+ self.body.append(AdapterBlock(channels[i - 1], channels[i], num_res_blocks, down=True))
367
+ else:
368
+ self.body.append(AdapterBlock(channels[i], channels[i], num_res_blocks))
369
+
370
+ self.body = nn.ModuleList(self.body)
371
+ # XL has only one downsampling AdapterBlock.
372
+ self.total_downscale_factor = downscale_factor * 2
373
+
374
+ def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
375
+ r"""
376
+ This method takes the tensor x as input and processes it through FullAdapterXL model. It consists of operations
377
+ including unshuffling pixels, applying convolution layer and appending each block into list of feature tensors.
378
+ """
379
+ x = self.unshuffle(x)
380
+ x = self.conv_in(x)
381
+
382
+ features = []
383
+
384
+ for block in self.body:
385
+ x = block(x)
386
+ features.append(x)
387
+
388
+ return features
389
+
390
+
391
+ class AdapterBlock(nn.Module):
392
+ r"""
393
+ An AdapterBlock is a helper model that contains multiple ResNet-like blocks. It is used in the `FullAdapter` and
394
+ `FullAdapterXL` models.
395
+
396
+ Parameters:
397
+ in_channels (`int`):
398
+ Number of channels of AdapterBlock's input.
399
+ out_channels (`int`):
400
+ Number of channels of AdapterBlock's output.
401
+ num_res_blocks (`int`):
402
+ Number of ResNet blocks in the AdapterBlock.
403
+ down (`bool`, *optional*, defaults to `False`):
404
+ Whether to perform downsampling on AdapterBlock's input.
405
+ """
406
+
407
+ def __init__(self, in_channels: int, out_channels: int, num_res_blocks: int, down: bool = False):
408
+ super().__init__()
409
+
410
+ self.downsample = None
411
+ if down:
412
+ self.downsample = nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True)
413
+
414
+ self.in_conv = None
415
+ if in_channels != out_channels:
416
+ self.in_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
417
+
418
+ self.resnets = nn.Sequential(
419
+ *[AdapterResnetBlock(out_channels) for _ in range(num_res_blocks)],
420
+ )
421
+
422
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
423
+ r"""
424
+ This method takes tensor x as input and performs operations downsampling and convolutional layers if the
425
+ self.downsample and self.in_conv properties of AdapterBlock model are specified. Then it applies a series of
426
+ residual blocks to the input tensor.
427
+ """
428
+ if self.downsample is not None:
429
+ x = self.downsample(x)
430
+
431
+ if self.in_conv is not None:
432
+ x = self.in_conv(x)
433
+
434
+ x = self.resnets(x)
435
+
436
+ return x
437
+
438
+
439
+ class AdapterResnetBlock(nn.Module):
440
+ r"""
441
+ An `AdapterResnetBlock` is a helper model that implements a ResNet-like block.
442
+
443
+ Parameters:
444
+ channels (`int`):
445
+ Number of channels of AdapterResnetBlock's input and output.
446
+ """
447
+
448
+ def __init__(self, channels: int):
449
+ super().__init__()
450
+ self.block1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
451
+ self.act = nn.ReLU()
452
+ self.block2 = nn.Conv2d(channels, channels, kernel_size=1)
453
+
454
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
455
+ r"""
456
+ This method takes input tensor x and applies a convolutional layer, ReLU activation, and another convolutional
457
+ layer on the input tensor. It returns addition with the input tensor.
458
+ """
459
+
460
+ h = self.act(self.block1(x))
461
+ h = self.block2(h)
462
+
463
+ return h + x
464
+
465
+
466
+ # light adapter
467
+
468
+
469
+ class LightAdapter(nn.Module):
470
+ r"""
471
+ See [`T2IAdapter`] for more information.
472
+ """
473
+
474
+ def __init__(
475
+ self,
476
+ in_channels: int = 3,
477
+ channels: List[int] = [320, 640, 1280],
478
+ num_res_blocks: int = 4,
479
+ downscale_factor: int = 8,
480
+ ):
481
+ super().__init__()
482
+
483
+ in_channels = in_channels * downscale_factor**2
484
+
485
+ self.unshuffle = nn.PixelUnshuffle(downscale_factor)
486
+
487
+ self.body = nn.ModuleList(
488
+ [
489
+ LightAdapterBlock(in_channels, channels[0], num_res_blocks),
490
+ *[
491
+ LightAdapterBlock(channels[i], channels[i + 1], num_res_blocks, down=True)
492
+ for i in range(len(channels) - 1)
493
+ ],
494
+ LightAdapterBlock(channels[-1], channels[-1], num_res_blocks, down=True),
495
+ ]
496
+ )
497
+
498
+ self.total_downscale_factor = downscale_factor * (2 ** len(channels))
499
+
500
+ def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
501
+ r"""
502
+ This method takes the input tensor x and performs downscaling and appends it in list of feature tensors. Each
503
+ feature tensor corresponds to a different level of processing within the LightAdapter.
504
+ """
505
+ x = self.unshuffle(x)
506
+
507
+ features = []
508
+
509
+ for block in self.body:
510
+ x = block(x)
511
+ features.append(x)
512
+
513
+ return features
514
+
515
+
516
+ class LightAdapterBlock(nn.Module):
517
+ r"""
518
+ A `LightAdapterBlock` is a helper model that contains multiple `LightAdapterResnetBlocks`. It is used in the
519
+ `LightAdapter` model.
520
+
521
+ Parameters:
522
+ in_channels (`int`):
523
+ Number of channels of LightAdapterBlock's input.
524
+ out_channels (`int`):
525
+ Number of channels of LightAdapterBlock's output.
526
+ num_res_blocks (`int`):
527
+ Number of LightAdapterResnetBlocks in the LightAdapterBlock.
528
+ down (`bool`, *optional*, defaults to `False`):
529
+ Whether to perform downsampling on LightAdapterBlock's input.
530
+ """
531
+
532
+ def __init__(self, in_channels: int, out_channels: int, num_res_blocks: int, down: bool = False):
533
+ super().__init__()
534
+ mid_channels = out_channels // 4
535
+
536
+ self.downsample = None
537
+ if down:
538
+ self.downsample = nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True)
539
+
540
+ self.in_conv = nn.Conv2d(in_channels, mid_channels, kernel_size=1)
541
+ self.resnets = nn.Sequential(*[LightAdapterResnetBlock(mid_channels) for _ in range(num_res_blocks)])
542
+ self.out_conv = nn.Conv2d(mid_channels, out_channels, kernel_size=1)
543
+
544
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
545
+ r"""
546
+ This method takes tensor x as input and performs downsampling if required. Then it applies in convolution
547
+ layer, a sequence of residual blocks, and out convolutional layer.
548
+ """
549
+ if self.downsample is not None:
550
+ x = self.downsample(x)
551
+
552
+ x = self.in_conv(x)
553
+ x = self.resnets(x)
554
+ x = self.out_conv(x)
555
+
556
+ return x
557
+
558
+
559
+ class LightAdapterResnetBlock(nn.Module):
560
+ """
561
+ A `LightAdapterResnetBlock` is a helper model that implements a ResNet-like block with a slightly different
562
+ architecture than `AdapterResnetBlock`.
563
+
564
+ Parameters:
565
+ channels (`int`):
566
+ Number of channels of LightAdapterResnetBlock's input and output.
567
+ """
568
+
569
+ def __init__(self, channels: int):
570
+ super().__init__()
571
+ self.block1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
572
+ self.act = nn.ReLU()
573
+ self.block2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
574
+
575
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
576
+ r"""
577
+ This function takes input tensor x and processes it through one convolutional layer, ReLU activation, and
578
+ another convolutional layer and adds it to input tensor.
579
+ """
580
+
581
+ h = self.act(self.block1(x))
582
+ h = self.block2(h)
583
+
584
+ return h + x
diffusers/models/attention.py ADDED
@@ -0,0 +1,668 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Any, Dict, Optional
15
+
16
+ import torch
17
+ import torch.nn.functional as F
18
+ from torch import nn
19
+
20
+ from ..utils import USE_PEFT_BACKEND
21
+ from ..utils.torch_utils import maybe_allow_in_graph
22
+ from .activations import GEGLU, GELU, ApproximateGELU
23
+ from .attention_processor import Attention
24
+ from .embeddings import SinusoidalPositionalEmbedding
25
+ from .lora import LoRACompatibleLinear
26
+ from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm
27
+
28
+
29
+ def _chunked_feed_forward(
30
+ ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
31
+ ):
32
+ # "feed_forward_chunk_size" can be used to save memory
33
+ if hidden_states.shape[chunk_dim] % chunk_size != 0:
34
+ raise ValueError(
35
+ f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
36
+ )
37
+
38
+ num_chunks = hidden_states.shape[chunk_dim] // chunk_size
39
+ if lora_scale is None:
40
+ ff_output = torch.cat(
41
+ [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
42
+ dim=chunk_dim,
43
+ )
44
+ else:
45
+ # TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
46
+ ff_output = torch.cat(
47
+ [ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
48
+ dim=chunk_dim,
49
+ )
50
+
51
+ return ff_output
52
+
53
+
54
+ @maybe_allow_in_graph
55
+ class GatedSelfAttentionDense(nn.Module):
56
+ r"""
57
+ A gated self-attention dense layer that combines visual features and object features.
58
+
59
+ Parameters:
60
+ query_dim (`int`): The number of channels in the query.
61
+ context_dim (`int`): The number of channels in the context.
62
+ n_heads (`int`): The number of heads to use for attention.
63
+ d_head (`int`): The number of channels in each head.
64
+ """
65
+
66
+ def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
67
+ super().__init__()
68
+
69
+ # we need a linear projection since we need cat visual feature and obj feature
70
+ self.linear = nn.Linear(context_dim, query_dim)
71
+
72
+ self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
73
+ self.ff = FeedForward(query_dim, activation_fn="geglu")
74
+
75
+ self.norm1 = nn.LayerNorm(query_dim)
76
+ self.norm2 = nn.LayerNorm(query_dim)
77
+
78
+ self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
79
+ self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
80
+
81
+ self.enabled = True
82
+
83
+ def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
84
+ if not self.enabled:
85
+ return x
86
+
87
+ n_visual = x.shape[1]
88
+ objs = self.linear(objs)
89
+
90
+ x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
91
+ x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
92
+
93
+ return x
94
+
95
+
96
+ @maybe_allow_in_graph
97
+ class BasicTransformerBlock(nn.Module):
98
+ r"""
99
+ A basic Transformer block.
100
+
101
+ Parameters:
102
+ dim (`int`): The number of channels in the input and output.
103
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
104
+ attention_head_dim (`int`): The number of channels in each head.
105
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
106
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
107
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
108
+ num_embeds_ada_norm (:
109
+ obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
110
+ attention_bias (:
111
+ obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
112
+ only_cross_attention (`bool`, *optional*):
113
+ Whether to use only cross-attention layers. In this case two cross attention layers are used.
114
+ double_self_attention (`bool`, *optional*):
115
+ Whether to use two self-attention layers. In this case no cross attention layers are used.
116
+ upcast_attention (`bool`, *optional*):
117
+ Whether to upcast the attention computation to float32. This is useful for mixed precision training.
118
+ norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
119
+ Whether to use learnable elementwise affine parameters for normalization.
120
+ norm_type (`str`, *optional*, defaults to `"layer_norm"`):
121
+ The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
122
+ final_dropout (`bool` *optional*, defaults to False):
123
+ Whether to apply a final dropout after the last feed-forward layer.
124
+ attention_type (`str`, *optional*, defaults to `"default"`):
125
+ The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
126
+ positional_embeddings (`str`, *optional*, defaults to `None`):
127
+ The type of positional embeddings to apply to.
128
+ num_positional_embeddings (`int`, *optional*, defaults to `None`):
129
+ The maximum number of positional embeddings to apply.
130
+ """
131
+
132
+ def __init__(
133
+ self,
134
+ dim: int,
135
+ num_attention_heads: int,
136
+ attention_head_dim: int,
137
+ dropout=0.0,
138
+ cross_attention_dim: Optional[int] = None,
139
+ activation_fn: str = "geglu",
140
+ num_embeds_ada_norm: Optional[int] = None,
141
+ attention_bias: bool = False,
142
+ only_cross_attention: bool = False,
143
+ double_self_attention: bool = False,
144
+ upcast_attention: bool = False,
145
+ norm_elementwise_affine: bool = True,
146
+ norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
147
+ norm_eps: float = 1e-5,
148
+ final_dropout: bool = False,
149
+ attention_type: str = "default",
150
+ positional_embeddings: Optional[str] = None,
151
+ num_positional_embeddings: Optional[int] = None,
152
+ ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
153
+ ada_norm_bias: Optional[int] = None,
154
+ ff_inner_dim: Optional[int] = None,
155
+ ff_bias: bool = True,
156
+ attention_out_bias: bool = True,
157
+ ):
158
+ super().__init__()
159
+ self.only_cross_attention = only_cross_attention
160
+
161
+ self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
162
+ self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
163
+ self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
164
+ self.use_layer_norm = norm_type == "layer_norm"
165
+ self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
166
+
167
+ if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
168
+ raise ValueError(
169
+ f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
170
+ f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
171
+ )
172
+
173
+ if positional_embeddings and (num_positional_embeddings is None):
174
+ raise ValueError(
175
+ "If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
176
+ )
177
+
178
+ if positional_embeddings == "sinusoidal":
179
+ self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
180
+ else:
181
+ self.pos_embed = None
182
+
183
+ # Define 3 blocks. Each block has its own normalization layer.
184
+ # 1. Self-Attn
185
+ if self.use_ada_layer_norm:
186
+ self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
187
+ elif self.use_ada_layer_norm_zero:
188
+ self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
189
+ elif self.use_ada_layer_norm_continuous:
190
+ self.norm1 = AdaLayerNormContinuous(
191
+ dim,
192
+ ada_norm_continous_conditioning_embedding_dim,
193
+ norm_elementwise_affine,
194
+ norm_eps,
195
+ ada_norm_bias,
196
+ "rms_norm",
197
+ )
198
+ else:
199
+ self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
200
+
201
+ self.attn1 = Attention(
202
+ query_dim=dim,
203
+ heads=num_attention_heads,
204
+ dim_head=attention_head_dim,
205
+ dropout=dropout,
206
+ bias=attention_bias,
207
+ cross_attention_dim=cross_attention_dim if only_cross_attention else None,
208
+ upcast_attention=upcast_attention,
209
+ out_bias=attention_out_bias,
210
+ )
211
+
212
+ # 2. Cross-Attn
213
+ if cross_attention_dim is not None or double_self_attention:
214
+ # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
215
+ # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
216
+ # the second cross attention block.
217
+ if self.use_ada_layer_norm:
218
+ self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
219
+ elif self.use_ada_layer_norm_continuous:
220
+ self.norm2 = AdaLayerNormContinuous(
221
+ dim,
222
+ ada_norm_continous_conditioning_embedding_dim,
223
+ norm_elementwise_affine,
224
+ norm_eps,
225
+ ada_norm_bias,
226
+ "rms_norm",
227
+ )
228
+ else:
229
+ self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
230
+
231
+ self.attn2 = Attention(
232
+ query_dim=dim,
233
+ cross_attention_dim=cross_attention_dim if not double_self_attention else None,
234
+ heads=num_attention_heads,
235
+ dim_head=attention_head_dim,
236
+ dropout=dropout,
237
+ bias=attention_bias,
238
+ upcast_attention=upcast_attention,
239
+ out_bias=attention_out_bias,
240
+ ) # is self-attn if encoder_hidden_states is none
241
+ else:
242
+ self.norm2 = None
243
+ self.attn2 = None
244
+
245
+ # 3. Feed-forward
246
+ if self.use_ada_layer_norm_continuous:
247
+ self.norm3 = AdaLayerNormContinuous(
248
+ dim,
249
+ ada_norm_continous_conditioning_embedding_dim,
250
+ norm_elementwise_affine,
251
+ norm_eps,
252
+ ada_norm_bias,
253
+ "layer_norm",
254
+ )
255
+ elif not self.use_ada_layer_norm_single:
256
+ self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
257
+
258
+ self.ff = FeedForward(
259
+ dim,
260
+ dropout=dropout,
261
+ activation_fn=activation_fn,
262
+ final_dropout=final_dropout,
263
+ inner_dim=ff_inner_dim,
264
+ bias=ff_bias,
265
+ )
266
+
267
+ # 4. Fuser
268
+ if attention_type == "gated" or attention_type == "gated-text-image":
269
+ self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
270
+
271
+ # 5. Scale-shift for PixArt-Alpha.
272
+ if self.use_ada_layer_norm_single:
273
+ self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
274
+
275
+ # let chunk size default to None
276
+ self._chunk_size = None
277
+ self._chunk_dim = 0
278
+
279
+ def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
280
+ # Sets chunk feed-forward
281
+ self._chunk_size = chunk_size
282
+ self._chunk_dim = dim
283
+
284
+ def forward(
285
+ self,
286
+ hidden_states: torch.FloatTensor,
287
+ attention_mask: Optional[torch.FloatTensor] = None,
288
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
289
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
290
+ timestep: Optional[torch.LongTensor] = None,
291
+ cross_attention_kwargs: Dict[str, Any] = None,
292
+ class_labels: Optional[torch.LongTensor] = None,
293
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
294
+ ) -> torch.FloatTensor:
295
+ # Notice that normalization is always applied before the real computation in the following blocks.
296
+ # 0. Self-Attention
297
+ batch_size = hidden_states.shape[0]
298
+
299
+ if self.use_ada_layer_norm:
300
+ norm_hidden_states = self.norm1(hidden_states, timestep)
301
+ elif self.use_ada_layer_norm_zero:
302
+ norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
303
+ hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
304
+ )
305
+ elif self.use_layer_norm:
306
+ norm_hidden_states = self.norm1(hidden_states)
307
+ elif self.use_ada_layer_norm_continuous:
308
+ norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
309
+ elif self.use_ada_layer_norm_single:
310
+ shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
311
+ self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
312
+ ).chunk(6, dim=1)
313
+ norm_hidden_states = self.norm1(hidden_states)
314
+ norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
315
+ norm_hidden_states = norm_hidden_states.squeeze(1)
316
+ else:
317
+ raise ValueError("Incorrect norm used")
318
+
319
+ if self.pos_embed is not None:
320
+ norm_hidden_states = self.pos_embed(norm_hidden_states)
321
+
322
+ # 1. Retrieve lora scale.
323
+ lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
324
+
325
+ # 2. Prepare GLIGEN inputs
326
+ cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
327
+ gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
328
+
329
+ attn_output = self.attn1(
330
+ norm_hidden_states,
331
+ encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
332
+ attention_mask=attention_mask,
333
+ **cross_attention_kwargs,
334
+ )
335
+ if self.use_ada_layer_norm_zero:
336
+ attn_output = gate_msa.unsqueeze(1) * attn_output
337
+ elif self.use_ada_layer_norm_single:
338
+ attn_output = gate_msa * attn_output
339
+
340
+ hidden_states = attn_output + hidden_states
341
+ if hidden_states.ndim == 4:
342
+ hidden_states = hidden_states.squeeze(1)
343
+
344
+ # 2.5 GLIGEN Control
345
+ if gligen_kwargs is not None:
346
+ hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
347
+
348
+ # 3. Cross-Attention
349
+ if self.attn2 is not None:
350
+ if self.use_ada_layer_norm:
351
+ norm_hidden_states = self.norm2(hidden_states, timestep)
352
+ elif self.use_ada_layer_norm_zero or self.use_layer_norm:
353
+ norm_hidden_states = self.norm2(hidden_states)
354
+ elif self.use_ada_layer_norm_single:
355
+ # For PixArt norm2 isn't applied here:
356
+ # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
357
+ norm_hidden_states = hidden_states
358
+ elif self.use_ada_layer_norm_continuous:
359
+ norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
360
+ else:
361
+ raise ValueError("Incorrect norm")
362
+
363
+ if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
364
+ norm_hidden_states = self.pos_embed(norm_hidden_states)
365
+
366
+ attn_output = self.attn2(
367
+ norm_hidden_states,
368
+ encoder_hidden_states=encoder_hidden_states,
369
+ attention_mask=encoder_attention_mask,
370
+ **cross_attention_kwargs,
371
+ )
372
+ hidden_states = attn_output + hidden_states
373
+
374
+ # 4. Feed-forward
375
+ if self.use_ada_layer_norm_continuous:
376
+ norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
377
+ elif not self.use_ada_layer_norm_single:
378
+ norm_hidden_states = self.norm3(hidden_states)
379
+
380
+ if self.use_ada_layer_norm_zero:
381
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
382
+
383
+ if self.use_ada_layer_norm_single:
384
+ norm_hidden_states = self.norm2(hidden_states)
385
+ norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
386
+
387
+ if self._chunk_size is not None:
388
+ # "feed_forward_chunk_size" can be used to save memory
389
+ ff_output = _chunked_feed_forward(
390
+ self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
391
+ )
392
+ else:
393
+ ff_output = self.ff(norm_hidden_states, scale=lora_scale)
394
+
395
+ if self.use_ada_layer_norm_zero:
396
+ ff_output = gate_mlp.unsqueeze(1) * ff_output
397
+ elif self.use_ada_layer_norm_single:
398
+ ff_output = gate_mlp * ff_output
399
+
400
+ hidden_states = ff_output + hidden_states
401
+ if hidden_states.ndim == 4:
402
+ hidden_states = hidden_states.squeeze(1)
403
+
404
+ return hidden_states
405
+
406
+
407
+ @maybe_allow_in_graph
408
+ class TemporalBasicTransformerBlock(nn.Module):
409
+ r"""
410
+ A basic Transformer block for video like data.
411
+
412
+ Parameters:
413
+ dim (`int`): The number of channels in the input and output.
414
+ time_mix_inner_dim (`int`): The number of channels for temporal attention.
415
+ num_attention_heads (`int`): The number of heads to use for multi-head attention.
416
+ attention_head_dim (`int`): The number of channels in each head.
417
+ cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
418
+ """
419
+
420
+ def __init__(
421
+ self,
422
+ dim: int,
423
+ time_mix_inner_dim: int,
424
+ num_attention_heads: int,
425
+ attention_head_dim: int,
426
+ cross_attention_dim: Optional[int] = None,
427
+ ):
428
+ super().__init__()
429
+ self.is_res = dim == time_mix_inner_dim
430
+
431
+ self.norm_in = nn.LayerNorm(dim)
432
+
433
+ # Define 3 blocks. Each block has its own normalization layer.
434
+ # 1. Self-Attn
435
+ self.norm_in = nn.LayerNorm(dim)
436
+ self.ff_in = FeedForward(
437
+ dim,
438
+ dim_out=time_mix_inner_dim,
439
+ activation_fn="geglu",
440
+ )
441
+
442
+ self.norm1 = nn.LayerNorm(time_mix_inner_dim)
443
+ self.attn1 = Attention(
444
+ query_dim=time_mix_inner_dim,
445
+ heads=num_attention_heads,
446
+ dim_head=attention_head_dim,
447
+ cross_attention_dim=None,
448
+ )
449
+
450
+ # 2. Cross-Attn
451
+ if cross_attention_dim is not None:
452
+ # We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
453
+ # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
454
+ # the second cross attention block.
455
+ self.norm2 = nn.LayerNorm(time_mix_inner_dim)
456
+ self.attn2 = Attention(
457
+ query_dim=time_mix_inner_dim,
458
+ cross_attention_dim=cross_attention_dim,
459
+ heads=num_attention_heads,
460
+ dim_head=attention_head_dim,
461
+ ) # is self-attn if encoder_hidden_states is none
462
+ else:
463
+ self.norm2 = None
464
+ self.attn2 = None
465
+
466
+ # 3. Feed-forward
467
+ self.norm3 = nn.LayerNorm(time_mix_inner_dim)
468
+ self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
469
+
470
+ # let chunk size default to None
471
+ self._chunk_size = None
472
+ self._chunk_dim = None
473
+
474
+ def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
475
+ # Sets chunk feed-forward
476
+ self._chunk_size = chunk_size
477
+ # chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
478
+ self._chunk_dim = 1
479
+
480
+ def forward(
481
+ self,
482
+ hidden_states: torch.FloatTensor,
483
+ num_frames: int,
484
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
485
+ ) -> torch.FloatTensor:
486
+ # Notice that normalization is always applied before the real computation in the following blocks.
487
+ # 0. Self-Attention
488
+ batch_size = hidden_states.shape[0]
489
+
490
+ batch_frames, seq_length, channels = hidden_states.shape
491
+ batch_size = batch_frames // num_frames
492
+
493
+ hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
494
+ hidden_states = hidden_states.permute(0, 2, 1, 3)
495
+ hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
496
+
497
+ residual = hidden_states
498
+ hidden_states = self.norm_in(hidden_states)
499
+
500
+ if self._chunk_size is not None:
501
+ hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
502
+ else:
503
+ hidden_states = self.ff_in(hidden_states)
504
+
505
+ if self.is_res:
506
+ hidden_states = hidden_states + residual
507
+
508
+ norm_hidden_states = self.norm1(hidden_states)
509
+ attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
510
+ hidden_states = attn_output + hidden_states
511
+
512
+ # 3. Cross-Attention
513
+ if self.attn2 is not None:
514
+ norm_hidden_states = self.norm2(hidden_states)
515
+ attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
516
+ hidden_states = attn_output + hidden_states
517
+
518
+ # 4. Feed-forward
519
+ norm_hidden_states = self.norm3(hidden_states)
520
+
521
+ if self._chunk_size is not None:
522
+ ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
523
+ else:
524
+ ff_output = self.ff(norm_hidden_states)
525
+
526
+ if self.is_res:
527
+ hidden_states = ff_output + hidden_states
528
+ else:
529
+ hidden_states = ff_output
530
+
531
+ hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
532
+ hidden_states = hidden_states.permute(0, 2, 1, 3)
533
+ hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
534
+
535
+ return hidden_states
536
+
537
+
538
+ class SkipFFTransformerBlock(nn.Module):
539
+ def __init__(
540
+ self,
541
+ dim: int,
542
+ num_attention_heads: int,
543
+ attention_head_dim: int,
544
+ kv_input_dim: int,
545
+ kv_input_dim_proj_use_bias: bool,
546
+ dropout=0.0,
547
+ cross_attention_dim: Optional[int] = None,
548
+ attention_bias: bool = False,
549
+ attention_out_bias: bool = True,
550
+ ):
551
+ super().__init__()
552
+ if kv_input_dim != dim:
553
+ self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
554
+ else:
555
+ self.kv_mapper = None
556
+
557
+ self.norm1 = RMSNorm(dim, 1e-06)
558
+
559
+ self.attn1 = Attention(
560
+ query_dim=dim,
561
+ heads=num_attention_heads,
562
+ dim_head=attention_head_dim,
563
+ dropout=dropout,
564
+ bias=attention_bias,
565
+ cross_attention_dim=cross_attention_dim,
566
+ out_bias=attention_out_bias,
567
+ )
568
+
569
+ self.norm2 = RMSNorm(dim, 1e-06)
570
+
571
+ self.attn2 = Attention(
572
+ query_dim=dim,
573
+ cross_attention_dim=cross_attention_dim,
574
+ heads=num_attention_heads,
575
+ dim_head=attention_head_dim,
576
+ dropout=dropout,
577
+ bias=attention_bias,
578
+ out_bias=attention_out_bias,
579
+ )
580
+
581
+ def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
582
+ cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
583
+
584
+ if self.kv_mapper is not None:
585
+ encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
586
+
587
+ norm_hidden_states = self.norm1(hidden_states)
588
+
589
+ attn_output = self.attn1(
590
+ norm_hidden_states,
591
+ encoder_hidden_states=encoder_hidden_states,
592
+ **cross_attention_kwargs,
593
+ )
594
+
595
+ hidden_states = attn_output + hidden_states
596
+
597
+ norm_hidden_states = self.norm2(hidden_states)
598
+
599
+ attn_output = self.attn2(
600
+ norm_hidden_states,
601
+ encoder_hidden_states=encoder_hidden_states,
602
+ **cross_attention_kwargs,
603
+ )
604
+
605
+ hidden_states = attn_output + hidden_states
606
+
607
+ return hidden_states
608
+
609
+
610
+ class FeedForward(nn.Module):
611
+ r"""
612
+ A feed-forward layer.
613
+
614
+ Parameters:
615
+ dim (`int`): The number of channels in the input.
616
+ dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
617
+ mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
618
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
619
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
620
+ final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
621
+ bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
622
+ """
623
+
624
+ def __init__(
625
+ self,
626
+ dim: int,
627
+ dim_out: Optional[int] = None,
628
+ mult: int = 4,
629
+ dropout: float = 0.0,
630
+ activation_fn: str = "geglu",
631
+ final_dropout: bool = False,
632
+ inner_dim=None,
633
+ bias: bool = True,
634
+ ):
635
+ super().__init__()
636
+ if inner_dim is None:
637
+ inner_dim = int(dim * mult)
638
+ dim_out = dim_out if dim_out is not None else dim
639
+ linear_cls = LoRACompatibleLinear if not USE_PEFT_BACKEND else nn.Linear
640
+
641
+ if activation_fn == "gelu":
642
+ act_fn = GELU(dim, inner_dim, bias=bias)
643
+ if activation_fn == "gelu-approximate":
644
+ act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
645
+ elif activation_fn == "geglu":
646
+ act_fn = GEGLU(dim, inner_dim, bias=bias)
647
+ elif activation_fn == "geglu-approximate":
648
+ act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
649
+
650
+ self.net = nn.ModuleList([])
651
+ # project in
652
+ self.net.append(act_fn)
653
+ # project dropout
654
+ self.net.append(nn.Dropout(dropout))
655
+ # project out
656
+ self.net.append(linear_cls(inner_dim, dim_out, bias=bias))
657
+ # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
658
+ if final_dropout:
659
+ self.net.append(nn.Dropout(dropout))
660
+
661
+ def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
662
+ compatible_cls = (GEGLU,) if USE_PEFT_BACKEND else (GEGLU, LoRACompatibleLinear)
663
+ for module in self.net:
664
+ if isinstance(module, compatible_cls):
665
+ hidden_states = module(hidden_states, scale)
666
+ else:
667
+ hidden_states = module(hidden_states)
668
+ return hidden_states
diffusers/models/attention_flax.py ADDED
@@ -0,0 +1,494 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import functools
16
+ import math
17
+
18
+ import flax.linen as nn
19
+ import jax
20
+ import jax.numpy as jnp
21
+
22
+
23
+ def _query_chunk_attention(query, key, value, precision, key_chunk_size: int = 4096):
24
+ """Multi-head dot product attention with a limited number of queries."""
25
+ num_kv, num_heads, k_features = key.shape[-3:]
26
+ v_features = value.shape[-1]
27
+ key_chunk_size = min(key_chunk_size, num_kv)
28
+ query = query / jnp.sqrt(k_features)
29
+
30
+ @functools.partial(jax.checkpoint, prevent_cse=False)
31
+ def summarize_chunk(query, key, value):
32
+ attn_weights = jnp.einsum("...qhd,...khd->...qhk", query, key, precision=precision)
33
+
34
+ max_score = jnp.max(attn_weights, axis=-1, keepdims=True)
35
+ max_score = jax.lax.stop_gradient(max_score)
36
+ exp_weights = jnp.exp(attn_weights - max_score)
37
+
38
+ exp_values = jnp.einsum("...vhf,...qhv->...qhf", value, exp_weights, precision=precision)
39
+ max_score = jnp.einsum("...qhk->...qh", max_score)
40
+
41
+ return (exp_values, exp_weights.sum(axis=-1), max_score)
42
+
43
+ def chunk_scanner(chunk_idx):
44
+ # julienne key array
45
+ key_chunk = jax.lax.dynamic_slice(
46
+ operand=key,
47
+ start_indices=[0] * (key.ndim - 3) + [chunk_idx, 0, 0], # [...,k,h,d]
48
+ slice_sizes=list(key.shape[:-3]) + [key_chunk_size, num_heads, k_features], # [...,k,h,d]
49
+ )
50
+
51
+ # julienne value array
52
+ value_chunk = jax.lax.dynamic_slice(
53
+ operand=value,
54
+ start_indices=[0] * (value.ndim - 3) + [chunk_idx, 0, 0], # [...,v,h,d]
55
+ slice_sizes=list(value.shape[:-3]) + [key_chunk_size, num_heads, v_features], # [...,v,h,d]
56
+ )
57
+
58
+ return summarize_chunk(query, key_chunk, value_chunk)
59
+
60
+ chunk_values, chunk_weights, chunk_max = jax.lax.map(f=chunk_scanner, xs=jnp.arange(0, num_kv, key_chunk_size))
61
+
62
+ global_max = jnp.max(chunk_max, axis=0, keepdims=True)
63
+ max_diffs = jnp.exp(chunk_max - global_max)
64
+
65
+ chunk_values *= jnp.expand_dims(max_diffs, axis=-1)
66
+ chunk_weights *= max_diffs
67
+
68
+ all_values = chunk_values.sum(axis=0)
69
+ all_weights = jnp.expand_dims(chunk_weights, -1).sum(axis=0)
70
+
71
+ return all_values / all_weights
72
+
73
+
74
+ def jax_memory_efficient_attention(
75
+ query, key, value, precision=jax.lax.Precision.HIGHEST, query_chunk_size: int = 1024, key_chunk_size: int = 4096
76
+ ):
77
+ r"""
78
+ Flax Memory-efficient multi-head dot product attention. https://arxiv.org/abs/2112.05682v2
79
+ https://github.com/AminRezaei0x443/memory-efficient-attention
80
+
81
+ Args:
82
+ query (`jnp.ndarray`): (batch..., query_length, head, query_key_depth_per_head)
83
+ key (`jnp.ndarray`): (batch..., key_value_length, head, query_key_depth_per_head)
84
+ value (`jnp.ndarray`): (batch..., key_value_length, head, value_depth_per_head)
85
+ precision (`jax.lax.Precision`, *optional*, defaults to `jax.lax.Precision.HIGHEST`):
86
+ numerical precision for computation
87
+ query_chunk_size (`int`, *optional*, defaults to 1024):
88
+ chunk size to divide query array value must divide query_length equally without remainder
89
+ key_chunk_size (`int`, *optional*, defaults to 4096):
90
+ chunk size to divide key and value array value must divide key_value_length equally without remainder
91
+
92
+ Returns:
93
+ (`jnp.ndarray`) with shape of (batch..., query_length, head, value_depth_per_head)
94
+ """
95
+ num_q, num_heads, q_features = query.shape[-3:]
96
+
97
+ def chunk_scanner(chunk_idx, _):
98
+ # julienne query array
99
+ query_chunk = jax.lax.dynamic_slice(
100
+ operand=query,
101
+ start_indices=([0] * (query.ndim - 3)) + [chunk_idx, 0, 0], # [...,q,h,d]
102
+ slice_sizes=list(query.shape[:-3]) + [min(query_chunk_size, num_q), num_heads, q_features], # [...,q,h,d]
103
+ )
104
+
105
+ return (
106
+ chunk_idx + query_chunk_size, # unused ignore it
107
+ _query_chunk_attention(
108
+ query=query_chunk, key=key, value=value, precision=precision, key_chunk_size=key_chunk_size
109
+ ),
110
+ )
111
+
112
+ _, res = jax.lax.scan(
113
+ f=chunk_scanner,
114
+ init=0,
115
+ xs=None,
116
+ length=math.ceil(num_q / query_chunk_size), # start counter # stop counter
117
+ )
118
+
119
+ return jnp.concatenate(res, axis=-3) # fuse the chunked result back
120
+
121
+
122
+ class FlaxAttention(nn.Module):
123
+ r"""
124
+ A Flax multi-head attention module as described in: https://arxiv.org/abs/1706.03762
125
+
126
+ Parameters:
127
+ query_dim (:obj:`int`):
128
+ Input hidden states dimension
129
+ heads (:obj:`int`, *optional*, defaults to 8):
130
+ Number of heads
131
+ dim_head (:obj:`int`, *optional*, defaults to 64):
132
+ Hidden states dimension inside each head
133
+ dropout (:obj:`float`, *optional*, defaults to 0.0):
134
+ Dropout rate
135
+ use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
136
+ enable memory efficient attention https://arxiv.org/abs/2112.05682
137
+ split_head_dim (`bool`, *optional*, defaults to `False`):
138
+ Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
139
+ enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
140
+ dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
141
+ Parameters `dtype`
142
+
143
+ """
144
+
145
+ query_dim: int
146
+ heads: int = 8
147
+ dim_head: int = 64
148
+ dropout: float = 0.0
149
+ use_memory_efficient_attention: bool = False
150
+ split_head_dim: bool = False
151
+ dtype: jnp.dtype = jnp.float32
152
+
153
+ def setup(self):
154
+ inner_dim = self.dim_head * self.heads
155
+ self.scale = self.dim_head**-0.5
156
+
157
+ # Weights were exported with old names {to_q, to_k, to_v, to_out}
158
+ self.query = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_q")
159
+ self.key = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_k")
160
+ self.value = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_v")
161
+
162
+ self.proj_attn = nn.Dense(self.query_dim, dtype=self.dtype, name="to_out_0")
163
+ self.dropout_layer = nn.Dropout(rate=self.dropout)
164
+
165
+ def reshape_heads_to_batch_dim(self, tensor):
166
+ batch_size, seq_len, dim = tensor.shape
167
+ head_size = self.heads
168
+ tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
169
+ tensor = jnp.transpose(tensor, (0, 2, 1, 3))
170
+ tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
171
+ return tensor
172
+
173
+ def reshape_batch_dim_to_heads(self, tensor):
174
+ batch_size, seq_len, dim = tensor.shape
175
+ head_size = self.heads
176
+ tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
177
+ tensor = jnp.transpose(tensor, (0, 2, 1, 3))
178
+ tensor = tensor.reshape(batch_size // head_size, seq_len, dim * head_size)
179
+ return tensor
180
+
181
+ def __call__(self, hidden_states, context=None, deterministic=True):
182
+ context = hidden_states if context is None else context
183
+
184
+ query_proj = self.query(hidden_states)
185
+ key_proj = self.key(context)
186
+ value_proj = self.value(context)
187
+
188
+ if self.split_head_dim:
189
+ b = hidden_states.shape[0]
190
+ query_states = jnp.reshape(query_proj, (b, -1, self.heads, self.dim_head))
191
+ key_states = jnp.reshape(key_proj, (b, -1, self.heads, self.dim_head))
192
+ value_states = jnp.reshape(value_proj, (b, -1, self.heads, self.dim_head))
193
+ else:
194
+ query_states = self.reshape_heads_to_batch_dim(query_proj)
195
+ key_states = self.reshape_heads_to_batch_dim(key_proj)
196
+ value_states = self.reshape_heads_to_batch_dim(value_proj)
197
+
198
+ if self.use_memory_efficient_attention:
199
+ query_states = query_states.transpose(1, 0, 2)
200
+ key_states = key_states.transpose(1, 0, 2)
201
+ value_states = value_states.transpose(1, 0, 2)
202
+
203
+ # this if statement create a chunk size for each layer of the unet
204
+ # the chunk size is equal to the query_length dimension of the deepest layer of the unet
205
+
206
+ flatten_latent_dim = query_states.shape[-3]
207
+ if flatten_latent_dim % 64 == 0:
208
+ query_chunk_size = int(flatten_latent_dim / 64)
209
+ elif flatten_latent_dim % 16 == 0:
210
+ query_chunk_size = int(flatten_latent_dim / 16)
211
+ elif flatten_latent_dim % 4 == 0:
212
+ query_chunk_size = int(flatten_latent_dim / 4)
213
+ else:
214
+ query_chunk_size = int(flatten_latent_dim)
215
+
216
+ hidden_states = jax_memory_efficient_attention(
217
+ query_states, key_states, value_states, query_chunk_size=query_chunk_size, key_chunk_size=4096 * 4
218
+ )
219
+
220
+ hidden_states = hidden_states.transpose(1, 0, 2)
221
+ else:
222
+ # compute attentions
223
+ if self.split_head_dim:
224
+ attention_scores = jnp.einsum("b t n h, b f n h -> b n f t", key_states, query_states)
225
+ else:
226
+ attention_scores = jnp.einsum("b i d, b j d->b i j", query_states, key_states)
227
+
228
+ attention_scores = attention_scores * self.scale
229
+ attention_probs = nn.softmax(attention_scores, axis=-1 if self.split_head_dim else 2)
230
+
231
+ # attend to values
232
+ if self.split_head_dim:
233
+ hidden_states = jnp.einsum("b n f t, b t n h -> b f n h", attention_probs, value_states)
234
+ b = hidden_states.shape[0]
235
+ hidden_states = jnp.reshape(hidden_states, (b, -1, self.heads * self.dim_head))
236
+ else:
237
+ hidden_states = jnp.einsum("b i j, b j d -> b i d", attention_probs, value_states)
238
+ hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
239
+
240
+ hidden_states = self.proj_attn(hidden_states)
241
+ return self.dropout_layer(hidden_states, deterministic=deterministic)
242
+
243
+
244
+ class FlaxBasicTransformerBlock(nn.Module):
245
+ r"""
246
+ A Flax transformer block layer with `GLU` (Gated Linear Unit) activation function as described in:
247
+ https://arxiv.org/abs/1706.03762
248
+
249
+
250
+ Parameters:
251
+ dim (:obj:`int`):
252
+ Inner hidden states dimension
253
+ n_heads (:obj:`int`):
254
+ Number of heads
255
+ d_head (:obj:`int`):
256
+ Hidden states dimension inside each head
257
+ dropout (:obj:`float`, *optional*, defaults to 0.0):
258
+ Dropout rate
259
+ only_cross_attention (`bool`, defaults to `False`):
260
+ Whether to only apply cross attention.
261
+ dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
262
+ Parameters `dtype`
263
+ use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
264
+ enable memory efficient attention https://arxiv.org/abs/2112.05682
265
+ split_head_dim (`bool`, *optional*, defaults to `False`):
266
+ Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
267
+ enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
268
+ """
269
+
270
+ dim: int
271
+ n_heads: int
272
+ d_head: int
273
+ dropout: float = 0.0
274
+ only_cross_attention: bool = False
275
+ dtype: jnp.dtype = jnp.float32
276
+ use_memory_efficient_attention: bool = False
277
+ split_head_dim: bool = False
278
+
279
+ def setup(self):
280
+ # self attention (or cross_attention if only_cross_attention is True)
281
+ self.attn1 = FlaxAttention(
282
+ self.dim,
283
+ self.n_heads,
284
+ self.d_head,
285
+ self.dropout,
286
+ self.use_memory_efficient_attention,
287
+ self.split_head_dim,
288
+ dtype=self.dtype,
289
+ )
290
+ # cross attention
291
+ self.attn2 = FlaxAttention(
292
+ self.dim,
293
+ self.n_heads,
294
+ self.d_head,
295
+ self.dropout,
296
+ self.use_memory_efficient_attention,
297
+ self.split_head_dim,
298
+ dtype=self.dtype,
299
+ )
300
+ self.ff = FlaxFeedForward(dim=self.dim, dropout=self.dropout, dtype=self.dtype)
301
+ self.norm1 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
302
+ self.norm2 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
303
+ self.norm3 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
304
+ self.dropout_layer = nn.Dropout(rate=self.dropout)
305
+
306
+ def __call__(self, hidden_states, context, deterministic=True):
307
+ # self attention
308
+ residual = hidden_states
309
+ if self.only_cross_attention:
310
+ hidden_states = self.attn1(self.norm1(hidden_states), context, deterministic=deterministic)
311
+ else:
312
+ hidden_states = self.attn1(self.norm1(hidden_states), deterministic=deterministic)
313
+ hidden_states = hidden_states + residual
314
+
315
+ # cross attention
316
+ residual = hidden_states
317
+ hidden_states = self.attn2(self.norm2(hidden_states), context, deterministic=deterministic)
318
+ hidden_states = hidden_states + residual
319
+
320
+ # feed forward
321
+ residual = hidden_states
322
+ hidden_states = self.ff(self.norm3(hidden_states), deterministic=deterministic)
323
+ hidden_states = hidden_states + residual
324
+
325
+ return self.dropout_layer(hidden_states, deterministic=deterministic)
326
+
327
+
328
+ class FlaxTransformer2DModel(nn.Module):
329
+ r"""
330
+ A Spatial Transformer layer with Gated Linear Unit (GLU) activation function as described in:
331
+ https://arxiv.org/pdf/1506.02025.pdf
332
+
333
+
334
+ Parameters:
335
+ in_channels (:obj:`int`):
336
+ Input number of channels
337
+ n_heads (:obj:`int`):
338
+ Number of heads
339
+ d_head (:obj:`int`):
340
+ Hidden states dimension inside each head
341
+ depth (:obj:`int`, *optional*, defaults to 1):
342
+ Number of transformers block
343
+ dropout (:obj:`float`, *optional*, defaults to 0.0):
344
+ Dropout rate
345
+ use_linear_projection (`bool`, defaults to `False`): tbd
346
+ only_cross_attention (`bool`, defaults to `False`): tbd
347
+ dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
348
+ Parameters `dtype`
349
+ use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
350
+ enable memory efficient attention https://arxiv.org/abs/2112.05682
351
+ split_head_dim (`bool`, *optional*, defaults to `False`):
352
+ Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
353
+ enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
354
+ """
355
+
356
+ in_channels: int
357
+ n_heads: int
358
+ d_head: int
359
+ depth: int = 1
360
+ dropout: float = 0.0
361
+ use_linear_projection: bool = False
362
+ only_cross_attention: bool = False
363
+ dtype: jnp.dtype = jnp.float32
364
+ use_memory_efficient_attention: bool = False
365
+ split_head_dim: bool = False
366
+
367
+ def setup(self):
368
+ self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-5)
369
+
370
+ inner_dim = self.n_heads * self.d_head
371
+ if self.use_linear_projection:
372
+ self.proj_in = nn.Dense(inner_dim, dtype=self.dtype)
373
+ else:
374
+ self.proj_in = nn.Conv(
375
+ inner_dim,
376
+ kernel_size=(1, 1),
377
+ strides=(1, 1),
378
+ padding="VALID",
379
+ dtype=self.dtype,
380
+ )
381
+
382
+ self.transformer_blocks = [
383
+ FlaxBasicTransformerBlock(
384
+ inner_dim,
385
+ self.n_heads,
386
+ self.d_head,
387
+ dropout=self.dropout,
388
+ only_cross_attention=self.only_cross_attention,
389
+ dtype=self.dtype,
390
+ use_memory_efficient_attention=self.use_memory_efficient_attention,
391
+ split_head_dim=self.split_head_dim,
392
+ )
393
+ for _ in range(self.depth)
394
+ ]
395
+
396
+ if self.use_linear_projection:
397
+ self.proj_out = nn.Dense(inner_dim, dtype=self.dtype)
398
+ else:
399
+ self.proj_out = nn.Conv(
400
+ inner_dim,
401
+ kernel_size=(1, 1),
402
+ strides=(1, 1),
403
+ padding="VALID",
404
+ dtype=self.dtype,
405
+ )
406
+
407
+ self.dropout_layer = nn.Dropout(rate=self.dropout)
408
+
409
+ def __call__(self, hidden_states, context, deterministic=True):
410
+ batch, height, width, channels = hidden_states.shape
411
+ residual = hidden_states
412
+ hidden_states = self.norm(hidden_states)
413
+ if self.use_linear_projection:
414
+ hidden_states = hidden_states.reshape(batch, height * width, channels)
415
+ hidden_states = self.proj_in(hidden_states)
416
+ else:
417
+ hidden_states = self.proj_in(hidden_states)
418
+ hidden_states = hidden_states.reshape(batch, height * width, channels)
419
+
420
+ for transformer_block in self.transformer_blocks:
421
+ hidden_states = transformer_block(hidden_states, context, deterministic=deterministic)
422
+
423
+ if self.use_linear_projection:
424
+ hidden_states = self.proj_out(hidden_states)
425
+ hidden_states = hidden_states.reshape(batch, height, width, channels)
426
+ else:
427
+ hidden_states = hidden_states.reshape(batch, height, width, channels)
428
+ hidden_states = self.proj_out(hidden_states)
429
+
430
+ hidden_states = hidden_states + residual
431
+ return self.dropout_layer(hidden_states, deterministic=deterministic)
432
+
433
+
434
+ class FlaxFeedForward(nn.Module):
435
+ r"""
436
+ Flax module that encapsulates two Linear layers separated by a non-linearity. It is the counterpart of PyTorch's
437
+ [`FeedForward`] class, with the following simplifications:
438
+ - The activation function is currently hardcoded to a gated linear unit from:
439
+ https://arxiv.org/abs/2002.05202
440
+ - `dim_out` is equal to `dim`.
441
+ - The number of hidden dimensions is hardcoded to `dim * 4` in [`FlaxGELU`].
442
+
443
+ Parameters:
444
+ dim (:obj:`int`):
445
+ Inner hidden states dimension
446
+ dropout (:obj:`float`, *optional*, defaults to 0.0):
447
+ Dropout rate
448
+ dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
449
+ Parameters `dtype`
450
+ """
451
+
452
+ dim: int
453
+ dropout: float = 0.0
454
+ dtype: jnp.dtype = jnp.float32
455
+
456
+ def setup(self):
457
+ # The second linear layer needs to be called
458
+ # net_2 for now to match the index of the Sequential layer
459
+ self.net_0 = FlaxGEGLU(self.dim, self.dropout, self.dtype)
460
+ self.net_2 = nn.Dense(self.dim, dtype=self.dtype)
461
+
462
+ def __call__(self, hidden_states, deterministic=True):
463
+ hidden_states = self.net_0(hidden_states, deterministic=deterministic)
464
+ hidden_states = self.net_2(hidden_states)
465
+ return hidden_states
466
+
467
+
468
+ class FlaxGEGLU(nn.Module):
469
+ r"""
470
+ Flax implementation of a Linear layer followed by the variant of the gated linear unit activation function from
471
+ https://arxiv.org/abs/2002.05202.
472
+
473
+ Parameters:
474
+ dim (:obj:`int`):
475
+ Input hidden states dimension
476
+ dropout (:obj:`float`, *optional*, defaults to 0.0):
477
+ Dropout rate
478
+ dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
479
+ Parameters `dtype`
480
+ """
481
+
482
+ dim: int
483
+ dropout: float = 0.0
484
+ dtype: jnp.dtype = jnp.float32
485
+
486
+ def setup(self):
487
+ inner_dim = self.dim * 4
488
+ self.proj = nn.Dense(inner_dim * 2, dtype=self.dtype)
489
+ self.dropout_layer = nn.Dropout(rate=self.dropout)
490
+
491
+ def __call__(self, hidden_states, deterministic=True):
492
+ hidden_states = self.proj(hidden_states)
493
+ hidden_linear, hidden_gelu = jnp.split(hidden_states, 2, axis=2)
494
+ return self.dropout_layer(hidden_linear * nn.gelu(hidden_gelu), deterministic=deterministic)
diffusers/models/attention_processor.py ADDED
The diff for this file is too large to render. See raw diff
 
diffusers/models/autoencoders/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ from .autoencoder_asym_kl import AsymmetricAutoencoderKL
2
+ from .autoencoder_kl import AutoencoderKL
3
+ from .autoencoder_kl_temporal_decoder import AutoencoderKLTemporalDecoder
4
+ from .autoencoder_tiny import AutoencoderTiny
5
+ from .consistency_decoder_vae import ConsistencyDecoderVAE
diffusers/models/autoencoders/autoencoder_asym_kl.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Optional, Tuple, Union
15
+
16
+ import torch
17
+ import torch.nn as nn
18
+
19
+ from ...configuration_utils import ConfigMixin, register_to_config
20
+ from ...utils.accelerate_utils import apply_forward_hook
21
+ from ..modeling_outputs import AutoencoderKLOutput
22
+ from ..modeling_utils import ModelMixin
23
+ from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder, MaskConditionDecoder
24
+
25
+
26
+ class AsymmetricAutoencoderKL(ModelMixin, ConfigMixin):
27
+ r"""
28
+ Designing a Better Asymmetric VQGAN for StableDiffusion https://arxiv.org/abs/2306.04632 . A VAE model with KL loss
29
+ for encoding images into latents and decoding latent representations into images.
30
+
31
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
32
+ for all models (such as downloading or saving).
33
+
34
+ Parameters:
35
+ in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
36
+ out_channels (int, *optional*, defaults to 3): Number of channels in the output.
37
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
38
+ Tuple of downsample block types.
39
+ down_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
40
+ Tuple of down block output channels.
41
+ layers_per_down_block (`int`, *optional*, defaults to `1`):
42
+ Number layers for down block.
43
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
44
+ Tuple of upsample block types.
45
+ up_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
46
+ Tuple of up block output channels.
47
+ layers_per_up_block (`int`, *optional*, defaults to `1`):
48
+ Number layers for up block.
49
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
50
+ latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
51
+ sample_size (`int`, *optional*, defaults to `32`): Sample input size.
52
+ norm_num_groups (`int`, *optional*, defaults to `32`):
53
+ Number of groups to use for the first normalization layer in ResNet blocks.
54
+ scaling_factor (`float`, *optional*, defaults to 0.18215):
55
+ The component-wise standard deviation of the trained latent space computed using the first batch of the
56
+ training set. This is used to scale the latent space to have unit variance when training the diffusion
57
+ model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
58
+ diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
59
+ / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
60
+ Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
61
+ """
62
+
63
+ @register_to_config
64
+ def __init__(
65
+ self,
66
+ in_channels: int = 3,
67
+ out_channels: int = 3,
68
+ down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
69
+ down_block_out_channels: Tuple[int, ...] = (64,),
70
+ layers_per_down_block: int = 1,
71
+ up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
72
+ up_block_out_channels: Tuple[int, ...] = (64,),
73
+ layers_per_up_block: int = 1,
74
+ act_fn: str = "silu",
75
+ latent_channels: int = 4,
76
+ norm_num_groups: int = 32,
77
+ sample_size: int = 32,
78
+ scaling_factor: float = 0.18215,
79
+ ) -> None:
80
+ super().__init__()
81
+
82
+ # pass init params to Encoder
83
+ self.encoder = Encoder(
84
+ in_channels=in_channels,
85
+ out_channels=latent_channels,
86
+ down_block_types=down_block_types,
87
+ block_out_channels=down_block_out_channels,
88
+ layers_per_block=layers_per_down_block,
89
+ act_fn=act_fn,
90
+ norm_num_groups=norm_num_groups,
91
+ double_z=True,
92
+ )
93
+
94
+ # pass init params to Decoder
95
+ self.decoder = MaskConditionDecoder(
96
+ in_channels=latent_channels,
97
+ out_channels=out_channels,
98
+ up_block_types=up_block_types,
99
+ block_out_channels=up_block_out_channels,
100
+ layers_per_block=layers_per_up_block,
101
+ act_fn=act_fn,
102
+ norm_num_groups=norm_num_groups,
103
+ )
104
+
105
+ self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
106
+ self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
107
+
108
+ self.use_slicing = False
109
+ self.use_tiling = False
110
+
111
+ self.register_to_config(block_out_channels=up_block_out_channels)
112
+ self.register_to_config(force_upcast=False)
113
+
114
+ @apply_forward_hook
115
+ def encode(
116
+ self, x: torch.FloatTensor, return_dict: bool = True
117
+ ) -> Union[AutoencoderKLOutput, Tuple[torch.FloatTensor]]:
118
+ h = self.encoder(x)
119
+ moments = self.quant_conv(h)
120
+ posterior = DiagonalGaussianDistribution(moments)
121
+
122
+ if not return_dict:
123
+ return (posterior,)
124
+
125
+ return AutoencoderKLOutput(latent_dist=posterior)
126
+
127
+ def _decode(
128
+ self,
129
+ z: torch.FloatTensor,
130
+ image: Optional[torch.FloatTensor] = None,
131
+ mask: Optional[torch.FloatTensor] = None,
132
+ return_dict: bool = True,
133
+ ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
134
+ z = self.post_quant_conv(z)
135
+ dec = self.decoder(z, image, mask)
136
+
137
+ if not return_dict:
138
+ return (dec,)
139
+
140
+ return DecoderOutput(sample=dec)
141
+
142
+ @apply_forward_hook
143
+ def decode(
144
+ self,
145
+ z: torch.FloatTensor,
146
+ generator: Optional[torch.Generator] = None,
147
+ image: Optional[torch.FloatTensor] = None,
148
+ mask: Optional[torch.FloatTensor] = None,
149
+ return_dict: bool = True,
150
+ ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
151
+ decoded = self._decode(z, image, mask).sample
152
+
153
+ if not return_dict:
154
+ return (decoded,)
155
+
156
+ return DecoderOutput(sample=decoded)
157
+
158
+ def forward(
159
+ self,
160
+ sample: torch.FloatTensor,
161
+ mask: Optional[torch.FloatTensor] = None,
162
+ sample_posterior: bool = False,
163
+ return_dict: bool = True,
164
+ generator: Optional[torch.Generator] = None,
165
+ ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
166
+ r"""
167
+ Args:
168
+ sample (`torch.FloatTensor`): Input sample.
169
+ mask (`torch.FloatTensor`, *optional*, defaults to `None`): Optional inpainting mask.
170
+ sample_posterior (`bool`, *optional*, defaults to `False`):
171
+ Whether to sample from the posterior.
172
+ return_dict (`bool`, *optional*, defaults to `True`):
173
+ Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
174
+ """
175
+ x = sample
176
+ posterior = self.encode(x).latent_dist
177
+ if sample_posterior:
178
+ z = posterior.sample(generator=generator)
179
+ else:
180
+ z = posterior.mode()
181
+ dec = self.decode(z, sample, mask).sample
182
+
183
+ if not return_dict:
184
+ return (dec,)
185
+
186
+ return DecoderOutput(sample=dec)
diffusers/models/autoencoders/autoencoder_kl.py ADDED
@@ -0,0 +1,487 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Dict, Optional, Tuple, Union
15
+
16
+ import torch
17
+ import torch.nn as nn
18
+
19
+ from ...configuration_utils import ConfigMixin, register_to_config
20
+ from ...loaders import FromOriginalVAEMixin
21
+ from ...utils.accelerate_utils import apply_forward_hook
22
+ from ..attention_processor import (
23
+ ADDED_KV_ATTENTION_PROCESSORS,
24
+ CROSS_ATTENTION_PROCESSORS,
25
+ Attention,
26
+ AttentionProcessor,
27
+ AttnAddedKVProcessor,
28
+ AttnProcessor,
29
+ )
30
+ from ..modeling_outputs import AutoencoderKLOutput
31
+ from ..modeling_utils import ModelMixin
32
+ from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
33
+
34
+
35
+ class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
36
+ r"""
37
+ A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
38
+
39
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
40
+ for all models (such as downloading or saving).
41
+
42
+ Parameters:
43
+ in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
44
+ out_channels (int, *optional*, defaults to 3): Number of channels in the output.
45
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
46
+ Tuple of downsample block types.
47
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
48
+ Tuple of upsample block types.
49
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
50
+ Tuple of block output channels.
51
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
52
+ latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
53
+ sample_size (`int`, *optional*, defaults to `32`): Sample input size.
54
+ scaling_factor (`float`, *optional*, defaults to 0.18215):
55
+ The component-wise standard deviation of the trained latent space computed using the first batch of the
56
+ training set. This is used to scale the latent space to have unit variance when training the diffusion
57
+ model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
58
+ diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
59
+ / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
60
+ Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
61
+ force_upcast (`bool`, *optional*, default to `True`):
62
+ If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
63
+ can be fine-tuned / trained to a lower range without loosing too much precision in which case
64
+ `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
65
+ """
66
+
67
+ _supports_gradient_checkpointing = True
68
+
69
+ @register_to_config
70
+ def __init__(
71
+ self,
72
+ in_channels: int = 3,
73
+ out_channels: int = 3,
74
+ down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
75
+ up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
76
+ block_out_channels: Tuple[int] = (64,),
77
+ layers_per_block: int = 1,
78
+ act_fn: str = "silu",
79
+ latent_channels: int = 4,
80
+ norm_num_groups: int = 32,
81
+ sample_size: int = 32,
82
+ scaling_factor: float = 0.18215,
83
+ force_upcast: float = True,
84
+ ):
85
+ super().__init__()
86
+
87
+ # pass init params to Encoder
88
+ self.encoder = Encoder(
89
+ in_channels=in_channels,
90
+ out_channels=latent_channels,
91
+ down_block_types=down_block_types,
92
+ block_out_channels=block_out_channels,
93
+ layers_per_block=layers_per_block,
94
+ act_fn=act_fn,
95
+ norm_num_groups=norm_num_groups,
96
+ double_z=True,
97
+ )
98
+
99
+ # pass init params to Decoder
100
+ self.decoder = Decoder(
101
+ in_channels=latent_channels,
102
+ out_channels=out_channels,
103
+ up_block_types=up_block_types,
104
+ block_out_channels=block_out_channels,
105
+ layers_per_block=layers_per_block,
106
+ norm_num_groups=norm_num_groups,
107
+ act_fn=act_fn,
108
+ )
109
+
110
+ self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
111
+ self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
112
+
113
+ self.use_slicing = False
114
+ self.use_tiling = False
115
+
116
+ # only relevant if vae tiling is enabled
117
+ self.tile_sample_min_size = self.config.sample_size
118
+ sample_size = (
119
+ self.config.sample_size[0]
120
+ if isinstance(self.config.sample_size, (list, tuple))
121
+ else self.config.sample_size
122
+ )
123
+ self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
124
+ self.tile_overlap_factor = 0.25
125
+
126
+ def _set_gradient_checkpointing(self, module, value=False):
127
+ if isinstance(module, (Encoder, Decoder)):
128
+ module.gradient_checkpointing = value
129
+
130
+ def enable_tiling(self, use_tiling: bool = True):
131
+ r"""
132
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
133
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
134
+ processing larger images.
135
+ """
136
+ self.use_tiling = use_tiling
137
+
138
+ def disable_tiling(self):
139
+ r"""
140
+ Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
141
+ decoding in one step.
142
+ """
143
+ self.enable_tiling(False)
144
+
145
+ def enable_slicing(self):
146
+ r"""
147
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
148
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
149
+ """
150
+ self.use_slicing = True
151
+
152
+ def disable_slicing(self):
153
+ r"""
154
+ Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
155
+ decoding in one step.
156
+ """
157
+ self.use_slicing = False
158
+
159
+ @property
160
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
161
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
162
+ r"""
163
+ Returns:
164
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
165
+ indexed by its weight name.
166
+ """
167
+ # set recursively
168
+ processors = {}
169
+
170
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
171
+ if hasattr(module, "get_processor"):
172
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
173
+
174
+ for sub_name, child in module.named_children():
175
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
176
+
177
+ return processors
178
+
179
+ for name, module in self.named_children():
180
+ fn_recursive_add_processors(name, module, processors)
181
+
182
+ return processors
183
+
184
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
185
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
186
+ r"""
187
+ Sets the attention processor to use to compute attention.
188
+
189
+ Parameters:
190
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
191
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
192
+ for **all** `Attention` layers.
193
+
194
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
195
+ processor. This is strongly recommended when setting trainable attention processors.
196
+
197
+ """
198
+ count = len(self.attn_processors.keys())
199
+
200
+ if isinstance(processor, dict) and len(processor) != count:
201
+ raise ValueError(
202
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
203
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
204
+ )
205
+
206
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
207
+ if hasattr(module, "set_processor"):
208
+ if not isinstance(processor, dict):
209
+ module.set_processor(processor)
210
+ else:
211
+ module.set_processor(processor.pop(f"{name}.processor"))
212
+
213
+ for sub_name, child in module.named_children():
214
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
215
+
216
+ for name, module in self.named_children():
217
+ fn_recursive_attn_processor(name, module, processor)
218
+
219
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
220
+ def set_default_attn_processor(self):
221
+ """
222
+ Disables custom attention processors and sets the default attention implementation.
223
+ """
224
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
225
+ processor = AttnAddedKVProcessor()
226
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
227
+ processor = AttnProcessor()
228
+ else:
229
+ raise ValueError(
230
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
231
+ )
232
+
233
+ self.set_attn_processor(processor)
234
+
235
+ @apply_forward_hook
236
+ def encode(
237
+ self, x: torch.FloatTensor, return_dict: bool = True
238
+ ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
239
+ """
240
+ Encode a batch of images into latents.
241
+
242
+ Args:
243
+ x (`torch.FloatTensor`): Input batch of images.
244
+ return_dict (`bool`, *optional*, defaults to `True`):
245
+ Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
246
+
247
+ Returns:
248
+ The latent representations of the encoded images. If `return_dict` is True, a
249
+ [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
250
+ """
251
+ if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
252
+ return self.tiled_encode(x, return_dict=return_dict)
253
+
254
+ if self.use_slicing and x.shape[0] > 1:
255
+ encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
256
+ h = torch.cat(encoded_slices)
257
+ else:
258
+ h = self.encoder(x)
259
+
260
+ moments = self.quant_conv(h)
261
+ posterior = DiagonalGaussianDistribution(moments)
262
+
263
+ if not return_dict:
264
+ return (posterior,)
265
+
266
+ return AutoencoderKLOutput(latent_dist=posterior)
267
+
268
+ def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
269
+ if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
270
+ return self.tiled_decode(z, return_dict=return_dict)
271
+
272
+ z = self.post_quant_conv(z)
273
+ dec = self.decoder(z)
274
+
275
+ if not return_dict:
276
+ return (dec,)
277
+
278
+ return DecoderOutput(sample=dec)
279
+
280
+ @apply_forward_hook
281
+ def decode(
282
+ self, z: torch.FloatTensor, return_dict: bool = True, generator=None
283
+ ) -> Union[DecoderOutput, torch.FloatTensor]:
284
+ """
285
+ Decode a batch of images.
286
+
287
+ Args:
288
+ z (`torch.FloatTensor`): Input batch of latent vectors.
289
+ return_dict (`bool`, *optional*, defaults to `True`):
290
+ Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
291
+
292
+ Returns:
293
+ [`~models.vae.DecoderOutput`] or `tuple`:
294
+ If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
295
+ returned.
296
+
297
+ """
298
+ if self.use_slicing and z.shape[0] > 1:
299
+ decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
300
+ decoded = torch.cat(decoded_slices)
301
+ else:
302
+ decoded = self._decode(z).sample
303
+
304
+ if not return_dict:
305
+ return (decoded,)
306
+
307
+ return DecoderOutput(sample=decoded)
308
+
309
+ def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
310
+ blend_extent = min(a.shape[2], b.shape[2], blend_extent)
311
+ for y in range(blend_extent):
312
+ b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
313
+ return b
314
+
315
+ def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
316
+ blend_extent = min(a.shape[3], b.shape[3], blend_extent)
317
+ for x in range(blend_extent):
318
+ b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
319
+ return b
320
+
321
+ def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput:
322
+ r"""Encode a batch of images using a tiled encoder.
323
+
324
+ When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
325
+ steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
326
+ different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
327
+ tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
328
+ output, but they should be much less noticeable.
329
+
330
+ Args:
331
+ x (`torch.FloatTensor`): Input batch of images.
332
+ return_dict (`bool`, *optional*, defaults to `True`):
333
+ Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
334
+
335
+ Returns:
336
+ [`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
337
+ If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
338
+ `tuple` is returned.
339
+ """
340
+ overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
341
+ blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
342
+ row_limit = self.tile_latent_min_size - blend_extent
343
+
344
+ # Split the image into 512x512 tiles and encode them separately.
345
+ rows = []
346
+ for i in range(0, x.shape[2], overlap_size):
347
+ row = []
348
+ for j in range(0, x.shape[3], overlap_size):
349
+ tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
350
+ tile = self.encoder(tile)
351
+ tile = self.quant_conv(tile)
352
+ row.append(tile)
353
+ rows.append(row)
354
+ result_rows = []
355
+ for i, row in enumerate(rows):
356
+ result_row = []
357
+ for j, tile in enumerate(row):
358
+ # blend the above tile and the left tile
359
+ # to the current tile and add the current tile to the result row
360
+ if i > 0:
361
+ tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
362
+ if j > 0:
363
+ tile = self.blend_h(row[j - 1], tile, blend_extent)
364
+ result_row.append(tile[:, :, :row_limit, :row_limit])
365
+ result_rows.append(torch.cat(result_row, dim=3))
366
+
367
+ moments = torch.cat(result_rows, dim=2)
368
+ posterior = DiagonalGaussianDistribution(moments)
369
+
370
+ if not return_dict:
371
+ return (posterior,)
372
+
373
+ return AutoencoderKLOutput(latent_dist=posterior)
374
+
375
+ def tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]:
376
+ r"""
377
+ Decode a batch of images using a tiled decoder.
378
+
379
+ Args:
380
+ z (`torch.FloatTensor`): Input batch of latent vectors.
381
+ return_dict (`bool`, *optional*, defaults to `True`):
382
+ Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
383
+
384
+ Returns:
385
+ [`~models.vae.DecoderOutput`] or `tuple`:
386
+ If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
387
+ returned.
388
+ """
389
+ overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
390
+ blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
391
+ row_limit = self.tile_sample_min_size - blend_extent
392
+
393
+ # Split z into overlapping 64x64 tiles and decode them separately.
394
+ # The tiles have an overlap to avoid seams between tiles.
395
+ rows = []
396
+ for i in range(0, z.shape[2], overlap_size):
397
+ row = []
398
+ for j in range(0, z.shape[3], overlap_size):
399
+ tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
400
+ tile = self.post_quant_conv(tile)
401
+ decoded = self.decoder(tile)
402
+ row.append(decoded)
403
+ rows.append(row)
404
+ result_rows = []
405
+ for i, row in enumerate(rows):
406
+ result_row = []
407
+ for j, tile in enumerate(row):
408
+ # blend the above tile and the left tile
409
+ # to the current tile and add the current tile to the result row
410
+ if i > 0:
411
+ tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
412
+ if j > 0:
413
+ tile = self.blend_h(row[j - 1], tile, blend_extent)
414
+ result_row.append(tile[:, :, :row_limit, :row_limit])
415
+ result_rows.append(torch.cat(result_row, dim=3))
416
+
417
+ dec = torch.cat(result_rows, dim=2)
418
+ if not return_dict:
419
+ return (dec,)
420
+
421
+ return DecoderOutput(sample=dec)
422
+
423
+ def forward(
424
+ self,
425
+ sample: torch.FloatTensor,
426
+ sample_posterior: bool = False,
427
+ return_dict: bool = True,
428
+ generator: Optional[torch.Generator] = None,
429
+ ) -> Union[DecoderOutput, torch.FloatTensor]:
430
+ r"""
431
+ Args:
432
+ sample (`torch.FloatTensor`): Input sample.
433
+ sample_posterior (`bool`, *optional*, defaults to `False`):
434
+ Whether to sample from the posterior.
435
+ return_dict (`bool`, *optional*, defaults to `True`):
436
+ Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
437
+ """
438
+ x = sample
439
+ posterior = self.encode(x).latent_dist
440
+ if sample_posterior:
441
+ z = posterior.sample(generator=generator)
442
+ else:
443
+ z = posterior.mode()
444
+ dec = self.decode(z).sample
445
+
446
+ if not return_dict:
447
+ return (dec,)
448
+
449
+ return DecoderOutput(sample=dec)
450
+
451
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
452
+ def fuse_qkv_projections(self):
453
+ """
454
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
455
+ key, value) are fused. For cross-attention modules, key and value projection matrices are fused.
456
+
457
+ <Tip warning={true}>
458
+
459
+ This API is 🧪 experimental.
460
+
461
+ </Tip>
462
+ """
463
+ self.original_attn_processors = None
464
+
465
+ for _, attn_processor in self.attn_processors.items():
466
+ if "Added" in str(attn_processor.__class__.__name__):
467
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
468
+
469
+ self.original_attn_processors = self.attn_processors
470
+
471
+ for module in self.modules():
472
+ if isinstance(module, Attention):
473
+ module.fuse_projections(fuse=True)
474
+
475
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
476
+ def unfuse_qkv_projections(self):
477
+ """Disables the fused QKV projection if enabled.
478
+
479
+ <Tip warning={true}>
480
+
481
+ This API is 🧪 experimental.
482
+
483
+ </Tip>
484
+
485
+ """
486
+ if self.original_attn_processors is not None:
487
+ self.set_attn_processor(self.original_attn_processors)
diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Dict, Optional, Tuple, Union
15
+
16
+ import torch
17
+ import torch.nn as nn
18
+
19
+ from ...configuration_utils import ConfigMixin, register_to_config
20
+ from ...loaders import FromOriginalVAEMixin
21
+ from ...utils import is_torch_version
22
+ from ...utils.accelerate_utils import apply_forward_hook
23
+ from ..attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
24
+ from ..modeling_outputs import AutoencoderKLOutput
25
+ from ..modeling_utils import ModelMixin
26
+ from ..unet_3d_blocks import MidBlockTemporalDecoder, UpBlockTemporalDecoder
27
+ from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder
28
+
29
+
30
+ class TemporalDecoder(nn.Module):
31
+ def __init__(
32
+ self,
33
+ in_channels: int = 4,
34
+ out_channels: int = 3,
35
+ block_out_channels: Tuple[int] = (128, 256, 512, 512),
36
+ layers_per_block: int = 2,
37
+ ):
38
+ super().__init__()
39
+ self.layers_per_block = layers_per_block
40
+
41
+ self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)
42
+ self.mid_block = MidBlockTemporalDecoder(
43
+ num_layers=self.layers_per_block,
44
+ in_channels=block_out_channels[-1],
45
+ out_channels=block_out_channels[-1],
46
+ attention_head_dim=block_out_channels[-1],
47
+ )
48
+
49
+ # up
50
+ self.up_blocks = nn.ModuleList([])
51
+ reversed_block_out_channels = list(reversed(block_out_channels))
52
+ output_channel = reversed_block_out_channels[0]
53
+ for i in range(len(block_out_channels)):
54
+ prev_output_channel = output_channel
55
+ output_channel = reversed_block_out_channels[i]
56
+
57
+ is_final_block = i == len(block_out_channels) - 1
58
+ up_block = UpBlockTemporalDecoder(
59
+ num_layers=self.layers_per_block + 1,
60
+ in_channels=prev_output_channel,
61
+ out_channels=output_channel,
62
+ add_upsample=not is_final_block,
63
+ )
64
+ self.up_blocks.append(up_block)
65
+ prev_output_channel = output_channel
66
+
67
+ self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-6)
68
+
69
+ self.conv_act = nn.SiLU()
70
+ self.conv_out = torch.nn.Conv2d(
71
+ in_channels=block_out_channels[0],
72
+ out_channels=out_channels,
73
+ kernel_size=3,
74
+ padding=1,
75
+ )
76
+
77
+ conv_out_kernel_size = (3, 1, 1)
78
+ padding = [int(k // 2) for k in conv_out_kernel_size]
79
+ self.time_conv_out = torch.nn.Conv3d(
80
+ in_channels=out_channels,
81
+ out_channels=out_channels,
82
+ kernel_size=conv_out_kernel_size,
83
+ padding=padding,
84
+ )
85
+
86
+ self.gradient_checkpointing = False
87
+
88
+ def forward(
89
+ self,
90
+ sample: torch.FloatTensor,
91
+ image_only_indicator: torch.FloatTensor,
92
+ num_frames: int = 1,
93
+ ) -> torch.FloatTensor:
94
+ r"""The forward method of the `Decoder` class."""
95
+
96
+ sample = self.conv_in(sample)
97
+
98
+ upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
99
+ if self.training and self.gradient_checkpointing:
100
+
101
+ def create_custom_forward(module):
102
+ def custom_forward(*inputs):
103
+ return module(*inputs)
104
+
105
+ return custom_forward
106
+
107
+ if is_torch_version(">=", "1.11.0"):
108
+ # middle
109
+ sample = torch.utils.checkpoint.checkpoint(
110
+ create_custom_forward(self.mid_block),
111
+ sample,
112
+ image_only_indicator,
113
+ use_reentrant=False,
114
+ )
115
+ sample = sample.to(upscale_dtype)
116
+
117
+ # up
118
+ for up_block in self.up_blocks:
119
+ sample = torch.utils.checkpoint.checkpoint(
120
+ create_custom_forward(up_block),
121
+ sample,
122
+ image_only_indicator,
123
+ use_reentrant=False,
124
+ )
125
+ else:
126
+ # middle
127
+ sample = torch.utils.checkpoint.checkpoint(
128
+ create_custom_forward(self.mid_block),
129
+ sample,
130
+ image_only_indicator,
131
+ )
132
+ sample = sample.to(upscale_dtype)
133
+
134
+ # up
135
+ for up_block in self.up_blocks:
136
+ sample = torch.utils.checkpoint.checkpoint(
137
+ create_custom_forward(up_block),
138
+ sample,
139
+ image_only_indicator,
140
+ )
141
+ else:
142
+ # middle
143
+ sample = self.mid_block(sample, image_only_indicator=image_only_indicator)
144
+ sample = sample.to(upscale_dtype)
145
+
146
+ # up
147
+ for up_block in self.up_blocks:
148
+ sample = up_block(sample, image_only_indicator=image_only_indicator)
149
+
150
+ # post-process
151
+ sample = self.conv_norm_out(sample)
152
+ sample = self.conv_act(sample)
153
+ sample = self.conv_out(sample)
154
+
155
+ batch_frames, channels, height, width = sample.shape
156
+ batch_size = batch_frames // num_frames
157
+ sample = sample[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)
158
+ sample = self.time_conv_out(sample)
159
+
160
+ sample = sample.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width)
161
+
162
+ return sample
163
+
164
+
165
+ class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin, FromOriginalVAEMixin):
166
+ r"""
167
+ A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
168
+
169
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
170
+ for all models (such as downloading or saving).
171
+
172
+ Parameters:
173
+ in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
174
+ out_channels (int, *optional*, defaults to 3): Number of channels in the output.
175
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
176
+ Tuple of downsample block types.
177
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
178
+ Tuple of block output channels.
179
+ layers_per_block: (`int`, *optional*, defaults to 1): Number of layers per block.
180
+ latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
181
+ sample_size (`int`, *optional*, defaults to `32`): Sample input size.
182
+ scaling_factor (`float`, *optional*, defaults to 0.18215):
183
+ The component-wise standard deviation of the trained latent space computed using the first batch of the
184
+ training set. This is used to scale the latent space to have unit variance when training the diffusion
185
+ model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
186
+ diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
187
+ / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
188
+ Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
189
+ force_upcast (`bool`, *optional*, default to `True`):
190
+ If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
191
+ can be fine-tuned / trained to a lower range without loosing too much precision in which case
192
+ `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
193
+ """
194
+
195
+ _supports_gradient_checkpointing = True
196
+
197
+ @register_to_config
198
+ def __init__(
199
+ self,
200
+ in_channels: int = 3,
201
+ out_channels: int = 3,
202
+ down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
203
+ block_out_channels: Tuple[int] = (64,),
204
+ layers_per_block: int = 1,
205
+ latent_channels: int = 4,
206
+ sample_size: int = 32,
207
+ scaling_factor: float = 0.18215,
208
+ force_upcast: float = True,
209
+ ):
210
+ super().__init__()
211
+
212
+ # pass init params to Encoder
213
+ self.encoder = Encoder(
214
+ in_channels=in_channels,
215
+ out_channels=latent_channels,
216
+ down_block_types=down_block_types,
217
+ block_out_channels=block_out_channels,
218
+ layers_per_block=layers_per_block,
219
+ double_z=True,
220
+ )
221
+
222
+ # pass init params to Decoder
223
+ self.decoder = TemporalDecoder(
224
+ in_channels=latent_channels,
225
+ out_channels=out_channels,
226
+ block_out_channels=block_out_channels,
227
+ layers_per_block=layers_per_block,
228
+ )
229
+
230
+ self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
231
+
232
+ sample_size = (
233
+ self.config.sample_size[0]
234
+ if isinstance(self.config.sample_size, (list, tuple))
235
+ else self.config.sample_size
236
+ )
237
+ self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
238
+ self.tile_overlap_factor = 0.25
239
+
240
+ def _set_gradient_checkpointing(self, module, value=False):
241
+ if isinstance(module, (Encoder, TemporalDecoder)):
242
+ module.gradient_checkpointing = value
243
+
244
+ @property
245
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
246
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
247
+ r"""
248
+ Returns:
249
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
250
+ indexed by its weight name.
251
+ """
252
+ # set recursively
253
+ processors = {}
254
+
255
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
256
+ if hasattr(module, "get_processor"):
257
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
258
+
259
+ for sub_name, child in module.named_children():
260
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
261
+
262
+ return processors
263
+
264
+ for name, module in self.named_children():
265
+ fn_recursive_add_processors(name, module, processors)
266
+
267
+ return processors
268
+
269
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
270
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
271
+ r"""
272
+ Sets the attention processor to use to compute attention.
273
+
274
+ Parameters:
275
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
276
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
277
+ for **all** `Attention` layers.
278
+
279
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
280
+ processor. This is strongly recommended when setting trainable attention processors.
281
+
282
+ """
283
+ count = len(self.attn_processors.keys())
284
+
285
+ if isinstance(processor, dict) and len(processor) != count:
286
+ raise ValueError(
287
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
288
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
289
+ )
290
+
291
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
292
+ if hasattr(module, "set_processor"):
293
+ if not isinstance(processor, dict):
294
+ module.set_processor(processor)
295
+ else:
296
+ module.set_processor(processor.pop(f"{name}.processor"))
297
+
298
+ for sub_name, child in module.named_children():
299
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
300
+
301
+ for name, module in self.named_children():
302
+ fn_recursive_attn_processor(name, module, processor)
303
+
304
+ def set_default_attn_processor(self):
305
+ """
306
+ Disables custom attention processors and sets the default attention implementation.
307
+ """
308
+ if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
309
+ processor = AttnProcessor()
310
+ else:
311
+ raise ValueError(
312
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
313
+ )
314
+
315
+ self.set_attn_processor(processor)
316
+
317
+ @apply_forward_hook
318
+ def encode(
319
+ self, x: torch.FloatTensor, return_dict: bool = True
320
+ ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
321
+ """
322
+ Encode a batch of images into latents.
323
+
324
+ Args:
325
+ x (`torch.FloatTensor`): Input batch of images.
326
+ return_dict (`bool`, *optional*, defaults to `True`):
327
+ Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
328
+
329
+ Returns:
330
+ The latent representations of the encoded images. If `return_dict` is True, a
331
+ [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
332
+ """
333
+ h = self.encoder(x)
334
+ moments = self.quant_conv(h)
335
+ posterior = DiagonalGaussianDistribution(moments)
336
+
337
+ if not return_dict:
338
+ return (posterior,)
339
+
340
+ return AutoencoderKLOutput(latent_dist=posterior)
341
+
342
+ @apply_forward_hook
343
+ def decode(
344
+ self,
345
+ z: torch.FloatTensor,
346
+ num_frames: int,
347
+ return_dict: bool = True,
348
+ ) -> Union[DecoderOutput, torch.FloatTensor]:
349
+ """
350
+ Decode a batch of images.
351
+
352
+ Args:
353
+ z (`torch.FloatTensor`): Input batch of latent vectors.
354
+ return_dict (`bool`, *optional*, defaults to `True`):
355
+ Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
356
+
357
+ Returns:
358
+ [`~models.vae.DecoderOutput`] or `tuple`:
359
+ If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
360
+ returned.
361
+
362
+ """
363
+ batch_size = z.shape[0] // num_frames
364
+ image_only_indicator = torch.zeros(batch_size, num_frames, dtype=z.dtype, device=z.device)
365
+ decoded = self.decoder(z, num_frames=num_frames, image_only_indicator=image_only_indicator)
366
+
367
+ if not return_dict:
368
+ return (decoded,)
369
+
370
+ return DecoderOutput(sample=decoded)
371
+
372
+ def forward(
373
+ self,
374
+ sample: torch.FloatTensor,
375
+ sample_posterior: bool = False,
376
+ return_dict: bool = True,
377
+ generator: Optional[torch.Generator] = None,
378
+ num_frames: int = 1,
379
+ ) -> Union[DecoderOutput, torch.FloatTensor]:
380
+ r"""
381
+ Args:
382
+ sample (`torch.FloatTensor`): Input sample.
383
+ sample_posterior (`bool`, *optional*, defaults to `False`):
384
+ Whether to sample from the posterior.
385
+ return_dict (`bool`, *optional*, defaults to `True`):
386
+ Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
387
+ """
388
+ x = sample
389
+ posterior = self.encode(x).latent_dist
390
+ if sample_posterior:
391
+ z = posterior.sample(generator=generator)
392
+ else:
393
+ z = posterior.mode()
394
+
395
+ dec = self.decode(z, num_frames=num_frames).sample
396
+
397
+ if not return_dict:
398
+ return (dec,)
399
+
400
+ return DecoderOutput(sample=dec)
diffusers/models/autoencoders/autoencoder_tiny.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Ollin Boer Bohan and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ from dataclasses import dataclass
17
+ from typing import Optional, Tuple, Union
18
+
19
+ import torch
20
+
21
+ from ...configuration_utils import ConfigMixin, register_to_config
22
+ from ...utils import BaseOutput
23
+ from ...utils.accelerate_utils import apply_forward_hook
24
+ from ..modeling_utils import ModelMixin
25
+ from .vae import DecoderOutput, DecoderTiny, EncoderTiny
26
+
27
+
28
+ @dataclass
29
+ class AutoencoderTinyOutput(BaseOutput):
30
+ """
31
+ Output of AutoencoderTiny encoding method.
32
+
33
+ Args:
34
+ latents (`torch.Tensor`): Encoded outputs of the `Encoder`.
35
+
36
+ """
37
+
38
+ latents: torch.Tensor
39
+
40
+
41
+ class AutoencoderTiny(ModelMixin, ConfigMixin):
42
+ r"""
43
+ A tiny distilled VAE model for encoding images into latents and decoding latent representations into images.
44
+
45
+ [`AutoencoderTiny`] is a wrapper around the original implementation of `TAESD`.
46
+
47
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for its generic methods implemented for
48
+ all models (such as downloading or saving).
49
+
50
+ Parameters:
51
+ in_channels (`int`, *optional*, defaults to 3): Number of channels in the input image.
52
+ out_channels (`int`, *optional*, defaults to 3): Number of channels in the output.
53
+ encoder_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64, 64, 64, 64)`):
54
+ Tuple of integers representing the number of output channels for each encoder block. The length of the
55
+ tuple should be equal to the number of encoder blocks.
56
+ decoder_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64, 64, 64, 64)`):
57
+ Tuple of integers representing the number of output channels for each decoder block. The length of the
58
+ tuple should be equal to the number of decoder blocks.
59
+ act_fn (`str`, *optional*, defaults to `"relu"`):
60
+ Activation function to be used throughout the model.
61
+ latent_channels (`int`, *optional*, defaults to 4):
62
+ Number of channels in the latent representation. The latent space acts as a compressed representation of
63
+ the input image.
64
+ upsampling_scaling_factor (`int`, *optional*, defaults to 2):
65
+ Scaling factor for upsampling in the decoder. It determines the size of the output image during the
66
+ upsampling process.
67
+ num_encoder_blocks (`Tuple[int]`, *optional*, defaults to `(1, 3, 3, 3)`):
68
+ Tuple of integers representing the number of encoder blocks at each stage of the encoding process. The
69
+ length of the tuple should be equal to the number of stages in the encoder. Each stage has a different
70
+ number of encoder blocks.
71
+ num_decoder_blocks (`Tuple[int]`, *optional*, defaults to `(3, 3, 3, 1)`):
72
+ Tuple of integers representing the number of decoder blocks at each stage of the decoding process. The
73
+ length of the tuple should be equal to the number of stages in the decoder. Each stage has a different
74
+ number of decoder blocks.
75
+ latent_magnitude (`float`, *optional*, defaults to 3.0):
76
+ Magnitude of the latent representation. This parameter scales the latent representation values to control
77
+ the extent of information preservation.
78
+ latent_shift (float, *optional*, defaults to 0.5):
79
+ Shift applied to the latent representation. This parameter controls the center of the latent space.
80
+ scaling_factor (`float`, *optional*, defaults to 1.0):
81
+ The component-wise standard deviation of the trained latent space computed using the first batch of the
82
+ training set. This is used to scale the latent space to have unit variance when training the diffusion
83
+ model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
84
+ diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
85
+ / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
86
+ Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. For this Autoencoder,
87
+ however, no such scaling factor was used, hence the value of 1.0 as the default.
88
+ force_upcast (`bool`, *optional*, default to `False`):
89
+ If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
90
+ can be fine-tuned / trained to a lower range without losing too much precision, in which case
91
+ `force_upcast` can be set to `False` (see this fp16-friendly
92
+ [AutoEncoder](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)).
93
+ """
94
+
95
+ _supports_gradient_checkpointing = True
96
+
97
+ @register_to_config
98
+ def __init__(
99
+ self,
100
+ in_channels: int = 3,
101
+ out_channels: int = 3,
102
+ encoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
103
+ decoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
104
+ act_fn: str = "relu",
105
+ latent_channels: int = 4,
106
+ upsampling_scaling_factor: int = 2,
107
+ num_encoder_blocks: Tuple[int, ...] = (1, 3, 3, 3),
108
+ num_decoder_blocks: Tuple[int, ...] = (3, 3, 3, 1),
109
+ latent_magnitude: int = 3,
110
+ latent_shift: float = 0.5,
111
+ force_upcast: bool = False,
112
+ scaling_factor: float = 1.0,
113
+ ):
114
+ super().__init__()
115
+
116
+ if len(encoder_block_out_channels) != len(num_encoder_blocks):
117
+ raise ValueError("`encoder_block_out_channels` should have the same length as `num_encoder_blocks`.")
118
+ if len(decoder_block_out_channels) != len(num_decoder_blocks):
119
+ raise ValueError("`decoder_block_out_channels` should have the same length as `num_decoder_blocks`.")
120
+
121
+ self.encoder = EncoderTiny(
122
+ in_channels=in_channels,
123
+ out_channels=latent_channels,
124
+ num_blocks=num_encoder_blocks,
125
+ block_out_channels=encoder_block_out_channels,
126
+ act_fn=act_fn,
127
+ )
128
+
129
+ self.decoder = DecoderTiny(
130
+ in_channels=latent_channels,
131
+ out_channels=out_channels,
132
+ num_blocks=num_decoder_blocks,
133
+ block_out_channels=decoder_block_out_channels,
134
+ upsampling_scaling_factor=upsampling_scaling_factor,
135
+ act_fn=act_fn,
136
+ )
137
+
138
+ self.latent_magnitude = latent_magnitude
139
+ self.latent_shift = latent_shift
140
+ self.scaling_factor = scaling_factor
141
+
142
+ self.use_slicing = False
143
+ self.use_tiling = False
144
+
145
+ # only relevant if vae tiling is enabled
146
+ self.spatial_scale_factor = 2**out_channels
147
+ self.tile_overlap_factor = 0.125
148
+ self.tile_sample_min_size = 512
149
+ self.tile_latent_min_size = self.tile_sample_min_size // self.spatial_scale_factor
150
+
151
+ self.register_to_config(block_out_channels=decoder_block_out_channels)
152
+ self.register_to_config(force_upcast=False)
153
+
154
+ def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
155
+ if isinstance(module, (EncoderTiny, DecoderTiny)):
156
+ module.gradient_checkpointing = value
157
+
158
+ def scale_latents(self, x: torch.FloatTensor) -> torch.FloatTensor:
159
+ """raw latents -> [0, 1]"""
160
+ return x.div(2 * self.latent_magnitude).add(self.latent_shift).clamp(0, 1)
161
+
162
+ def unscale_latents(self, x: torch.FloatTensor) -> torch.FloatTensor:
163
+ """[0, 1] -> raw latents"""
164
+ return x.sub(self.latent_shift).mul(2 * self.latent_magnitude)
165
+
166
+ def enable_slicing(self) -> None:
167
+ r"""
168
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
169
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
170
+ """
171
+ self.use_slicing = True
172
+
173
+ def disable_slicing(self) -> None:
174
+ r"""
175
+ Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
176
+ decoding in one step.
177
+ """
178
+ self.use_slicing = False
179
+
180
+ def enable_tiling(self, use_tiling: bool = True) -> None:
181
+ r"""
182
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
183
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
184
+ processing larger images.
185
+ """
186
+ self.use_tiling = use_tiling
187
+
188
+ def disable_tiling(self) -> None:
189
+ r"""
190
+ Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
191
+ decoding in one step.
192
+ """
193
+ self.enable_tiling(False)
194
+
195
+ def _tiled_encode(self, x: torch.FloatTensor) -> torch.FloatTensor:
196
+ r"""Encode a batch of images using a tiled encoder.
197
+
198
+ When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
199
+ steps. This is useful to keep memory use constant regardless of image size. To avoid tiling artifacts, the
200
+ tiles overlap and are blended together to form a smooth output.
201
+
202
+ Args:
203
+ x (`torch.FloatTensor`): Input batch of images.
204
+
205
+ Returns:
206
+ `torch.FloatTensor`: Encoded batch of images.
207
+ """
208
+ # scale of encoder output relative to input
209
+ sf = self.spatial_scale_factor
210
+ tile_size = self.tile_sample_min_size
211
+
212
+ # number of pixels to blend and to traverse between tile
213
+ blend_size = int(tile_size * self.tile_overlap_factor)
214
+ traverse_size = tile_size - blend_size
215
+
216
+ # tiles index (up/left)
217
+ ti = range(0, x.shape[-2], traverse_size)
218
+ tj = range(0, x.shape[-1], traverse_size)
219
+
220
+ # mask for blending
221
+ blend_masks = torch.stack(
222
+ torch.meshgrid([torch.arange(tile_size / sf) / (blend_size / sf - 1)] * 2, indexing="ij")
223
+ )
224
+ blend_masks = blend_masks.clamp(0, 1).to(x.device)
225
+
226
+ # output array
227
+ out = torch.zeros(x.shape[0], 4, x.shape[-2] // sf, x.shape[-1] // sf, device=x.device)
228
+ for i in ti:
229
+ for j in tj:
230
+ tile_in = x[..., i : i + tile_size, j : j + tile_size]
231
+ # tile result
232
+ tile_out = out[..., i // sf : (i + tile_size) // sf, j // sf : (j + tile_size) // sf]
233
+ tile = self.encoder(tile_in)
234
+ h, w = tile.shape[-2], tile.shape[-1]
235
+ # blend tile result into output
236
+ blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0]
237
+ blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1]
238
+ blend_mask = blend_mask_i * blend_mask_j
239
+ tile, blend_mask = tile[..., :h, :w], blend_mask[..., :h, :w]
240
+ tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out)
241
+ return out
242
+
243
+ def _tiled_decode(self, x: torch.FloatTensor) -> torch.FloatTensor:
244
+ r"""Encode a batch of images using a tiled encoder.
245
+
246
+ When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
247
+ steps. This is useful to keep memory use constant regardless of image size. To avoid tiling artifacts, the
248
+ tiles overlap and are blended together to form a smooth output.
249
+
250
+ Args:
251
+ x (`torch.FloatTensor`): Input batch of images.
252
+
253
+ Returns:
254
+ `torch.FloatTensor`: Encoded batch of images.
255
+ """
256
+ # scale of decoder output relative to input
257
+ sf = self.spatial_scale_factor
258
+ tile_size = self.tile_latent_min_size
259
+
260
+ # number of pixels to blend and to traverse between tiles
261
+ blend_size = int(tile_size * self.tile_overlap_factor)
262
+ traverse_size = tile_size - blend_size
263
+
264
+ # tiles index (up/left)
265
+ ti = range(0, x.shape[-2], traverse_size)
266
+ tj = range(0, x.shape[-1], traverse_size)
267
+
268
+ # mask for blending
269
+ blend_masks = torch.stack(
270
+ torch.meshgrid([torch.arange(tile_size * sf) / (blend_size * sf - 1)] * 2, indexing="ij")
271
+ )
272
+ blend_masks = blend_masks.clamp(0, 1).to(x.device)
273
+
274
+ # output array
275
+ out = torch.zeros(x.shape[0], 3, x.shape[-2] * sf, x.shape[-1] * sf, device=x.device)
276
+ for i in ti:
277
+ for j in tj:
278
+ tile_in = x[..., i : i + tile_size, j : j + tile_size]
279
+ # tile result
280
+ tile_out = out[..., i * sf : (i + tile_size) * sf, j * sf : (j + tile_size) * sf]
281
+ tile = self.decoder(tile_in)
282
+ h, w = tile.shape[-2], tile.shape[-1]
283
+ # blend tile result into output
284
+ blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0]
285
+ blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1]
286
+ blend_mask = (blend_mask_i * blend_mask_j)[..., :h, :w]
287
+ tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out)
288
+ return out
289
+
290
+ @apply_forward_hook
291
+ def encode(
292
+ self, x: torch.FloatTensor, return_dict: bool = True
293
+ ) -> Union[AutoencoderTinyOutput, Tuple[torch.FloatTensor]]:
294
+ if self.use_slicing and x.shape[0] > 1:
295
+ output = [self._tiled_encode(x_slice) if self.use_tiling else self.encoder(x) for x_slice in x.split(1)]
296
+ output = torch.cat(output)
297
+ else:
298
+ output = self._tiled_encode(x) if self.use_tiling else self.encoder(x)
299
+
300
+ if not return_dict:
301
+ return (output,)
302
+
303
+ return AutoencoderTinyOutput(latents=output)
304
+
305
+ @apply_forward_hook
306
+ def decode(
307
+ self, x: torch.FloatTensor, generator: Optional[torch.Generator] = None, return_dict: bool = True
308
+ ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
309
+ if self.use_slicing and x.shape[0] > 1:
310
+ output = [self._tiled_decode(x_slice) if self.use_tiling else self.decoder(x) for x_slice in x.split(1)]
311
+ output = torch.cat(output)
312
+ else:
313
+ output = self._tiled_decode(x) if self.use_tiling else self.decoder(x)
314
+
315
+ if not return_dict:
316
+ return (output,)
317
+
318
+ return DecoderOutput(sample=output)
319
+
320
+ def forward(
321
+ self,
322
+ sample: torch.FloatTensor,
323
+ return_dict: bool = True,
324
+ ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
325
+ r"""
326
+ Args:
327
+ sample (`torch.FloatTensor`): Input sample.
328
+ return_dict (`bool`, *optional*, defaults to `True`):
329
+ Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
330
+ """
331
+ enc = self.encode(sample).latents
332
+
333
+ # scale latents to be in [0, 1], then quantize latents to a byte tensor,
334
+ # as if we were storing the latents in an RGBA uint8 image.
335
+ scaled_enc = self.scale_latents(enc).mul_(255).round_().byte()
336
+
337
+ # unquantize latents back into [0, 1], then unscale latents back to their original range,
338
+ # as if we were loading the latents from an RGBA uint8 image.
339
+ unscaled_enc = self.unscale_latents(scaled_enc / 255.0)
340
+
341
+ dec = self.decode(unscaled_enc)
342
+
343
+ if not return_dict:
344
+ return (dec,)
345
+ return DecoderOutput(sample=dec)
diffusers/models/autoencoders/consistency_decoder_vae.py ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from typing import Dict, Optional, Tuple, Union
16
+
17
+ import torch
18
+ import torch.nn.functional as F
19
+ from torch import nn
20
+
21
+ from ...configuration_utils import ConfigMixin, register_to_config
22
+ from ...schedulers import ConsistencyDecoderScheduler
23
+ from ...utils import BaseOutput
24
+ from ...utils.accelerate_utils import apply_forward_hook
25
+ from ...utils.torch_utils import randn_tensor
26
+ from ..attention_processor import (
27
+ ADDED_KV_ATTENTION_PROCESSORS,
28
+ CROSS_ATTENTION_PROCESSORS,
29
+ AttentionProcessor,
30
+ AttnAddedKVProcessor,
31
+ AttnProcessor,
32
+ )
33
+ from ..modeling_utils import ModelMixin
34
+ from ..unet_2d import UNet2DModel
35
+ from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder
36
+
37
+
38
+ @dataclass
39
+ class ConsistencyDecoderVAEOutput(BaseOutput):
40
+ """
41
+ Output of encoding method.
42
+
43
+ Args:
44
+ latent_dist (`DiagonalGaussianDistribution`):
45
+ Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
46
+ `DiagonalGaussianDistribution` allows for sampling latents from the distribution.
47
+ """
48
+
49
+ latent_dist: "DiagonalGaussianDistribution"
50
+
51
+
52
+ class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
53
+ r"""
54
+ The consistency decoder used with DALL-E 3.
55
+
56
+ Examples:
57
+ ```py
58
+ >>> import torch
59
+ >>> from diffusers import StableDiffusionPipeline, ConsistencyDecoderVAE
60
+
61
+ >>> vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
62
+ >>> pipe = StableDiffusionPipeline.from_pretrained(
63
+ ... "runwayml/stable-diffusion-v1-5", vae=vae, torch_dtype=torch.float16
64
+ ... ).to("cuda")
65
+
66
+ >>> pipe("horse", generator=torch.manual_seed(0)).images
67
+ ```
68
+ """
69
+
70
+ @register_to_config
71
+ def __init__(
72
+ self,
73
+ scaling_factor: float = 0.18215,
74
+ latent_channels: int = 4,
75
+ encoder_act_fn: str = "silu",
76
+ encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
77
+ encoder_double_z: bool = True,
78
+ encoder_down_block_types: Tuple[str, ...] = (
79
+ "DownEncoderBlock2D",
80
+ "DownEncoderBlock2D",
81
+ "DownEncoderBlock2D",
82
+ "DownEncoderBlock2D",
83
+ ),
84
+ encoder_in_channels: int = 3,
85
+ encoder_layers_per_block: int = 2,
86
+ encoder_norm_num_groups: int = 32,
87
+ encoder_out_channels: int = 4,
88
+ decoder_add_attention: bool = False,
89
+ decoder_block_out_channels: Tuple[int, ...] = (320, 640, 1024, 1024),
90
+ decoder_down_block_types: Tuple[str, ...] = (
91
+ "ResnetDownsampleBlock2D",
92
+ "ResnetDownsampleBlock2D",
93
+ "ResnetDownsampleBlock2D",
94
+ "ResnetDownsampleBlock2D",
95
+ ),
96
+ decoder_downsample_padding: int = 1,
97
+ decoder_in_channels: int = 7,
98
+ decoder_layers_per_block: int = 3,
99
+ decoder_norm_eps: float = 1e-05,
100
+ decoder_norm_num_groups: int = 32,
101
+ decoder_num_train_timesteps: int = 1024,
102
+ decoder_out_channels: int = 6,
103
+ decoder_resnet_time_scale_shift: str = "scale_shift",
104
+ decoder_time_embedding_type: str = "learned",
105
+ decoder_up_block_types: Tuple[str, ...] = (
106
+ "ResnetUpsampleBlock2D",
107
+ "ResnetUpsampleBlock2D",
108
+ "ResnetUpsampleBlock2D",
109
+ "ResnetUpsampleBlock2D",
110
+ ),
111
+ ):
112
+ super().__init__()
113
+ self.encoder = Encoder(
114
+ act_fn=encoder_act_fn,
115
+ block_out_channels=encoder_block_out_channels,
116
+ double_z=encoder_double_z,
117
+ down_block_types=encoder_down_block_types,
118
+ in_channels=encoder_in_channels,
119
+ layers_per_block=encoder_layers_per_block,
120
+ norm_num_groups=encoder_norm_num_groups,
121
+ out_channels=encoder_out_channels,
122
+ )
123
+
124
+ self.decoder_unet = UNet2DModel(
125
+ add_attention=decoder_add_attention,
126
+ block_out_channels=decoder_block_out_channels,
127
+ down_block_types=decoder_down_block_types,
128
+ downsample_padding=decoder_downsample_padding,
129
+ in_channels=decoder_in_channels,
130
+ layers_per_block=decoder_layers_per_block,
131
+ norm_eps=decoder_norm_eps,
132
+ norm_num_groups=decoder_norm_num_groups,
133
+ num_train_timesteps=decoder_num_train_timesteps,
134
+ out_channels=decoder_out_channels,
135
+ resnet_time_scale_shift=decoder_resnet_time_scale_shift,
136
+ time_embedding_type=decoder_time_embedding_type,
137
+ up_block_types=decoder_up_block_types,
138
+ )
139
+ self.decoder_scheduler = ConsistencyDecoderScheduler()
140
+ self.register_to_config(block_out_channels=encoder_block_out_channels)
141
+ self.register_to_config(force_upcast=False)
142
+ self.register_buffer(
143
+ "means",
144
+ torch.tensor([0.38862467, 0.02253063, 0.07381133, -0.0171294])[None, :, None, None],
145
+ persistent=False,
146
+ )
147
+ self.register_buffer(
148
+ "stds", torch.tensor([0.9654121, 1.0440036, 0.76147926, 0.77022034])[None, :, None, None], persistent=False
149
+ )
150
+
151
+ self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
152
+
153
+ self.use_slicing = False
154
+ self.use_tiling = False
155
+
156
+ # Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.enable_tiling
157
+ def enable_tiling(self, use_tiling: bool = True):
158
+ r"""
159
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
160
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
161
+ processing larger images.
162
+ """
163
+ self.use_tiling = use_tiling
164
+
165
+ # Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.disable_tiling
166
+ def disable_tiling(self):
167
+ r"""
168
+ Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
169
+ decoding in one step.
170
+ """
171
+ self.enable_tiling(False)
172
+
173
+ # Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.enable_slicing
174
+ def enable_slicing(self):
175
+ r"""
176
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
177
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
178
+ """
179
+ self.use_slicing = True
180
+
181
+ # Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.disable_slicing
182
+ def disable_slicing(self):
183
+ r"""
184
+ Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
185
+ decoding in one step.
186
+ """
187
+ self.use_slicing = False
188
+
189
+ @property
190
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
191
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
192
+ r"""
193
+ Returns:
194
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
195
+ indexed by its weight name.
196
+ """
197
+ # set recursively
198
+ processors = {}
199
+
200
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
201
+ if hasattr(module, "get_processor"):
202
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
203
+
204
+ for sub_name, child in module.named_children():
205
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
206
+
207
+ return processors
208
+
209
+ for name, module in self.named_children():
210
+ fn_recursive_add_processors(name, module, processors)
211
+
212
+ return processors
213
+
214
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
215
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
216
+ r"""
217
+ Sets the attention processor to use to compute attention.
218
+
219
+ Parameters:
220
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
221
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
222
+ for **all** `Attention` layers.
223
+
224
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
225
+ processor. This is strongly recommended when setting trainable attention processors.
226
+
227
+ """
228
+ count = len(self.attn_processors.keys())
229
+
230
+ if isinstance(processor, dict) and len(processor) != count:
231
+ raise ValueError(
232
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
233
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
234
+ )
235
+
236
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
237
+ if hasattr(module, "set_processor"):
238
+ if not isinstance(processor, dict):
239
+ module.set_processor(processor)
240
+ else:
241
+ module.set_processor(processor.pop(f"{name}.processor"))
242
+
243
+ for sub_name, child in module.named_children():
244
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
245
+
246
+ for name, module in self.named_children():
247
+ fn_recursive_attn_processor(name, module, processor)
248
+
249
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
250
+ def set_default_attn_processor(self):
251
+ """
252
+ Disables custom attention processors and sets the default attention implementation.
253
+ """
254
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
255
+ processor = AttnAddedKVProcessor()
256
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
257
+ processor = AttnProcessor()
258
+ else:
259
+ raise ValueError(
260
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
261
+ )
262
+
263
+ self.set_attn_processor(processor)
264
+
265
+ @apply_forward_hook
266
+ def encode(
267
+ self, x: torch.FloatTensor, return_dict: bool = True
268
+ ) -> Union[ConsistencyDecoderVAEOutput, Tuple[DiagonalGaussianDistribution]]:
269
+ """
270
+ Encode a batch of images into latents.
271
+
272
+ Args:
273
+ x (`torch.FloatTensor`): Input batch of images.
274
+ return_dict (`bool`, *optional*, defaults to `True`):
275
+ Whether to return a [`~models.consistecy_decoder_vae.ConsistencyDecoderOoutput`] instead of a plain
276
+ tuple.
277
+
278
+ Returns:
279
+ The latent representations of the encoded images. If `return_dict` is True, a
280
+ [`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] is returned, otherwise a plain `tuple`
281
+ is returned.
282
+ """
283
+ if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
284
+ return self.tiled_encode(x, return_dict=return_dict)
285
+
286
+ if self.use_slicing and x.shape[0] > 1:
287
+ encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
288
+ h = torch.cat(encoded_slices)
289
+ else:
290
+ h = self.encoder(x)
291
+
292
+ moments = self.quant_conv(h)
293
+ posterior = DiagonalGaussianDistribution(moments)
294
+
295
+ if not return_dict:
296
+ return (posterior,)
297
+
298
+ return ConsistencyDecoderVAEOutput(latent_dist=posterior)
299
+
300
+ @apply_forward_hook
301
+ def decode(
302
+ self,
303
+ z: torch.FloatTensor,
304
+ generator: Optional[torch.Generator] = None,
305
+ return_dict: bool = True,
306
+ num_inference_steps: int = 2,
307
+ ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
308
+ z = (z * self.config.scaling_factor - self.means) / self.stds
309
+
310
+ scale_factor = 2 ** (len(self.config.block_out_channels) - 1)
311
+ z = F.interpolate(z, mode="nearest", scale_factor=scale_factor)
312
+
313
+ batch_size, _, height, width = z.shape
314
+
315
+ self.decoder_scheduler.set_timesteps(num_inference_steps, device=self.device)
316
+
317
+ x_t = self.decoder_scheduler.init_noise_sigma * randn_tensor(
318
+ (batch_size, 3, height, width), generator=generator, dtype=z.dtype, device=z.device
319
+ )
320
+
321
+ for t in self.decoder_scheduler.timesteps:
322
+ model_input = torch.concat([self.decoder_scheduler.scale_model_input(x_t, t), z], dim=1)
323
+ model_output = self.decoder_unet(model_input, t).sample[:, :3, :, :]
324
+ prev_sample = self.decoder_scheduler.step(model_output, t, x_t, generator).prev_sample
325
+ x_t = prev_sample
326
+
327
+ x_0 = x_t
328
+
329
+ if not return_dict:
330
+ return (x_0,)
331
+
332
+ return DecoderOutput(sample=x_0)
333
+
334
+ # Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.blend_v
335
+ def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
336
+ blend_extent = min(a.shape[2], b.shape[2], blend_extent)
337
+ for y in range(blend_extent):
338
+ b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
339
+ return b
340
+
341
+ # Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.blend_h
342
+ def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
343
+ blend_extent = min(a.shape[3], b.shape[3], blend_extent)
344
+ for x in range(blend_extent):
345
+ b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
346
+ return b
347
+
348
+ def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> ConsistencyDecoderVAEOutput:
349
+ r"""Encode a batch of images using a tiled encoder.
350
+
351
+ When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
352
+ steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
353
+ different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
354
+ tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
355
+ output, but they should be much less noticeable.
356
+
357
+ Args:
358
+ x (`torch.FloatTensor`): Input batch of images.
359
+ return_dict (`bool`, *optional*, defaults to `True`):
360
+ Whether or not to return a [`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] instead of a
361
+ plain tuple.
362
+
363
+ Returns:
364
+ [`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] or `tuple`:
365
+ If return_dict is True, a [`~models.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] is returned,
366
+ otherwise a plain `tuple` is returned.
367
+ """
368
+ overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
369
+ blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
370
+ row_limit = self.tile_latent_min_size - blend_extent
371
+
372
+ # Split the image into 512x512 tiles and encode them separately.
373
+ rows = []
374
+ for i in range(0, x.shape[2], overlap_size):
375
+ row = []
376
+ for j in range(0, x.shape[3], overlap_size):
377
+ tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
378
+ tile = self.encoder(tile)
379
+ tile = self.quant_conv(tile)
380
+ row.append(tile)
381
+ rows.append(row)
382
+ result_rows = []
383
+ for i, row in enumerate(rows):
384
+ result_row = []
385
+ for j, tile in enumerate(row):
386
+ # blend the above tile and the left tile
387
+ # to the current tile and add the current tile to the result row
388
+ if i > 0:
389
+ tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
390
+ if j > 0:
391
+ tile = self.blend_h(row[j - 1], tile, blend_extent)
392
+ result_row.append(tile[:, :, :row_limit, :row_limit])
393
+ result_rows.append(torch.cat(result_row, dim=3))
394
+
395
+ moments = torch.cat(result_rows, dim=2)
396
+ posterior = DiagonalGaussianDistribution(moments)
397
+
398
+ if not return_dict:
399
+ return (posterior,)
400
+
401
+ return ConsistencyDecoderVAEOutput(latent_dist=posterior)
402
+
403
+ def forward(
404
+ self,
405
+ sample: torch.FloatTensor,
406
+ sample_posterior: bool = False,
407
+ return_dict: bool = True,
408
+ generator: Optional[torch.Generator] = None,
409
+ ) -> Union[DecoderOutput, Tuple[torch.FloatTensor]]:
410
+ r"""
411
+ Args:
412
+ sample (`torch.FloatTensor`): Input sample.
413
+ sample_posterior (`bool`, *optional*, defaults to `False`):
414
+ Whether to sample from the posterior.
415
+ return_dict (`bool`, *optional*, defaults to `True`):
416
+ Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
417
+ generator (`torch.Generator`, *optional*, defaults to `None`):
418
+ Generator to use for sampling.
419
+
420
+ Returns:
421
+ [`DecoderOutput`] or `tuple`:
422
+ If return_dict is True, a [`DecoderOutput`] is returned, otherwise a plain `tuple` is returned.
423
+ """
424
+ x = sample
425
+ posterior = self.encode(x).latent_dist
426
+ if sample_posterior:
427
+ z = posterior.sample(generator=generator)
428
+ else:
429
+ z = posterior.mode()
430
+ dec = self.decode(z, generator=generator).sample
431
+
432
+ if not return_dict:
433
+ return (dec,)
434
+
435
+ return DecoderOutput(sample=dec)
diffusers/models/autoencoders/vae.py ADDED
@@ -0,0 +1,983 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from typing import Optional, Tuple
16
+
17
+ import numpy as np
18
+ import torch
19
+ import torch.nn as nn
20
+
21
+ from ...utils import BaseOutput, is_torch_version
22
+ from ...utils.torch_utils import randn_tensor
23
+ from ..activations import get_activation
24
+ from ..attention_processor import SpatialNorm
25
+ from ..unet_2d_blocks import (
26
+ AutoencoderTinyBlock,
27
+ UNetMidBlock2D,
28
+ get_down_block,
29
+ get_up_block,
30
+ )
31
+
32
+
33
+ @dataclass
34
+ class DecoderOutput(BaseOutput):
35
+ r"""
36
+ Output of decoding method.
37
+
38
+ Args:
39
+ sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
40
+ The decoded output sample from the last layer of the model.
41
+ """
42
+
43
+ sample: torch.FloatTensor
44
+
45
+
46
+ class Encoder(nn.Module):
47
+ r"""
48
+ The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
49
+
50
+ Args:
51
+ in_channels (`int`, *optional*, defaults to 3):
52
+ The number of input channels.
53
+ out_channels (`int`, *optional*, defaults to 3):
54
+ The number of output channels.
55
+ down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
56
+ The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
57
+ options.
58
+ block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
59
+ The number of output channels for each block.
60
+ layers_per_block (`int`, *optional*, defaults to 2):
61
+ The number of layers per block.
62
+ norm_num_groups (`int`, *optional*, defaults to 32):
63
+ The number of groups for normalization.
64
+ act_fn (`str`, *optional*, defaults to `"silu"`):
65
+ The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
66
+ double_z (`bool`, *optional*, defaults to `True`):
67
+ Whether to double the number of output channels for the last block.
68
+ """
69
+
70
+ def __init__(
71
+ self,
72
+ in_channels: int = 3,
73
+ out_channels: int = 3,
74
+ down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
75
+ block_out_channels: Tuple[int, ...] = (64,),
76
+ layers_per_block: int = 2,
77
+ norm_num_groups: int = 32,
78
+ act_fn: str = "silu",
79
+ double_z: bool = True,
80
+ mid_block_add_attention=True,
81
+ ):
82
+ super().__init__()
83
+ self.layers_per_block = layers_per_block
84
+
85
+ self.conv_in = nn.Conv2d(
86
+ in_channels,
87
+ block_out_channels[0],
88
+ kernel_size=3,
89
+ stride=1,
90
+ padding=1,
91
+ )
92
+
93
+ self.mid_block = None
94
+ self.down_blocks = nn.ModuleList([])
95
+
96
+ # down
97
+ output_channel = block_out_channels[0]
98
+ for i, down_block_type in enumerate(down_block_types):
99
+ input_channel = output_channel
100
+ output_channel = block_out_channels[i]
101
+ is_final_block = i == len(block_out_channels) - 1
102
+
103
+ down_block = get_down_block(
104
+ down_block_type,
105
+ num_layers=self.layers_per_block,
106
+ in_channels=input_channel,
107
+ out_channels=output_channel,
108
+ add_downsample=not is_final_block,
109
+ resnet_eps=1e-6,
110
+ downsample_padding=0,
111
+ resnet_act_fn=act_fn,
112
+ resnet_groups=norm_num_groups,
113
+ attention_head_dim=output_channel,
114
+ temb_channels=None,
115
+ )
116
+ self.down_blocks.append(down_block)
117
+
118
+ # mid
119
+ self.mid_block = UNetMidBlock2D(
120
+ in_channels=block_out_channels[-1],
121
+ resnet_eps=1e-6,
122
+ resnet_act_fn=act_fn,
123
+ output_scale_factor=1,
124
+ resnet_time_scale_shift="default",
125
+ attention_head_dim=block_out_channels[-1],
126
+ resnet_groups=norm_num_groups,
127
+ temb_channels=None,
128
+ add_attention=mid_block_add_attention,
129
+ )
130
+
131
+ # out
132
+ self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
133
+ self.conv_act = nn.SiLU()
134
+
135
+ conv_out_channels = 2 * out_channels if double_z else out_channels
136
+ self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
137
+
138
+ self.gradient_checkpointing = False
139
+
140
+ def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
141
+ r"""The forward method of the `Encoder` class."""
142
+
143
+ sample = self.conv_in(sample)
144
+
145
+ if self.training and self.gradient_checkpointing:
146
+
147
+ def create_custom_forward(module):
148
+ def custom_forward(*inputs):
149
+ return module(*inputs)
150
+
151
+ return custom_forward
152
+
153
+ # down
154
+ if is_torch_version(">=", "1.11.0"):
155
+ for down_block in self.down_blocks:
156
+ sample = torch.utils.checkpoint.checkpoint(
157
+ create_custom_forward(down_block), sample, use_reentrant=False
158
+ )
159
+ # middle
160
+ sample = torch.utils.checkpoint.checkpoint(
161
+ create_custom_forward(self.mid_block), sample, use_reentrant=False
162
+ )
163
+ else:
164
+ for down_block in self.down_blocks:
165
+ sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample)
166
+ # middle
167
+ sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
168
+
169
+ else:
170
+ # down
171
+ for down_block in self.down_blocks:
172
+ sample = down_block(sample)
173
+
174
+ # middle
175
+ sample = self.mid_block(sample)
176
+
177
+ # post-process
178
+ sample = self.conv_norm_out(sample)
179
+ sample = self.conv_act(sample)
180
+ sample = self.conv_out(sample)
181
+
182
+ return sample
183
+
184
+
185
+ class Decoder(nn.Module):
186
+ r"""
187
+ The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
188
+
189
+ Args:
190
+ in_channels (`int`, *optional*, defaults to 3):
191
+ The number of input channels.
192
+ out_channels (`int`, *optional*, defaults to 3):
193
+ The number of output channels.
194
+ up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
195
+ The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
196
+ block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
197
+ The number of output channels for each block.
198
+ layers_per_block (`int`, *optional*, defaults to 2):
199
+ The number of layers per block.
200
+ norm_num_groups (`int`, *optional*, defaults to 32):
201
+ The number of groups for normalization.
202
+ act_fn (`str`, *optional*, defaults to `"silu"`):
203
+ The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
204
+ norm_type (`str`, *optional*, defaults to `"group"`):
205
+ The normalization type to use. Can be either `"group"` or `"spatial"`.
206
+ """
207
+
208
+ def __init__(
209
+ self,
210
+ in_channels: int = 3,
211
+ out_channels: int = 3,
212
+ up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
213
+ block_out_channels: Tuple[int, ...] = (64,),
214
+ layers_per_block: int = 2,
215
+ norm_num_groups: int = 32,
216
+ act_fn: str = "silu",
217
+ norm_type: str = "group", # group, spatial
218
+ mid_block_add_attention=True,
219
+ ):
220
+ super().__init__()
221
+ self.layers_per_block = layers_per_block
222
+
223
+ self.conv_in = nn.Conv2d(
224
+ in_channels,
225
+ block_out_channels[-1],
226
+ kernel_size=3,
227
+ stride=1,
228
+ padding=1,
229
+ )
230
+
231
+ self.mid_block = None
232
+ self.up_blocks = nn.ModuleList([])
233
+
234
+ temb_channels = in_channels if norm_type == "spatial" else None
235
+
236
+ # mid
237
+ self.mid_block = UNetMidBlock2D(
238
+ in_channels=block_out_channels[-1],
239
+ resnet_eps=1e-6,
240
+ resnet_act_fn=act_fn,
241
+ output_scale_factor=1,
242
+ resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
243
+ attention_head_dim=block_out_channels[-1],
244
+ resnet_groups=norm_num_groups,
245
+ temb_channels=temb_channels,
246
+ add_attention=mid_block_add_attention,
247
+ )
248
+
249
+ # up
250
+ reversed_block_out_channels = list(reversed(block_out_channels))
251
+ output_channel = reversed_block_out_channels[0]
252
+ for i, up_block_type in enumerate(up_block_types):
253
+ prev_output_channel = output_channel
254
+ output_channel = reversed_block_out_channels[i]
255
+
256
+ is_final_block = i == len(block_out_channels) - 1
257
+
258
+ up_block = get_up_block(
259
+ up_block_type,
260
+ num_layers=self.layers_per_block + 1,
261
+ in_channels=prev_output_channel,
262
+ out_channels=output_channel,
263
+ prev_output_channel=None,
264
+ add_upsample=not is_final_block,
265
+ resnet_eps=1e-6,
266
+ resnet_act_fn=act_fn,
267
+ resnet_groups=norm_num_groups,
268
+ attention_head_dim=output_channel,
269
+ temb_channels=temb_channels,
270
+ resnet_time_scale_shift=norm_type,
271
+ )
272
+ self.up_blocks.append(up_block)
273
+ prev_output_channel = output_channel
274
+
275
+ # out
276
+ if norm_type == "spatial":
277
+ self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
278
+ else:
279
+ self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
280
+ self.conv_act = nn.SiLU()
281
+ self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
282
+
283
+ self.gradient_checkpointing = False
284
+
285
+ def forward(
286
+ self,
287
+ sample: torch.FloatTensor,
288
+ latent_embeds: Optional[torch.FloatTensor] = None,
289
+ ) -> torch.FloatTensor:
290
+ r"""The forward method of the `Decoder` class."""
291
+
292
+ sample = self.conv_in(sample)
293
+
294
+ upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
295
+ if self.training and self.gradient_checkpointing:
296
+
297
+ def create_custom_forward(module):
298
+ def custom_forward(*inputs):
299
+ return module(*inputs)
300
+
301
+ return custom_forward
302
+
303
+ if is_torch_version(">=", "1.11.0"):
304
+ # middle
305
+ sample = torch.utils.checkpoint.checkpoint(
306
+ create_custom_forward(self.mid_block),
307
+ sample,
308
+ latent_embeds,
309
+ use_reentrant=False,
310
+ )
311
+ sample = sample.to(upscale_dtype)
312
+
313
+ # up
314
+ for up_block in self.up_blocks:
315
+ sample = torch.utils.checkpoint.checkpoint(
316
+ create_custom_forward(up_block),
317
+ sample,
318
+ latent_embeds,
319
+ use_reentrant=False,
320
+ )
321
+ else:
322
+ # middle
323
+ sample = torch.utils.checkpoint.checkpoint(
324
+ create_custom_forward(self.mid_block), sample, latent_embeds
325
+ )
326
+ sample = sample.to(upscale_dtype)
327
+
328
+ # up
329
+ for up_block in self.up_blocks:
330
+ sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
331
+ else:
332
+ # middle
333
+ sample = self.mid_block(sample, latent_embeds)
334
+ sample = sample.to(upscale_dtype)
335
+
336
+ # up
337
+ for up_block in self.up_blocks:
338
+ sample = up_block(sample, latent_embeds)
339
+
340
+ # post-process
341
+ if latent_embeds is None:
342
+ sample = self.conv_norm_out(sample)
343
+ else:
344
+ sample = self.conv_norm_out(sample, latent_embeds)
345
+ sample = self.conv_act(sample)
346
+ sample = self.conv_out(sample)
347
+
348
+ return sample
349
+
350
+
351
+ class UpSample(nn.Module):
352
+ r"""
353
+ The `UpSample` layer of a variational autoencoder that upsamples its input.
354
+
355
+ Args:
356
+ in_channels (`int`, *optional*, defaults to 3):
357
+ The number of input channels.
358
+ out_channels (`int`, *optional*, defaults to 3):
359
+ The number of output channels.
360
+ """
361
+
362
+ def __init__(
363
+ self,
364
+ in_channels: int,
365
+ out_channels: int,
366
+ ) -> None:
367
+ super().__init__()
368
+ self.in_channels = in_channels
369
+ self.out_channels = out_channels
370
+ self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)
371
+
372
+ def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
373
+ r"""The forward method of the `UpSample` class."""
374
+ x = torch.relu(x)
375
+ x = self.deconv(x)
376
+ return x
377
+
378
+
379
+ class MaskConditionEncoder(nn.Module):
380
+ """
381
+ used in AsymmetricAutoencoderKL
382
+ """
383
+
384
+ def __init__(
385
+ self,
386
+ in_ch: int,
387
+ out_ch: int = 192,
388
+ res_ch: int = 768,
389
+ stride: int = 16,
390
+ ) -> None:
391
+ super().__init__()
392
+
393
+ channels = []
394
+ while stride > 1:
395
+ stride = stride // 2
396
+ in_ch_ = out_ch * 2
397
+ if out_ch > res_ch:
398
+ out_ch = res_ch
399
+ if stride == 1:
400
+ in_ch_ = res_ch
401
+ channels.append((in_ch_, out_ch))
402
+ out_ch *= 2
403
+
404
+ out_channels = []
405
+ for _in_ch, _out_ch in channels:
406
+ out_channels.append(_out_ch)
407
+ out_channels.append(channels[-1][0])
408
+
409
+ layers = []
410
+ in_ch_ = in_ch
411
+ for l in range(len(out_channels)):
412
+ out_ch_ = out_channels[l]
413
+ if l == 0 or l == 1:
414
+ layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1))
415
+ else:
416
+ layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1))
417
+ in_ch_ = out_ch_
418
+
419
+ self.layers = nn.Sequential(*layers)
420
+
421
+ def forward(self, x: torch.FloatTensor, mask=None) -> torch.FloatTensor:
422
+ r"""The forward method of the `MaskConditionEncoder` class."""
423
+ out = {}
424
+ for l in range(len(self.layers)):
425
+ layer = self.layers[l]
426
+ x = layer(x)
427
+ out[str(tuple(x.shape))] = x
428
+ x = torch.relu(x)
429
+ return out
430
+
431
+
432
+ class MaskConditionDecoder(nn.Module):
433
+ r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's
434
+ decoder with a conditioner on the mask and masked image.
435
+
436
+ Args:
437
+ in_channels (`int`, *optional*, defaults to 3):
438
+ The number of input channels.
439
+ out_channels (`int`, *optional*, defaults to 3):
440
+ The number of output channels.
441
+ up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
442
+ The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
443
+ block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
444
+ The number of output channels for each block.
445
+ layers_per_block (`int`, *optional*, defaults to 2):
446
+ The number of layers per block.
447
+ norm_num_groups (`int`, *optional*, defaults to 32):
448
+ The number of groups for normalization.
449
+ act_fn (`str`, *optional*, defaults to `"silu"`):
450
+ The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
451
+ norm_type (`str`, *optional*, defaults to `"group"`):
452
+ The normalization type to use. Can be either `"group"` or `"spatial"`.
453
+ """
454
+
455
+ def __init__(
456
+ self,
457
+ in_channels: int = 3,
458
+ out_channels: int = 3,
459
+ up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
460
+ block_out_channels: Tuple[int, ...] = (64,),
461
+ layers_per_block: int = 2,
462
+ norm_num_groups: int = 32,
463
+ act_fn: str = "silu",
464
+ norm_type: str = "group", # group, spatial
465
+ ):
466
+ super().__init__()
467
+ self.layers_per_block = layers_per_block
468
+
469
+ self.conv_in = nn.Conv2d(
470
+ in_channels,
471
+ block_out_channels[-1],
472
+ kernel_size=3,
473
+ stride=1,
474
+ padding=1,
475
+ )
476
+
477
+ self.mid_block = None
478
+ self.up_blocks = nn.ModuleList([])
479
+
480
+ temb_channels = in_channels if norm_type == "spatial" else None
481
+
482
+ # mid
483
+ self.mid_block = UNetMidBlock2D(
484
+ in_channels=block_out_channels[-1],
485
+ resnet_eps=1e-6,
486
+ resnet_act_fn=act_fn,
487
+ output_scale_factor=1,
488
+ resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
489
+ attention_head_dim=block_out_channels[-1],
490
+ resnet_groups=norm_num_groups,
491
+ temb_channels=temb_channels,
492
+ )
493
+
494
+ # up
495
+ reversed_block_out_channels = list(reversed(block_out_channels))
496
+ output_channel = reversed_block_out_channels[0]
497
+ for i, up_block_type in enumerate(up_block_types):
498
+ prev_output_channel = output_channel
499
+ output_channel = reversed_block_out_channels[i]
500
+
501
+ is_final_block = i == len(block_out_channels) - 1
502
+
503
+ up_block = get_up_block(
504
+ up_block_type,
505
+ num_layers=self.layers_per_block + 1,
506
+ in_channels=prev_output_channel,
507
+ out_channels=output_channel,
508
+ prev_output_channel=None,
509
+ add_upsample=not is_final_block,
510
+ resnet_eps=1e-6,
511
+ resnet_act_fn=act_fn,
512
+ resnet_groups=norm_num_groups,
513
+ attention_head_dim=output_channel,
514
+ temb_channels=temb_channels,
515
+ resnet_time_scale_shift=norm_type,
516
+ )
517
+ self.up_blocks.append(up_block)
518
+ prev_output_channel = output_channel
519
+
520
+ # condition encoder
521
+ self.condition_encoder = MaskConditionEncoder(
522
+ in_ch=out_channels,
523
+ out_ch=block_out_channels[0],
524
+ res_ch=block_out_channels[-1],
525
+ )
526
+
527
+ # out
528
+ if norm_type == "spatial":
529
+ self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
530
+ else:
531
+ self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
532
+ self.conv_act = nn.SiLU()
533
+ self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
534
+
535
+ self.gradient_checkpointing = False
536
+
537
+ def forward(
538
+ self,
539
+ z: torch.FloatTensor,
540
+ image: Optional[torch.FloatTensor] = None,
541
+ mask: Optional[torch.FloatTensor] = None,
542
+ latent_embeds: Optional[torch.FloatTensor] = None,
543
+ ) -> torch.FloatTensor:
544
+ r"""The forward method of the `MaskConditionDecoder` class."""
545
+ sample = z
546
+ sample = self.conv_in(sample)
547
+
548
+ upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
549
+ if self.training and self.gradient_checkpointing:
550
+
551
+ def create_custom_forward(module):
552
+ def custom_forward(*inputs):
553
+ return module(*inputs)
554
+
555
+ return custom_forward
556
+
557
+ if is_torch_version(">=", "1.11.0"):
558
+ # middle
559
+ sample = torch.utils.checkpoint.checkpoint(
560
+ create_custom_forward(self.mid_block),
561
+ sample,
562
+ latent_embeds,
563
+ use_reentrant=False,
564
+ )
565
+ sample = sample.to(upscale_dtype)
566
+
567
+ # condition encoder
568
+ if image is not None and mask is not None:
569
+ masked_image = (1 - mask) * image
570
+ im_x = torch.utils.checkpoint.checkpoint(
571
+ create_custom_forward(self.condition_encoder),
572
+ masked_image,
573
+ mask,
574
+ use_reentrant=False,
575
+ )
576
+
577
+ # up
578
+ for up_block in self.up_blocks:
579
+ if image is not None and mask is not None:
580
+ sample_ = im_x[str(tuple(sample.shape))]
581
+ mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
582
+ sample = sample * mask_ + sample_ * (1 - mask_)
583
+ sample = torch.utils.checkpoint.checkpoint(
584
+ create_custom_forward(up_block),
585
+ sample,
586
+ latent_embeds,
587
+ use_reentrant=False,
588
+ )
589
+ if image is not None and mask is not None:
590
+ sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
591
+ else:
592
+ # middle
593
+ sample = torch.utils.checkpoint.checkpoint(
594
+ create_custom_forward(self.mid_block), sample, latent_embeds
595
+ )
596
+ sample = sample.to(upscale_dtype)
597
+
598
+ # condition encoder
599
+ if image is not None and mask is not None:
600
+ masked_image = (1 - mask) * image
601
+ im_x = torch.utils.checkpoint.checkpoint(
602
+ create_custom_forward(self.condition_encoder),
603
+ masked_image,
604
+ mask,
605
+ )
606
+
607
+ # up
608
+ for up_block in self.up_blocks:
609
+ if image is not None and mask is not None:
610
+ sample_ = im_x[str(tuple(sample.shape))]
611
+ mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
612
+ sample = sample * mask_ + sample_ * (1 - mask_)
613
+ sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
614
+ if image is not None and mask is not None:
615
+ sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
616
+ else:
617
+ # middle
618
+ sample = self.mid_block(sample, latent_embeds)
619
+ sample = sample.to(upscale_dtype)
620
+
621
+ # condition encoder
622
+ if image is not None and mask is not None:
623
+ masked_image = (1 - mask) * image
624
+ im_x = self.condition_encoder(masked_image, mask)
625
+
626
+ # up
627
+ for up_block in self.up_blocks:
628
+ if image is not None and mask is not None:
629
+ sample_ = im_x[str(tuple(sample.shape))]
630
+ mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
631
+ sample = sample * mask_ + sample_ * (1 - mask_)
632
+ sample = up_block(sample, latent_embeds)
633
+ if image is not None and mask is not None:
634
+ sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
635
+
636
+ # post-process
637
+ if latent_embeds is None:
638
+ sample = self.conv_norm_out(sample)
639
+ else:
640
+ sample = self.conv_norm_out(sample, latent_embeds)
641
+ sample = self.conv_act(sample)
642
+ sample = self.conv_out(sample)
643
+
644
+ return sample
645
+
646
+
647
+ class VectorQuantizer(nn.Module):
648
+ """
649
+ Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
650
+ multiplications and allows for post-hoc remapping of indices.
651
+ """
652
+
653
+ # NOTE: due to a bug the beta term was applied to the wrong term. for
654
+ # backwards compatibility we use the buggy version by default, but you can
655
+ # specify legacy=False to fix it.
656
+ def __init__(
657
+ self,
658
+ n_e: int,
659
+ vq_embed_dim: int,
660
+ beta: float,
661
+ remap=None,
662
+ unknown_index: str = "random",
663
+ sane_index_shape: bool = False,
664
+ legacy: bool = True,
665
+ ):
666
+ super().__init__()
667
+ self.n_e = n_e
668
+ self.vq_embed_dim = vq_embed_dim
669
+ self.beta = beta
670
+ self.legacy = legacy
671
+
672
+ self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim)
673
+ self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
674
+
675
+ self.remap = remap
676
+ if self.remap is not None:
677
+ self.register_buffer("used", torch.tensor(np.load(self.remap)))
678
+ self.used: torch.Tensor
679
+ self.re_embed = self.used.shape[0]
680
+ self.unknown_index = unknown_index # "random" or "extra" or integer
681
+ if self.unknown_index == "extra":
682
+ self.unknown_index = self.re_embed
683
+ self.re_embed = self.re_embed + 1
684
+ print(
685
+ f"Remapping {self.n_e} indices to {self.re_embed} indices. "
686
+ f"Using {self.unknown_index} for unknown indices."
687
+ )
688
+ else:
689
+ self.re_embed = n_e
690
+
691
+ self.sane_index_shape = sane_index_shape
692
+
693
+ def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor:
694
+ ishape = inds.shape
695
+ assert len(ishape) > 1
696
+ inds = inds.reshape(ishape[0], -1)
697
+ used = self.used.to(inds)
698
+ match = (inds[:, :, None] == used[None, None, ...]).long()
699
+ new = match.argmax(-1)
700
+ unknown = match.sum(2) < 1
701
+ if self.unknown_index == "random":
702
+ new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
703
+ else:
704
+ new[unknown] = self.unknown_index
705
+ return new.reshape(ishape)
706
+
707
+ def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor:
708
+ ishape = inds.shape
709
+ assert len(ishape) > 1
710
+ inds = inds.reshape(ishape[0], -1)
711
+ used = self.used.to(inds)
712
+ if self.re_embed > self.used.shape[0]: # extra token
713
+ inds[inds >= self.used.shape[0]] = 0 # simply set to zero
714
+ back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
715
+ return back.reshape(ishape)
716
+
717
+ def forward(self, z: torch.FloatTensor) -> Tuple[torch.FloatTensor, torch.FloatTensor, Tuple]:
718
+ # reshape z -> (batch, height, width, channel) and flatten
719
+ z = z.permute(0, 2, 3, 1).contiguous()
720
+ z_flattened = z.view(-1, self.vq_embed_dim)
721
+
722
+ # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
723
+ min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1)
724
+
725
+ z_q = self.embedding(min_encoding_indices).view(z.shape)
726
+ perplexity = None
727
+ min_encodings = None
728
+
729
+ # compute loss for embedding
730
+ if not self.legacy:
731
+ loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
732
+ else:
733
+ loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
734
+
735
+ # preserve gradients
736
+ z_q: torch.FloatTensor = z + (z_q - z).detach()
737
+
738
+ # reshape back to match original input shape
739
+ z_q = z_q.permute(0, 3, 1, 2).contiguous()
740
+
741
+ if self.remap is not None:
742
+ min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
743
+ min_encoding_indices = self.remap_to_used(min_encoding_indices)
744
+ min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
745
+
746
+ if self.sane_index_shape:
747
+ min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
748
+
749
+ return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
750
+
751
+ def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.FloatTensor:
752
+ # shape specifying (batch, height, width, channel)
753
+ if self.remap is not None:
754
+ indices = indices.reshape(shape[0], -1) # add batch axis
755
+ indices = self.unmap_to_all(indices)
756
+ indices = indices.reshape(-1) # flatten again
757
+
758
+ # get quantized latent vectors
759
+ z_q: torch.FloatTensor = self.embedding(indices)
760
+
761
+ if shape is not None:
762
+ z_q = z_q.view(shape)
763
+ # reshape back to match original input shape
764
+ z_q = z_q.permute(0, 3, 1, 2).contiguous()
765
+
766
+ return z_q
767
+
768
+
769
+ class DiagonalGaussianDistribution(object):
770
+ def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
771
+ self.parameters = parameters
772
+ self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
773
+ self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
774
+ self.deterministic = deterministic
775
+ self.std = torch.exp(0.5 * self.logvar)
776
+ self.var = torch.exp(self.logvar)
777
+ if self.deterministic:
778
+ self.var = self.std = torch.zeros_like(
779
+ self.mean, device=self.parameters.device, dtype=self.parameters.dtype
780
+ )
781
+
782
+ def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
783
+ # make sure sample is on the same device as the parameters and has same dtype
784
+ sample = randn_tensor(
785
+ self.mean.shape,
786
+ generator=generator,
787
+ device=self.parameters.device,
788
+ dtype=self.parameters.dtype,
789
+ )
790
+ x = self.mean + self.std * sample
791
+ return x
792
+
793
+ def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
794
+ if self.deterministic:
795
+ return torch.Tensor([0.0])
796
+ else:
797
+ if other is None:
798
+ return 0.5 * torch.sum(
799
+ torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
800
+ dim=[1, 2, 3],
801
+ )
802
+ else:
803
+ return 0.5 * torch.sum(
804
+ torch.pow(self.mean - other.mean, 2) / other.var
805
+ + self.var / other.var
806
+ - 1.0
807
+ - self.logvar
808
+ + other.logvar,
809
+ dim=[1, 2, 3],
810
+ )
811
+
812
+ def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
813
+ if self.deterministic:
814
+ return torch.Tensor([0.0])
815
+ logtwopi = np.log(2.0 * np.pi)
816
+ return 0.5 * torch.sum(
817
+ logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
818
+ dim=dims,
819
+ )
820
+
821
+ def mode(self) -> torch.Tensor:
822
+ return self.mean
823
+
824
+
825
+ class EncoderTiny(nn.Module):
826
+ r"""
827
+ The `EncoderTiny` layer is a simpler version of the `Encoder` layer.
828
+
829
+ Args:
830
+ in_channels (`int`):
831
+ The number of input channels.
832
+ out_channels (`int`):
833
+ The number of output channels.
834
+ num_blocks (`Tuple[int, ...]`):
835
+ Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
836
+ use.
837
+ block_out_channels (`Tuple[int, ...]`):
838
+ The number of output channels for each block.
839
+ act_fn (`str`):
840
+ The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
841
+ """
842
+
843
+ def __init__(
844
+ self,
845
+ in_channels: int,
846
+ out_channels: int,
847
+ num_blocks: Tuple[int, ...],
848
+ block_out_channels: Tuple[int, ...],
849
+ act_fn: str,
850
+ ):
851
+ super().__init__()
852
+
853
+ layers = []
854
+ for i, num_block in enumerate(num_blocks):
855
+ num_channels = block_out_channels[i]
856
+
857
+ if i == 0:
858
+ layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1))
859
+ else:
860
+ layers.append(
861
+ nn.Conv2d(
862
+ num_channels,
863
+ num_channels,
864
+ kernel_size=3,
865
+ padding=1,
866
+ stride=2,
867
+ bias=False,
868
+ )
869
+ )
870
+
871
+ for _ in range(num_block):
872
+ layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))
873
+
874
+ layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1))
875
+
876
+ self.layers = nn.Sequential(*layers)
877
+ self.gradient_checkpointing = False
878
+
879
+ def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
880
+ r"""The forward method of the `EncoderTiny` class."""
881
+ if self.training and self.gradient_checkpointing:
882
+
883
+ def create_custom_forward(module):
884
+ def custom_forward(*inputs):
885
+ return module(*inputs)
886
+
887
+ return custom_forward
888
+
889
+ if is_torch_version(">=", "1.11.0"):
890
+ x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
891
+ else:
892
+ x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)
893
+
894
+ else:
895
+ # scale image from [-1, 1] to [0, 1] to match TAESD convention
896
+ x = self.layers(x.add(1).div(2))
897
+
898
+ return x
899
+
900
+
901
+ class DecoderTiny(nn.Module):
902
+ r"""
903
+ The `DecoderTiny` layer is a simpler version of the `Decoder` layer.
904
+
905
+ Args:
906
+ in_channels (`int`):
907
+ The number of input channels.
908
+ out_channels (`int`):
909
+ The number of output channels.
910
+ num_blocks (`Tuple[int, ...]`):
911
+ Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
912
+ use.
913
+ block_out_channels (`Tuple[int, ...]`):
914
+ The number of output channels for each block.
915
+ upsampling_scaling_factor (`int`):
916
+ The scaling factor to use for upsampling.
917
+ act_fn (`str`):
918
+ The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
919
+ """
920
+
921
+ def __init__(
922
+ self,
923
+ in_channels: int,
924
+ out_channels: int,
925
+ num_blocks: Tuple[int, ...],
926
+ block_out_channels: Tuple[int, ...],
927
+ upsampling_scaling_factor: int,
928
+ act_fn: str,
929
+ ):
930
+ super().__init__()
931
+
932
+ layers = [
933
+ nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1),
934
+ get_activation(act_fn),
935
+ ]
936
+
937
+ for i, num_block in enumerate(num_blocks):
938
+ is_final_block = i == (len(num_blocks) - 1)
939
+ num_channels = block_out_channels[i]
940
+
941
+ for _ in range(num_block):
942
+ layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))
943
+
944
+ if not is_final_block:
945
+ layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor))
946
+
947
+ conv_out_channel = num_channels if not is_final_block else out_channels
948
+ layers.append(
949
+ nn.Conv2d(
950
+ num_channels,
951
+ conv_out_channel,
952
+ kernel_size=3,
953
+ padding=1,
954
+ bias=is_final_block,
955
+ )
956
+ )
957
+
958
+ self.layers = nn.Sequential(*layers)
959
+ self.gradient_checkpointing = False
960
+
961
+ def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
962
+ r"""The forward method of the `DecoderTiny` class."""
963
+ # Clamp.
964
+ x = torch.tanh(x / 3) * 3
965
+
966
+ if self.training and self.gradient_checkpointing:
967
+
968
+ def create_custom_forward(module):
969
+ def custom_forward(*inputs):
970
+ return module(*inputs)
971
+
972
+ return custom_forward
973
+
974
+ if is_torch_version(">=", "1.11.0"):
975
+ x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
976
+ else:
977
+ x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)
978
+
979
+ else:
980
+ x = self.layers(x)
981
+
982
+ # scale image from [0, 1] to [-1, 1] to match diffusers convention
983
+ return x.mul(2).sub(1)
diffusers/models/controlnet.py ADDED
@@ -0,0 +1,862 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from typing import Any, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ from torch import nn
19
+ from torch.nn import functional as F
20
+
21
+ from ..configuration_utils import ConfigMixin, register_to_config
22
+ from ..loaders import FromOriginalControlnetMixin
23
+ from ..utils import BaseOutput, logging
24
+ from .attention_processor import (
25
+ ADDED_KV_ATTENTION_PROCESSORS,
26
+ CROSS_ATTENTION_PROCESSORS,
27
+ AttentionProcessor,
28
+ AttnAddedKVProcessor,
29
+ AttnProcessor,
30
+ )
31
+ from .embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
32
+ from .modeling_utils import ModelMixin
33
+ from .unet_2d_blocks import CrossAttnDownBlock2D, DownBlock2D, UNetMidBlock2D, UNetMidBlock2DCrossAttn, get_down_block
34
+ from .unet_2d_condition import UNet2DConditionModel
35
+
36
+
37
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
38
+
39
+
40
+ @dataclass
41
+ class ControlNetOutput(BaseOutput):
42
+ """
43
+ The output of [`ControlNetModel`].
44
+
45
+ Args:
46
+ down_block_res_samples (`tuple[torch.Tensor]`):
47
+ A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
48
+ be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
49
+ used to condition the original UNet's downsampling activations.
50
+ mid_down_block_re_sample (`torch.Tensor`):
51
+ The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
52
+ `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
53
+ Output can be used to condition the original UNet's middle block activation.
54
+ """
55
+
56
+ down_block_res_samples: Tuple[torch.Tensor]
57
+ mid_block_res_sample: torch.Tensor
58
+
59
+
60
+ class ControlNetConditioningEmbedding(nn.Module):
61
+ """
62
+ Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
63
+ [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
64
+ training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
65
+ convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
66
+ (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
67
+ model) to encode image-space conditions ... into feature maps ..."
68
+ """
69
+
70
+ def __init__(
71
+ self,
72
+ conditioning_embedding_channels: int,
73
+ conditioning_channels: int = 3,
74
+ block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
75
+ ):
76
+ super().__init__()
77
+
78
+ self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
79
+
80
+ self.blocks = nn.ModuleList([])
81
+
82
+ for i in range(len(block_out_channels) - 1):
83
+ channel_in = block_out_channels[i]
84
+ channel_out = block_out_channels[i + 1]
85
+ self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
86
+ self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
87
+
88
+ self.conv_out = zero_module(
89
+ nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
90
+ )
91
+
92
+ def forward(self, conditioning):
93
+ embedding = self.conv_in(conditioning)
94
+ embedding = F.silu(embedding)
95
+
96
+ for block in self.blocks:
97
+ embedding = block(embedding)
98
+ embedding = F.silu(embedding)
99
+
100
+ embedding = self.conv_out(embedding)
101
+
102
+ return embedding
103
+
104
+
105
+ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlnetMixin):
106
+ """
107
+ A ControlNet model.
108
+
109
+ Args:
110
+ in_channels (`int`, defaults to 4):
111
+ The number of channels in the input sample.
112
+ flip_sin_to_cos (`bool`, defaults to `True`):
113
+ Whether to flip the sin to cos in the time embedding.
114
+ freq_shift (`int`, defaults to 0):
115
+ The frequency shift to apply to the time embedding.
116
+ down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
117
+ The tuple of downsample blocks to use.
118
+ only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
119
+ block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
120
+ The tuple of output channels for each block.
121
+ layers_per_block (`int`, defaults to 2):
122
+ The number of layers per block.
123
+ downsample_padding (`int`, defaults to 1):
124
+ The padding to use for the downsampling convolution.
125
+ mid_block_scale_factor (`float`, defaults to 1):
126
+ The scale factor to use for the mid block.
127
+ act_fn (`str`, defaults to "silu"):
128
+ The activation function to use.
129
+ norm_num_groups (`int`, *optional*, defaults to 32):
130
+ The number of groups to use for the normalization. If None, normalization and activation layers is skipped
131
+ in post-processing.
132
+ norm_eps (`float`, defaults to 1e-5):
133
+ The epsilon to use for the normalization.
134
+ cross_attention_dim (`int`, defaults to 1280):
135
+ The dimension of the cross attention features.
136
+ transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
137
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
138
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
139
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
140
+ encoder_hid_dim (`int`, *optional*, defaults to None):
141
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
142
+ dimension to `cross_attention_dim`.
143
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
144
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
145
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
146
+ attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
147
+ The dimension of the attention heads.
148
+ use_linear_projection (`bool`, defaults to `False`):
149
+ class_embed_type (`str`, *optional*, defaults to `None`):
150
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
151
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
152
+ addition_embed_type (`str`, *optional*, defaults to `None`):
153
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
154
+ "text". "text" will use the `TextTimeEmbedding` layer.
155
+ num_class_embeds (`int`, *optional*, defaults to 0):
156
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
157
+ class conditioning with `class_embed_type` equal to `None`.
158
+ upcast_attention (`bool`, defaults to `False`):
159
+ resnet_time_scale_shift (`str`, defaults to `"default"`):
160
+ Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
161
+ projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
162
+ The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
163
+ `class_embed_type="projection"`.
164
+ controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
165
+ The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
166
+ conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
167
+ The tuple of output channel for each block in the `conditioning_embedding` layer.
168
+ global_pool_conditions (`bool`, defaults to `False`):
169
+ TODO(Patrick) - unused parameter.
170
+ addition_embed_type_num_heads (`int`, defaults to 64):
171
+ The number of heads to use for the `TextTimeEmbedding` layer.
172
+ """
173
+
174
+ _supports_gradient_checkpointing = True
175
+
176
+ @register_to_config
177
+ def __init__(
178
+ self,
179
+ in_channels: int = 4,
180
+ conditioning_channels: int = 3,
181
+ flip_sin_to_cos: bool = True,
182
+ freq_shift: int = 0,
183
+ down_block_types: Tuple[str, ...] = (
184
+ "CrossAttnDownBlock2D",
185
+ "CrossAttnDownBlock2D",
186
+ "CrossAttnDownBlock2D",
187
+ "DownBlock2D",
188
+ ),
189
+ mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
190
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
191
+ block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
192
+ layers_per_block: int = 2,
193
+ downsample_padding: int = 1,
194
+ mid_block_scale_factor: float = 1,
195
+ act_fn: str = "silu",
196
+ norm_num_groups: Optional[int] = 32,
197
+ norm_eps: float = 1e-5,
198
+ cross_attention_dim: int = 1280,
199
+ transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
200
+ encoder_hid_dim: Optional[int] = None,
201
+ encoder_hid_dim_type: Optional[str] = None,
202
+ attention_head_dim: Union[int, Tuple[int, ...]] = 8,
203
+ num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
204
+ use_linear_projection: bool = False,
205
+ class_embed_type: Optional[str] = None,
206
+ addition_embed_type: Optional[str] = None,
207
+ addition_time_embed_dim: Optional[int] = None,
208
+ num_class_embeds: Optional[int] = None,
209
+ upcast_attention: bool = False,
210
+ resnet_time_scale_shift: str = "default",
211
+ projection_class_embeddings_input_dim: Optional[int] = None,
212
+ controlnet_conditioning_channel_order: str = "rgb",
213
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
214
+ global_pool_conditions: bool = False,
215
+ addition_embed_type_num_heads: int = 64,
216
+ ):
217
+ super().__init__()
218
+
219
+ # If `num_attention_heads` is not defined (which is the case for most models)
220
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
221
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
222
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
223
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
224
+ # which is why we correct for the naming here.
225
+ num_attention_heads = num_attention_heads or attention_head_dim
226
+
227
+ # Check inputs
228
+ if len(block_out_channels) != len(down_block_types):
229
+ raise ValueError(
230
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
231
+ )
232
+
233
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
234
+ raise ValueError(
235
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
236
+ )
237
+
238
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
239
+ raise ValueError(
240
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
241
+ )
242
+
243
+ if isinstance(transformer_layers_per_block, int):
244
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
245
+
246
+ # input
247
+ conv_in_kernel = 3
248
+ conv_in_padding = (conv_in_kernel - 1) // 2
249
+ self.conv_in = nn.Conv2d(
250
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
251
+ )
252
+
253
+ # time
254
+ time_embed_dim = block_out_channels[0] * 4
255
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
256
+ timestep_input_dim = block_out_channels[0]
257
+ self.time_embedding = TimestepEmbedding(
258
+ timestep_input_dim,
259
+ time_embed_dim,
260
+ act_fn=act_fn,
261
+ )
262
+
263
+ if encoder_hid_dim_type is None and encoder_hid_dim is not None:
264
+ encoder_hid_dim_type = "text_proj"
265
+ self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
266
+ logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
267
+
268
+ if encoder_hid_dim is None and encoder_hid_dim_type is not None:
269
+ raise ValueError(
270
+ f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
271
+ )
272
+
273
+ if encoder_hid_dim_type == "text_proj":
274
+ self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
275
+ elif encoder_hid_dim_type == "text_image_proj":
276
+ # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
277
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
278
+ # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
279
+ self.encoder_hid_proj = TextImageProjection(
280
+ text_embed_dim=encoder_hid_dim,
281
+ image_embed_dim=cross_attention_dim,
282
+ cross_attention_dim=cross_attention_dim,
283
+ )
284
+
285
+ elif encoder_hid_dim_type is not None:
286
+ raise ValueError(
287
+ f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
288
+ )
289
+ else:
290
+ self.encoder_hid_proj = None
291
+
292
+ # class embedding
293
+ if class_embed_type is None and num_class_embeds is not None:
294
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
295
+ elif class_embed_type == "timestep":
296
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
297
+ elif class_embed_type == "identity":
298
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
299
+ elif class_embed_type == "projection":
300
+ if projection_class_embeddings_input_dim is None:
301
+ raise ValueError(
302
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
303
+ )
304
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
305
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
306
+ # 2. it projects from an arbitrary input dimension.
307
+ #
308
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
309
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
310
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
311
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
312
+ else:
313
+ self.class_embedding = None
314
+
315
+ if addition_embed_type == "text":
316
+ if encoder_hid_dim is not None:
317
+ text_time_embedding_from_dim = encoder_hid_dim
318
+ else:
319
+ text_time_embedding_from_dim = cross_attention_dim
320
+
321
+ self.add_embedding = TextTimeEmbedding(
322
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
323
+ )
324
+ elif addition_embed_type == "text_image":
325
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
326
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
327
+ # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
328
+ self.add_embedding = TextImageTimeEmbedding(
329
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
330
+ )
331
+ elif addition_embed_type == "text_time":
332
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
333
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
334
+
335
+ elif addition_embed_type is not None:
336
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
337
+
338
+ # control net conditioning embedding
339
+ self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
340
+ conditioning_embedding_channels=block_out_channels[0],
341
+ block_out_channels=conditioning_embedding_out_channels,
342
+ conditioning_channels=conditioning_channels,
343
+ )
344
+
345
+ self.down_blocks = nn.ModuleList([])
346
+ self.controlnet_down_blocks = nn.ModuleList([])
347
+
348
+ if isinstance(only_cross_attention, bool):
349
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
350
+
351
+ if isinstance(attention_head_dim, int):
352
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
353
+
354
+ if isinstance(num_attention_heads, int):
355
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
356
+
357
+ # down
358
+ output_channel = block_out_channels[0]
359
+
360
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
361
+ controlnet_block = zero_module(controlnet_block)
362
+ self.controlnet_down_blocks.append(controlnet_block)
363
+
364
+ for i, down_block_type in enumerate(down_block_types):
365
+ input_channel = output_channel
366
+ output_channel = block_out_channels[i]
367
+ is_final_block = i == len(block_out_channels) - 1
368
+
369
+ down_block = get_down_block(
370
+ down_block_type,
371
+ num_layers=layers_per_block,
372
+ transformer_layers_per_block=transformer_layers_per_block[i],
373
+ in_channels=input_channel,
374
+ out_channels=output_channel,
375
+ temb_channels=time_embed_dim,
376
+ add_downsample=not is_final_block,
377
+ resnet_eps=norm_eps,
378
+ resnet_act_fn=act_fn,
379
+ resnet_groups=norm_num_groups,
380
+ cross_attention_dim=cross_attention_dim,
381
+ num_attention_heads=num_attention_heads[i],
382
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
383
+ downsample_padding=downsample_padding,
384
+ use_linear_projection=use_linear_projection,
385
+ only_cross_attention=only_cross_attention[i],
386
+ upcast_attention=upcast_attention,
387
+ resnet_time_scale_shift=resnet_time_scale_shift,
388
+ )
389
+ self.down_blocks.append(down_block)
390
+
391
+ for _ in range(layers_per_block):
392
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
393
+ controlnet_block = zero_module(controlnet_block)
394
+ self.controlnet_down_blocks.append(controlnet_block)
395
+
396
+ if not is_final_block:
397
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
398
+ controlnet_block = zero_module(controlnet_block)
399
+ self.controlnet_down_blocks.append(controlnet_block)
400
+
401
+ # mid
402
+ mid_block_channel = block_out_channels[-1]
403
+
404
+ controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
405
+ controlnet_block = zero_module(controlnet_block)
406
+ self.controlnet_mid_block = controlnet_block
407
+
408
+ if mid_block_type == "UNetMidBlock2DCrossAttn":
409
+ self.mid_block = UNetMidBlock2DCrossAttn(
410
+ transformer_layers_per_block=transformer_layers_per_block[-1],
411
+ in_channels=mid_block_channel,
412
+ temb_channels=time_embed_dim,
413
+ resnet_eps=norm_eps,
414
+ resnet_act_fn=act_fn,
415
+ output_scale_factor=mid_block_scale_factor,
416
+ resnet_time_scale_shift=resnet_time_scale_shift,
417
+ cross_attention_dim=cross_attention_dim,
418
+ num_attention_heads=num_attention_heads[-1],
419
+ resnet_groups=norm_num_groups,
420
+ use_linear_projection=use_linear_projection,
421
+ upcast_attention=upcast_attention,
422
+ )
423
+ elif mid_block_type == "UNetMidBlock2D":
424
+ self.mid_block = UNetMidBlock2D(
425
+ in_channels=block_out_channels[-1],
426
+ temb_channels=time_embed_dim,
427
+ num_layers=0,
428
+ resnet_eps=norm_eps,
429
+ resnet_act_fn=act_fn,
430
+ output_scale_factor=mid_block_scale_factor,
431
+ resnet_groups=norm_num_groups,
432
+ resnet_time_scale_shift=resnet_time_scale_shift,
433
+ add_attention=False,
434
+ )
435
+ else:
436
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
437
+
438
+ @classmethod
439
+ def from_unet(
440
+ cls,
441
+ unet: UNet2DConditionModel,
442
+ controlnet_conditioning_channel_order: str = "rgb",
443
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
444
+ load_weights_from_unet: bool = True,
445
+ conditioning_channels: int = 3,
446
+ ):
447
+ r"""
448
+ Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
449
+
450
+ Parameters:
451
+ unet (`UNet2DConditionModel`):
452
+ The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
453
+ where applicable.
454
+ """
455
+ transformer_layers_per_block = (
456
+ unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
457
+ )
458
+ encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
459
+ encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
460
+ addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
461
+ addition_time_embed_dim = (
462
+ unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
463
+ )
464
+
465
+ controlnet = cls(
466
+ encoder_hid_dim=encoder_hid_dim,
467
+ encoder_hid_dim_type=encoder_hid_dim_type,
468
+ addition_embed_type=addition_embed_type,
469
+ addition_time_embed_dim=addition_time_embed_dim,
470
+ transformer_layers_per_block=transformer_layers_per_block,
471
+ in_channels=unet.config.in_channels,
472
+ flip_sin_to_cos=unet.config.flip_sin_to_cos,
473
+ freq_shift=unet.config.freq_shift,
474
+ down_block_types=unet.config.down_block_types,
475
+ only_cross_attention=unet.config.only_cross_attention,
476
+ block_out_channels=unet.config.block_out_channels,
477
+ layers_per_block=unet.config.layers_per_block,
478
+ downsample_padding=unet.config.downsample_padding,
479
+ mid_block_scale_factor=unet.config.mid_block_scale_factor,
480
+ act_fn=unet.config.act_fn,
481
+ norm_num_groups=unet.config.norm_num_groups,
482
+ norm_eps=unet.config.norm_eps,
483
+ cross_attention_dim=unet.config.cross_attention_dim,
484
+ attention_head_dim=unet.config.attention_head_dim,
485
+ num_attention_heads=unet.config.num_attention_heads,
486
+ use_linear_projection=unet.config.use_linear_projection,
487
+ class_embed_type=unet.config.class_embed_type,
488
+ num_class_embeds=unet.config.num_class_embeds,
489
+ upcast_attention=unet.config.upcast_attention,
490
+ resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
491
+ projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
492
+ mid_block_type=unet.config.mid_block_type,
493
+ controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
494
+ conditioning_embedding_out_channels=conditioning_embedding_out_channels,
495
+ conditioning_channels=conditioning_channels,
496
+ )
497
+
498
+ if load_weights_from_unet:
499
+ controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
500
+ controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
501
+ controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
502
+
503
+ if controlnet.class_embedding:
504
+ controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
505
+
506
+ controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
507
+ controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
508
+
509
+ return controlnet
510
+
511
+ @property
512
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
513
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
514
+ r"""
515
+ Returns:
516
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
517
+ indexed by its weight name.
518
+ """
519
+ # set recursively
520
+ processors = {}
521
+
522
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
523
+ if hasattr(module, "get_processor"):
524
+ processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
525
+
526
+ for sub_name, child in module.named_children():
527
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
528
+
529
+ return processors
530
+
531
+ for name, module in self.named_children():
532
+ fn_recursive_add_processors(name, module, processors)
533
+
534
+ return processors
535
+
536
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
537
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
538
+ r"""
539
+ Sets the attention processor to use to compute attention.
540
+
541
+ Parameters:
542
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
543
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
544
+ for **all** `Attention` layers.
545
+
546
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
547
+ processor. This is strongly recommended when setting trainable attention processors.
548
+
549
+ """
550
+ count = len(self.attn_processors.keys())
551
+
552
+ if isinstance(processor, dict) and len(processor) != count:
553
+ raise ValueError(
554
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
555
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
556
+ )
557
+
558
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
559
+ if hasattr(module, "set_processor"):
560
+ if not isinstance(processor, dict):
561
+ module.set_processor(processor)
562
+ else:
563
+ module.set_processor(processor.pop(f"{name}.processor"))
564
+
565
+ for sub_name, child in module.named_children():
566
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
567
+
568
+ for name, module in self.named_children():
569
+ fn_recursive_attn_processor(name, module, processor)
570
+
571
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
572
+ def set_default_attn_processor(self):
573
+ """
574
+ Disables custom attention processors and sets the default attention implementation.
575
+ """
576
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
577
+ processor = AttnAddedKVProcessor()
578
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
579
+ processor = AttnProcessor()
580
+ else:
581
+ raise ValueError(
582
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
583
+ )
584
+
585
+ self.set_attn_processor(processor)
586
+
587
+ # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
588
+ def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
589
+ r"""
590
+ Enable sliced attention computation.
591
+
592
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
593
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
594
+
595
+ Args:
596
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
597
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
598
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
599
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
600
+ must be a multiple of `slice_size`.
601
+ """
602
+ sliceable_head_dims = []
603
+
604
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
605
+ if hasattr(module, "set_attention_slice"):
606
+ sliceable_head_dims.append(module.sliceable_head_dim)
607
+
608
+ for child in module.children():
609
+ fn_recursive_retrieve_sliceable_dims(child)
610
+
611
+ # retrieve number of attention layers
612
+ for module in self.children():
613
+ fn_recursive_retrieve_sliceable_dims(module)
614
+
615
+ num_sliceable_layers = len(sliceable_head_dims)
616
+
617
+ if slice_size == "auto":
618
+ # half the attention head size is usually a good trade-off between
619
+ # speed and memory
620
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
621
+ elif slice_size == "max":
622
+ # make smallest slice possible
623
+ slice_size = num_sliceable_layers * [1]
624
+
625
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
626
+
627
+ if len(slice_size) != len(sliceable_head_dims):
628
+ raise ValueError(
629
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
630
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
631
+ )
632
+
633
+ for i in range(len(slice_size)):
634
+ size = slice_size[i]
635
+ dim = sliceable_head_dims[i]
636
+ if size is not None and size > dim:
637
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
638
+
639
+ # Recursively walk through all the children.
640
+ # Any children which exposes the set_attention_slice method
641
+ # gets the message
642
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
643
+ if hasattr(module, "set_attention_slice"):
644
+ module.set_attention_slice(slice_size.pop())
645
+
646
+ for child in module.children():
647
+ fn_recursive_set_attention_slice(child, slice_size)
648
+
649
+ reversed_slice_size = list(reversed(slice_size))
650
+ for module in self.children():
651
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
652
+
653
+ def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
654
+ if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
655
+ module.gradient_checkpointing = value
656
+
657
+ def forward(
658
+ self,
659
+ sample: torch.FloatTensor,
660
+ timestep: Union[torch.Tensor, float, int],
661
+ encoder_hidden_states: torch.Tensor,
662
+ controlnet_cond: torch.FloatTensor,
663
+ conditioning_scale: float = 1.0,
664
+ class_labels: Optional[torch.Tensor] = None,
665
+ timestep_cond: Optional[torch.Tensor] = None,
666
+ attention_mask: Optional[torch.Tensor] = None,
667
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
668
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
669
+ guess_mode: bool = False,
670
+ return_dict: bool = True,
671
+ ) -> Union[ControlNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]:
672
+ """
673
+ The [`ControlNetModel`] forward method.
674
+
675
+ Args:
676
+ sample (`torch.FloatTensor`):
677
+ The noisy input tensor.
678
+ timestep (`Union[torch.Tensor, float, int]`):
679
+ The number of timesteps to denoise an input.
680
+ encoder_hidden_states (`torch.Tensor`):
681
+ The encoder hidden states.
682
+ controlnet_cond (`torch.FloatTensor`):
683
+ The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
684
+ conditioning_scale (`float`, defaults to `1.0`):
685
+ The scale factor for ControlNet outputs.
686
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
687
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
688
+ timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
689
+ Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
690
+ timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
691
+ embeddings.
692
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
693
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
694
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
695
+ negative values to the attention scores corresponding to "discard" tokens.
696
+ added_cond_kwargs (`dict`):
697
+ Additional conditions for the Stable Diffusion XL UNet.
698
+ cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
699
+ A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
700
+ guess_mode (`bool`, defaults to `False`):
701
+ In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
702
+ you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
703
+ return_dict (`bool`, defaults to `True`):
704
+ Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
705
+
706
+ Returns:
707
+ [`~models.controlnet.ControlNetOutput`] **or** `tuple`:
708
+ If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
709
+ returned where the first element is the sample tensor.
710
+ """
711
+ # check channel order
712
+ channel_order = self.config.controlnet_conditioning_channel_order
713
+
714
+ if channel_order == "rgb":
715
+ # in rgb order by default
716
+ ...
717
+ elif channel_order == "bgr":
718
+ controlnet_cond = torch.flip(controlnet_cond, dims=[1])
719
+ else:
720
+ raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
721
+
722
+ # prepare attention_mask
723
+ if attention_mask is not None:
724
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
725
+ attention_mask = attention_mask.unsqueeze(1)
726
+
727
+ # 1. time
728
+ timesteps = timestep
729
+ if not torch.is_tensor(timesteps):
730
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
731
+ # This would be a good case for the `match` statement (Python 3.10+)
732
+ is_mps = sample.device.type == "mps"
733
+ if isinstance(timestep, float):
734
+ dtype = torch.float32 if is_mps else torch.float64
735
+ else:
736
+ dtype = torch.int32 if is_mps else torch.int64
737
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
738
+ elif len(timesteps.shape) == 0:
739
+ timesteps = timesteps[None].to(sample.device)
740
+
741
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
742
+ timesteps = timesteps.expand(sample.shape[0])
743
+
744
+ t_emb = self.time_proj(timesteps)
745
+
746
+ # timesteps does not contain any weights and will always return f32 tensors
747
+ # but time_embedding might actually be running in fp16. so we need to cast here.
748
+ # there might be better ways to encapsulate this.
749
+ t_emb = t_emb.to(dtype=sample.dtype)
750
+
751
+ emb = self.time_embedding(t_emb, timestep_cond)
752
+ aug_emb = None
753
+
754
+ if self.class_embedding is not None:
755
+ if class_labels is None:
756
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
757
+
758
+ if self.config.class_embed_type == "timestep":
759
+ class_labels = self.time_proj(class_labels)
760
+
761
+ class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
762
+ emb = emb + class_emb
763
+
764
+ if self.config.addition_embed_type is not None:
765
+ if self.config.addition_embed_type == "text":
766
+ aug_emb = self.add_embedding(encoder_hidden_states)
767
+
768
+ elif self.config.addition_embed_type == "text_time":
769
+ if "text_embeds" not in added_cond_kwargs:
770
+ raise ValueError(
771
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
772
+ )
773
+ text_embeds = added_cond_kwargs.get("text_embeds")
774
+ if "time_ids" not in added_cond_kwargs:
775
+ raise ValueError(
776
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
777
+ )
778
+ time_ids = added_cond_kwargs.get("time_ids")
779
+ time_embeds = self.add_time_proj(time_ids.flatten())
780
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
781
+
782
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
783
+ add_embeds = add_embeds.to(emb.dtype)
784
+ aug_emb = self.add_embedding(add_embeds)
785
+
786
+ emb = emb + aug_emb if aug_emb is not None else emb
787
+
788
+ # 2. pre-process
789
+ sample = self.conv_in(sample)
790
+
791
+ controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
792
+ sample = sample + controlnet_cond
793
+
794
+ # 3. down
795
+ down_block_res_samples = (sample,)
796
+ for downsample_block in self.down_blocks:
797
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
798
+ sample, res_samples = downsample_block(
799
+ hidden_states=sample,
800
+ temb=emb,
801
+ encoder_hidden_states=encoder_hidden_states,
802
+ attention_mask=attention_mask,
803
+ cross_attention_kwargs=cross_attention_kwargs,
804
+ )
805
+ else:
806
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
807
+
808
+ down_block_res_samples += res_samples
809
+
810
+ # 4. mid
811
+ if self.mid_block is not None:
812
+ if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
813
+ sample = self.mid_block(
814
+ sample,
815
+ emb,
816
+ encoder_hidden_states=encoder_hidden_states,
817
+ attention_mask=attention_mask,
818
+ cross_attention_kwargs=cross_attention_kwargs,
819
+ )
820
+ else:
821
+ sample = self.mid_block(sample, emb)
822
+
823
+ # 5. Control net blocks
824
+
825
+ controlnet_down_block_res_samples = ()
826
+
827
+ for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
828
+ down_block_res_sample = controlnet_block(down_block_res_sample)
829
+ controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
830
+
831
+ down_block_res_samples = controlnet_down_block_res_samples
832
+
833
+ mid_block_res_sample = self.controlnet_mid_block(sample)
834
+
835
+ # 6. scaling
836
+ if guess_mode and not self.config.global_pool_conditions:
837
+ scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
838
+ scales = scales * conditioning_scale
839
+ down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
840
+ mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
841
+ else:
842
+ down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
843
+ mid_block_res_sample = mid_block_res_sample * conditioning_scale
844
+
845
+ if self.config.global_pool_conditions:
846
+ down_block_res_samples = [
847
+ torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
848
+ ]
849
+ mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
850
+
851
+ if not return_dict:
852
+ return (down_block_res_samples, mid_block_res_sample)
853
+
854
+ return ControlNetOutput(
855
+ down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
856
+ )
857
+
858
+
859
+ def zero_module(module):
860
+ for p in module.parameters():
861
+ nn.init.zeros_(p)
862
+ return module
diffusers/models/controlnet_flax.py ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Optional, Tuple, Union
15
+
16
+ import flax
17
+ import flax.linen as nn
18
+ import jax
19
+ import jax.numpy as jnp
20
+ from flax.core.frozen_dict import FrozenDict
21
+
22
+ from ..configuration_utils import ConfigMixin, flax_register_to_config
23
+ from ..utils import BaseOutput
24
+ from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
25
+ from .modeling_flax_utils import FlaxModelMixin
26
+ from .unet_2d_blocks_flax import (
27
+ FlaxCrossAttnDownBlock2D,
28
+ FlaxDownBlock2D,
29
+ FlaxUNetMidBlock2DCrossAttn,
30
+ )
31
+
32
+
33
+ @flax.struct.dataclass
34
+ class FlaxControlNetOutput(BaseOutput):
35
+ """
36
+ The output of [`FlaxControlNetModel`].
37
+
38
+ Args:
39
+ down_block_res_samples (`jnp.ndarray`):
40
+ mid_block_res_sample (`jnp.ndarray`):
41
+ """
42
+
43
+ down_block_res_samples: jnp.ndarray
44
+ mid_block_res_sample: jnp.ndarray
45
+
46
+
47
+ class FlaxControlNetConditioningEmbedding(nn.Module):
48
+ conditioning_embedding_channels: int
49
+ block_out_channels: Tuple[int, ...] = (16, 32, 96, 256)
50
+ dtype: jnp.dtype = jnp.float32
51
+
52
+ def setup(self) -> None:
53
+ self.conv_in = nn.Conv(
54
+ self.block_out_channels[0],
55
+ kernel_size=(3, 3),
56
+ padding=((1, 1), (1, 1)),
57
+ dtype=self.dtype,
58
+ )
59
+
60
+ blocks = []
61
+ for i in range(len(self.block_out_channels) - 1):
62
+ channel_in = self.block_out_channels[i]
63
+ channel_out = self.block_out_channels[i + 1]
64
+ conv1 = nn.Conv(
65
+ channel_in,
66
+ kernel_size=(3, 3),
67
+ padding=((1, 1), (1, 1)),
68
+ dtype=self.dtype,
69
+ )
70
+ blocks.append(conv1)
71
+ conv2 = nn.Conv(
72
+ channel_out,
73
+ kernel_size=(3, 3),
74
+ strides=(2, 2),
75
+ padding=((1, 1), (1, 1)),
76
+ dtype=self.dtype,
77
+ )
78
+ blocks.append(conv2)
79
+ self.blocks = blocks
80
+
81
+ self.conv_out = nn.Conv(
82
+ self.conditioning_embedding_channels,
83
+ kernel_size=(3, 3),
84
+ padding=((1, 1), (1, 1)),
85
+ kernel_init=nn.initializers.zeros_init(),
86
+ bias_init=nn.initializers.zeros_init(),
87
+ dtype=self.dtype,
88
+ )
89
+
90
+ def __call__(self, conditioning: jnp.ndarray) -> jnp.ndarray:
91
+ embedding = self.conv_in(conditioning)
92
+ embedding = nn.silu(embedding)
93
+
94
+ for block in self.blocks:
95
+ embedding = block(embedding)
96
+ embedding = nn.silu(embedding)
97
+
98
+ embedding = self.conv_out(embedding)
99
+
100
+ return embedding
101
+
102
+
103
+ @flax_register_to_config
104
+ class FlaxControlNetModel(nn.Module, FlaxModelMixin, ConfigMixin):
105
+ r"""
106
+ A ControlNet model.
107
+
108
+ This model inherits from [`FlaxModelMixin`]. Check the superclass documentation for it’s generic methods
109
+ implemented for all models (such as downloading or saving).
110
+
111
+ This model is also a Flax Linen [`flax.linen.Module`](https://flax.readthedocs.io/en/latest/flax.linen.html#module)
112
+ subclass. Use it as a regular Flax Linen module and refer to the Flax documentation for all matters related to its
113
+ general usage and behavior.
114
+
115
+ Inherent JAX features such as the following are supported:
116
+
117
+ - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
118
+ - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
119
+ - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
120
+ - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
121
+
122
+ Parameters:
123
+ sample_size (`int`, *optional*):
124
+ The size of the input sample.
125
+ in_channels (`int`, *optional*, defaults to 4):
126
+ The number of channels in the input sample.
127
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxCrossAttnDownBlock2D", "FlaxDownBlock2D")`):
128
+ The tuple of downsample blocks to use.
129
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
130
+ The tuple of output channels for each block.
131
+ layers_per_block (`int`, *optional*, defaults to 2):
132
+ The number of layers per block.
133
+ attention_head_dim (`int` or `Tuple[int]`, *optional*, defaults to 8):
134
+ The dimension of the attention heads.
135
+ num_attention_heads (`int` or `Tuple[int]`, *optional*):
136
+ The number of attention heads.
137
+ cross_attention_dim (`int`, *optional*, defaults to 768):
138
+ The dimension of the cross attention features.
139
+ dropout (`float`, *optional*, defaults to 0):
140
+ Dropout probability for down, up and bottleneck blocks.
141
+ flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
142
+ Whether to flip the sin to cos in the time embedding.
143
+ freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
144
+ controlnet_conditioning_channel_order (`str`, *optional*, defaults to `rgb`):
145
+ The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
146
+ conditioning_embedding_out_channels (`tuple`, *optional*, defaults to `(16, 32, 96, 256)`):
147
+ The tuple of output channel for each block in the `conditioning_embedding` layer.
148
+ """
149
+
150
+ sample_size: int = 32
151
+ in_channels: int = 4
152
+ down_block_types: Tuple[str, ...] = (
153
+ "CrossAttnDownBlock2D",
154
+ "CrossAttnDownBlock2D",
155
+ "CrossAttnDownBlock2D",
156
+ "DownBlock2D",
157
+ )
158
+ only_cross_attention: Union[bool, Tuple[bool, ...]] = False
159
+ block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280)
160
+ layers_per_block: int = 2
161
+ attention_head_dim: Union[int, Tuple[int, ...]] = 8
162
+ num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None
163
+ cross_attention_dim: int = 1280
164
+ dropout: float = 0.0
165
+ use_linear_projection: bool = False
166
+ dtype: jnp.dtype = jnp.float32
167
+ flip_sin_to_cos: bool = True
168
+ freq_shift: int = 0
169
+ controlnet_conditioning_channel_order: str = "rgb"
170
+ conditioning_embedding_out_channels: Tuple[int, ...] = (16, 32, 96, 256)
171
+
172
+ def init_weights(self, rng: jax.Array) -> FrozenDict:
173
+ # init input tensors
174
+ sample_shape = (1, self.in_channels, self.sample_size, self.sample_size)
175
+ sample = jnp.zeros(sample_shape, dtype=jnp.float32)
176
+ timesteps = jnp.ones((1,), dtype=jnp.int32)
177
+ encoder_hidden_states = jnp.zeros((1, 1, self.cross_attention_dim), dtype=jnp.float32)
178
+ controlnet_cond_shape = (1, 3, self.sample_size * 8, self.sample_size * 8)
179
+ controlnet_cond = jnp.zeros(controlnet_cond_shape, dtype=jnp.float32)
180
+
181
+ params_rng, dropout_rng = jax.random.split(rng)
182
+ rngs = {"params": params_rng, "dropout": dropout_rng}
183
+
184
+ return self.init(rngs, sample, timesteps, encoder_hidden_states, controlnet_cond)["params"]
185
+
186
+ def setup(self) -> None:
187
+ block_out_channels = self.block_out_channels
188
+ time_embed_dim = block_out_channels[0] * 4
189
+
190
+ # If `num_attention_heads` is not defined (which is the case for most models)
191
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
192
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
193
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
194
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
195
+ # which is why we correct for the naming here.
196
+ num_attention_heads = self.num_attention_heads or self.attention_head_dim
197
+
198
+ # input
199
+ self.conv_in = nn.Conv(
200
+ block_out_channels[0],
201
+ kernel_size=(3, 3),
202
+ strides=(1, 1),
203
+ padding=((1, 1), (1, 1)),
204
+ dtype=self.dtype,
205
+ )
206
+
207
+ # time
208
+ self.time_proj = FlaxTimesteps(
209
+ block_out_channels[0], flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.config.freq_shift
210
+ )
211
+ self.time_embedding = FlaxTimestepEmbedding(time_embed_dim, dtype=self.dtype)
212
+
213
+ self.controlnet_cond_embedding = FlaxControlNetConditioningEmbedding(
214
+ conditioning_embedding_channels=block_out_channels[0],
215
+ block_out_channels=self.conditioning_embedding_out_channels,
216
+ )
217
+
218
+ only_cross_attention = self.only_cross_attention
219
+ if isinstance(only_cross_attention, bool):
220
+ only_cross_attention = (only_cross_attention,) * len(self.down_block_types)
221
+
222
+ if isinstance(num_attention_heads, int):
223
+ num_attention_heads = (num_attention_heads,) * len(self.down_block_types)
224
+
225
+ # down
226
+ down_blocks = []
227
+ controlnet_down_blocks = []
228
+
229
+ output_channel = block_out_channels[0]
230
+
231
+ controlnet_block = nn.Conv(
232
+ output_channel,
233
+ kernel_size=(1, 1),
234
+ padding="VALID",
235
+ kernel_init=nn.initializers.zeros_init(),
236
+ bias_init=nn.initializers.zeros_init(),
237
+ dtype=self.dtype,
238
+ )
239
+ controlnet_down_blocks.append(controlnet_block)
240
+
241
+ for i, down_block_type in enumerate(self.down_block_types):
242
+ input_channel = output_channel
243
+ output_channel = block_out_channels[i]
244
+ is_final_block = i == len(block_out_channels) - 1
245
+
246
+ if down_block_type == "CrossAttnDownBlock2D":
247
+ down_block = FlaxCrossAttnDownBlock2D(
248
+ in_channels=input_channel,
249
+ out_channels=output_channel,
250
+ dropout=self.dropout,
251
+ num_layers=self.layers_per_block,
252
+ num_attention_heads=num_attention_heads[i],
253
+ add_downsample=not is_final_block,
254
+ use_linear_projection=self.use_linear_projection,
255
+ only_cross_attention=only_cross_attention[i],
256
+ dtype=self.dtype,
257
+ )
258
+ else:
259
+ down_block = FlaxDownBlock2D(
260
+ in_channels=input_channel,
261
+ out_channels=output_channel,
262
+ dropout=self.dropout,
263
+ num_layers=self.layers_per_block,
264
+ add_downsample=not is_final_block,
265
+ dtype=self.dtype,
266
+ )
267
+
268
+ down_blocks.append(down_block)
269
+
270
+ for _ in range(self.layers_per_block):
271
+ controlnet_block = nn.Conv(
272
+ output_channel,
273
+ kernel_size=(1, 1),
274
+ padding="VALID",
275
+ kernel_init=nn.initializers.zeros_init(),
276
+ bias_init=nn.initializers.zeros_init(),
277
+ dtype=self.dtype,
278
+ )
279
+ controlnet_down_blocks.append(controlnet_block)
280
+
281
+ if not is_final_block:
282
+ controlnet_block = nn.Conv(
283
+ output_channel,
284
+ kernel_size=(1, 1),
285
+ padding="VALID",
286
+ kernel_init=nn.initializers.zeros_init(),
287
+ bias_init=nn.initializers.zeros_init(),
288
+ dtype=self.dtype,
289
+ )
290
+ controlnet_down_blocks.append(controlnet_block)
291
+
292
+ self.down_blocks = down_blocks
293
+ self.controlnet_down_blocks = controlnet_down_blocks
294
+
295
+ # mid
296
+ mid_block_channel = block_out_channels[-1]
297
+ self.mid_block = FlaxUNetMidBlock2DCrossAttn(
298
+ in_channels=mid_block_channel,
299
+ dropout=self.dropout,
300
+ num_attention_heads=num_attention_heads[-1],
301
+ use_linear_projection=self.use_linear_projection,
302
+ dtype=self.dtype,
303
+ )
304
+
305
+ self.controlnet_mid_block = nn.Conv(
306
+ mid_block_channel,
307
+ kernel_size=(1, 1),
308
+ padding="VALID",
309
+ kernel_init=nn.initializers.zeros_init(),
310
+ bias_init=nn.initializers.zeros_init(),
311
+ dtype=self.dtype,
312
+ )
313
+
314
+ def __call__(
315
+ self,
316
+ sample: jnp.ndarray,
317
+ timesteps: Union[jnp.ndarray, float, int],
318
+ encoder_hidden_states: jnp.ndarray,
319
+ controlnet_cond: jnp.ndarray,
320
+ conditioning_scale: float = 1.0,
321
+ return_dict: bool = True,
322
+ train: bool = False,
323
+ ) -> Union[FlaxControlNetOutput, Tuple[Tuple[jnp.ndarray, ...], jnp.ndarray]]:
324
+ r"""
325
+ Args:
326
+ sample (`jnp.ndarray`): (batch, channel, height, width) noisy inputs tensor
327
+ timestep (`jnp.ndarray` or `float` or `int`): timesteps
328
+ encoder_hidden_states (`jnp.ndarray`): (batch_size, sequence_length, hidden_size) encoder hidden states
329
+ controlnet_cond (`jnp.ndarray`): (batch, channel, height, width) the conditional input tensor
330
+ conditioning_scale (`float`, *optional*, defaults to `1.0`): the scale factor for controlnet outputs
331
+ return_dict (`bool`, *optional*, defaults to `True`):
332
+ Whether or not to return a [`models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] instead of a
333
+ plain tuple.
334
+ train (`bool`, *optional*, defaults to `False`):
335
+ Use deterministic functions and disable dropout when not training.
336
+
337
+ Returns:
338
+ [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] or `tuple`:
339
+ [`~models.unet_2d_condition_flax.FlaxUNet2DConditionOutput`] if `return_dict` is True, otherwise a
340
+ `tuple`. When returning a tuple, the first element is the sample tensor.
341
+ """
342
+ channel_order = self.controlnet_conditioning_channel_order
343
+ if channel_order == "bgr":
344
+ controlnet_cond = jnp.flip(controlnet_cond, axis=1)
345
+
346
+ # 1. time
347
+ if not isinstance(timesteps, jnp.ndarray):
348
+ timesteps = jnp.array([timesteps], dtype=jnp.int32)
349
+ elif isinstance(timesteps, jnp.ndarray) and len(timesteps.shape) == 0:
350
+ timesteps = timesteps.astype(dtype=jnp.float32)
351
+ timesteps = jnp.expand_dims(timesteps, 0)
352
+
353
+ t_emb = self.time_proj(timesteps)
354
+ t_emb = self.time_embedding(t_emb)
355
+
356
+ # 2. pre-process
357
+ sample = jnp.transpose(sample, (0, 2, 3, 1))
358
+ sample = self.conv_in(sample)
359
+
360
+ controlnet_cond = jnp.transpose(controlnet_cond, (0, 2, 3, 1))
361
+ controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
362
+ sample += controlnet_cond
363
+
364
+ # 3. down
365
+ down_block_res_samples = (sample,)
366
+ for down_block in self.down_blocks:
367
+ if isinstance(down_block, FlaxCrossAttnDownBlock2D):
368
+ sample, res_samples = down_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
369
+ else:
370
+ sample, res_samples = down_block(sample, t_emb, deterministic=not train)
371
+ down_block_res_samples += res_samples
372
+
373
+ # 4. mid
374
+ sample = self.mid_block(sample, t_emb, encoder_hidden_states, deterministic=not train)
375
+
376
+ # 5. contronet blocks
377
+ controlnet_down_block_res_samples = ()
378
+ for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
379
+ down_block_res_sample = controlnet_block(down_block_res_sample)
380
+ controlnet_down_block_res_samples += (down_block_res_sample,)
381
+
382
+ down_block_res_samples = controlnet_down_block_res_samples
383
+
384
+ mid_block_res_sample = self.controlnet_mid_block(sample)
385
+
386
+ # 6. scaling
387
+ down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
388
+ mid_block_res_sample *= conditioning_scale
389
+
390
+ if not return_dict:
391
+ return (down_block_res_samples, mid_block_res_sample)
392
+
393
+ return FlaxControlNetOutput(
394
+ down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
395
+ )
diffusers/models/downsampling.py ADDED
@@ -0,0 +1,338 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from typing import Optional, Tuple
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+ import torch.nn.functional as F
20
+
21
+ from ..utils import USE_PEFT_BACKEND
22
+ from .lora import LoRACompatibleConv
23
+ from .normalization import RMSNorm
24
+ from .upsampling import upfirdn2d_native
25
+
26
+
27
+ class Downsample1D(nn.Module):
28
+ """A 1D downsampling layer with an optional convolution.
29
+
30
+ Parameters:
31
+ channels (`int`):
32
+ number of channels in the inputs and outputs.
33
+ use_conv (`bool`, default `False`):
34
+ option to use a convolution.
35
+ out_channels (`int`, optional):
36
+ number of output channels. Defaults to `channels`.
37
+ padding (`int`, default `1`):
38
+ padding for the convolution.
39
+ name (`str`, default `conv`):
40
+ name of the downsampling 1D layer.
41
+ """
42
+
43
+ def __init__(
44
+ self,
45
+ channels: int,
46
+ use_conv: bool = False,
47
+ out_channels: Optional[int] = None,
48
+ padding: int = 1,
49
+ name: str = "conv",
50
+ ):
51
+ super().__init__()
52
+ self.channels = channels
53
+ self.out_channels = out_channels or channels
54
+ self.use_conv = use_conv
55
+ self.padding = padding
56
+ stride = 2
57
+ self.name = name
58
+
59
+ if use_conv:
60
+ self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
61
+ else:
62
+ assert self.channels == self.out_channels
63
+ self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride)
64
+
65
+ def forward(self, inputs: torch.Tensor) -> torch.Tensor:
66
+ assert inputs.shape[1] == self.channels
67
+ return self.conv(inputs)
68
+
69
+
70
+ class Downsample2D(nn.Module):
71
+ """A 2D downsampling layer with an optional convolution.
72
+
73
+ Parameters:
74
+ channels (`int`):
75
+ number of channels in the inputs and outputs.
76
+ use_conv (`bool`, default `False`):
77
+ option to use a convolution.
78
+ out_channels (`int`, optional):
79
+ number of output channels. Defaults to `channels`.
80
+ padding (`int`, default `1`):
81
+ padding for the convolution.
82
+ name (`str`, default `conv`):
83
+ name of the downsampling 2D layer.
84
+ """
85
+
86
+ def __init__(
87
+ self,
88
+ channels: int,
89
+ use_conv: bool = False,
90
+ out_channels: Optional[int] = None,
91
+ padding: int = 1,
92
+ name: str = "conv",
93
+ kernel_size=3,
94
+ norm_type=None,
95
+ eps=None,
96
+ elementwise_affine=None,
97
+ bias=True,
98
+ ):
99
+ super().__init__()
100
+ self.channels = channels
101
+ self.out_channels = out_channels or channels
102
+ self.use_conv = use_conv
103
+ self.padding = padding
104
+ stride = 2
105
+ self.name = name
106
+ conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
107
+
108
+ if norm_type == "ln_norm":
109
+ self.norm = nn.LayerNorm(channels, eps, elementwise_affine)
110
+ elif norm_type == "rms_norm":
111
+ self.norm = RMSNorm(channels, eps, elementwise_affine)
112
+ elif norm_type is None:
113
+ self.norm = None
114
+ else:
115
+ raise ValueError(f"unknown norm_type: {norm_type}")
116
+
117
+ if use_conv:
118
+ conv = conv_cls(
119
+ self.channels, self.out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias
120
+ )
121
+ else:
122
+ assert self.channels == self.out_channels
123
+ conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
124
+
125
+ # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
126
+ if name == "conv":
127
+ self.Conv2d_0 = conv
128
+ self.conv = conv
129
+ elif name == "Conv2d_0":
130
+ self.conv = conv
131
+ else:
132
+ self.conv = conv
133
+
134
+ def forward(self, hidden_states: torch.FloatTensor, scale: float = 1.0) -> torch.FloatTensor:
135
+ assert hidden_states.shape[1] == self.channels
136
+
137
+ if self.norm is not None:
138
+ hidden_states = self.norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
139
+
140
+ if self.use_conv and self.padding == 0:
141
+ pad = (0, 1, 0, 1)
142
+ hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
143
+
144
+ assert hidden_states.shape[1] == self.channels
145
+
146
+ if not USE_PEFT_BACKEND:
147
+ if isinstance(self.conv, LoRACompatibleConv):
148
+ hidden_states = self.conv(hidden_states, scale)
149
+ else:
150
+ hidden_states = self.conv(hidden_states)
151
+ else:
152
+ hidden_states = self.conv(hidden_states)
153
+
154
+ return hidden_states
155
+
156
+
157
+ class FirDownsample2D(nn.Module):
158
+ """A 2D FIR downsampling layer with an optional convolution.
159
+
160
+ Parameters:
161
+ channels (`int`):
162
+ number of channels in the inputs and outputs.
163
+ use_conv (`bool`, default `False`):
164
+ option to use a convolution.
165
+ out_channels (`int`, optional):
166
+ number of output channels. Defaults to `channels`.
167
+ fir_kernel (`tuple`, default `(1, 3, 3, 1)`):
168
+ kernel for the FIR filter.
169
+ """
170
+
171
+ def __init__(
172
+ self,
173
+ channels: Optional[int] = None,
174
+ out_channels: Optional[int] = None,
175
+ use_conv: bool = False,
176
+ fir_kernel: Tuple[int, int, int, int] = (1, 3, 3, 1),
177
+ ):
178
+ super().__init__()
179
+ out_channels = out_channels if out_channels else channels
180
+ if use_conv:
181
+ self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
182
+ self.fir_kernel = fir_kernel
183
+ self.use_conv = use_conv
184
+ self.out_channels = out_channels
185
+
186
+ def _downsample_2d(
187
+ self,
188
+ hidden_states: torch.FloatTensor,
189
+ weight: Optional[torch.FloatTensor] = None,
190
+ kernel: Optional[torch.FloatTensor] = None,
191
+ factor: int = 2,
192
+ gain: float = 1,
193
+ ) -> torch.FloatTensor:
194
+ """Fused `Conv2d()` followed by `downsample_2d()`.
195
+ Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
196
+ efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
197
+ arbitrary order.
198
+
199
+ Args:
200
+ hidden_states (`torch.FloatTensor`):
201
+ Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
202
+ weight (`torch.FloatTensor`, *optional*):
203
+ Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
204
+ performed by `inChannels = x.shape[0] // numGroups`.
205
+ kernel (`torch.FloatTensor`, *optional*):
206
+ FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
207
+ corresponds to average pooling.
208
+ factor (`int`, *optional*, default to `2`):
209
+ Integer downsampling factor.
210
+ gain (`float`, *optional*, default to `1.0`):
211
+ Scaling factor for signal magnitude.
212
+
213
+ Returns:
214
+ output (`torch.FloatTensor`):
215
+ Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and same
216
+ datatype as `x`.
217
+ """
218
+
219
+ assert isinstance(factor, int) and factor >= 1
220
+ if kernel is None:
221
+ kernel = [1] * factor
222
+
223
+ # setup kernel
224
+ kernel = torch.tensor(kernel, dtype=torch.float32)
225
+ if kernel.ndim == 1:
226
+ kernel = torch.outer(kernel, kernel)
227
+ kernel /= torch.sum(kernel)
228
+
229
+ kernel = kernel * gain
230
+
231
+ if self.use_conv:
232
+ _, _, convH, convW = weight.shape
233
+ pad_value = (kernel.shape[0] - factor) + (convW - 1)
234
+ stride_value = [factor, factor]
235
+ upfirdn_input = upfirdn2d_native(
236
+ hidden_states,
237
+ torch.tensor(kernel, device=hidden_states.device),
238
+ pad=((pad_value + 1) // 2, pad_value // 2),
239
+ )
240
+ output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0)
241
+ else:
242
+ pad_value = kernel.shape[0] - factor
243
+ output = upfirdn2d_native(
244
+ hidden_states,
245
+ torch.tensor(kernel, device=hidden_states.device),
246
+ down=factor,
247
+ pad=((pad_value + 1) // 2, pad_value // 2),
248
+ )
249
+
250
+ return output
251
+
252
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
253
+ if self.use_conv:
254
+ downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel)
255
+ hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
256
+ else:
257
+ hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
258
+
259
+ return hidden_states
260
+
261
+
262
+ # downsample/upsample layer used in k-upscaler, might be able to use FirDownsample2D/DirUpsample2D instead
263
+ class KDownsample2D(nn.Module):
264
+ r"""A 2D K-downsampling layer.
265
+
266
+ Parameters:
267
+ pad_mode (`str`, *optional*, default to `"reflect"`): the padding mode to use.
268
+ """
269
+
270
+ def __init__(self, pad_mode: str = "reflect"):
271
+ super().__init__()
272
+ self.pad_mode = pad_mode
273
+ kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]])
274
+ self.pad = kernel_1d.shape[1] // 2 - 1
275
+ self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)
276
+
277
+ def forward(self, inputs: torch.Tensor) -> torch.Tensor:
278
+ inputs = F.pad(inputs, (self.pad,) * 4, self.pad_mode)
279
+ weight = inputs.new_zeros(
280
+ [
281
+ inputs.shape[1],
282
+ inputs.shape[1],
283
+ self.kernel.shape[0],
284
+ self.kernel.shape[1],
285
+ ]
286
+ )
287
+ indices = torch.arange(inputs.shape[1], device=inputs.device)
288
+ kernel = self.kernel.to(weight)[None, :].expand(inputs.shape[1], -1, -1)
289
+ weight[indices, indices] = kernel
290
+ return F.conv2d(inputs, weight, stride=2)
291
+
292
+
293
+ def downsample_2d(
294
+ hidden_states: torch.FloatTensor,
295
+ kernel: Optional[torch.FloatTensor] = None,
296
+ factor: int = 2,
297
+ gain: float = 1,
298
+ ) -> torch.FloatTensor:
299
+ r"""Downsample2D a batch of 2D images with the given filter.
300
+ Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
301
+ given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
302
+ specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
303
+ shape is a multiple of the downsampling factor.
304
+
305
+ Args:
306
+ hidden_states (`torch.FloatTensor`)
307
+ Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
308
+ kernel (`torch.FloatTensor`, *optional*):
309
+ FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which
310
+ corresponds to average pooling.
311
+ factor (`int`, *optional*, default to `2`):
312
+ Integer downsampling factor.
313
+ gain (`float`, *optional*, default to `1.0`):
314
+ Scaling factor for signal magnitude.
315
+
316
+ Returns:
317
+ output (`torch.FloatTensor`):
318
+ Tensor of the shape `[N, C, H // factor, W // factor]`
319
+ """
320
+
321
+ assert isinstance(factor, int) and factor >= 1
322
+ if kernel is None:
323
+ kernel = [1] * factor
324
+
325
+ kernel = torch.tensor(kernel, dtype=torch.float32)
326
+ if kernel.ndim == 1:
327
+ kernel = torch.outer(kernel, kernel)
328
+ kernel /= torch.sum(kernel)
329
+
330
+ kernel = kernel * gain
331
+ pad_value = kernel.shape[0] - factor
332
+ output = upfirdn2d_native(
333
+ hidden_states,
334
+ kernel.to(device=hidden_states.device),
335
+ down=factor,
336
+ pad=((pad_value + 1) // 2, pad_value // 2),
337
+ )
338
+ return output
diffusers/models/dual_transformer_2d.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import Optional
15
+
16
+ from torch import nn
17
+
18
+ from .transformer_2d import Transformer2DModel, Transformer2DModelOutput
19
+
20
+
21
+ class DualTransformer2DModel(nn.Module):
22
+ """
23
+ Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference.
24
+
25
+ Parameters:
26
+ num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
27
+ attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
28
+ in_channels (`int`, *optional*):
29
+ Pass if the input is continuous. The number of channels in the input and output.
30
+ num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
31
+ dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use.
32
+ cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use.
33
+ sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images.
34
+ Note that this is fixed at training time as it is used for learning a number of position embeddings. See
35
+ `ImagePositionalEmbeddings`.
36
+ num_vector_embeds (`int`, *optional*):
37
+ Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels.
38
+ Includes the class for the masked latent pixel.
39
+ activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
40
+ num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`.
41
+ The number of diffusion steps used during training. Note that this is fixed at training time as it is used
42
+ to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for
43
+ up to but not more than steps than `num_embeds_ada_norm`.
44
+ attention_bias (`bool`, *optional*):
45
+ Configure if the TransformerBlocks' attention should contain a bias parameter.
46
+ """
47
+
48
+ def __init__(
49
+ self,
50
+ num_attention_heads: int = 16,
51
+ attention_head_dim: int = 88,
52
+ in_channels: Optional[int] = None,
53
+ num_layers: int = 1,
54
+ dropout: float = 0.0,
55
+ norm_num_groups: int = 32,
56
+ cross_attention_dim: Optional[int] = None,
57
+ attention_bias: bool = False,
58
+ sample_size: Optional[int] = None,
59
+ num_vector_embeds: Optional[int] = None,
60
+ activation_fn: str = "geglu",
61
+ num_embeds_ada_norm: Optional[int] = None,
62
+ ):
63
+ super().__init__()
64
+ self.transformers = nn.ModuleList(
65
+ [
66
+ Transformer2DModel(
67
+ num_attention_heads=num_attention_heads,
68
+ attention_head_dim=attention_head_dim,
69
+ in_channels=in_channels,
70
+ num_layers=num_layers,
71
+ dropout=dropout,
72
+ norm_num_groups=norm_num_groups,
73
+ cross_attention_dim=cross_attention_dim,
74
+ attention_bias=attention_bias,
75
+ sample_size=sample_size,
76
+ num_vector_embeds=num_vector_embeds,
77
+ activation_fn=activation_fn,
78
+ num_embeds_ada_norm=num_embeds_ada_norm,
79
+ )
80
+ for _ in range(2)
81
+ ]
82
+ )
83
+
84
+ # Variables that can be set by a pipeline:
85
+
86
+ # The ratio of transformer1 to transformer2's output states to be combined during inference
87
+ self.mix_ratio = 0.5
88
+
89
+ # The shape of `encoder_hidden_states` is expected to be
90
+ # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
91
+ self.condition_lengths = [77, 257]
92
+
93
+ # Which transformer to use to encode which condition.
94
+ # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
95
+ self.transformer_index_for_condition = [1, 0]
96
+
97
+ def forward(
98
+ self,
99
+ hidden_states,
100
+ encoder_hidden_states,
101
+ timestep=None,
102
+ attention_mask=None,
103
+ cross_attention_kwargs=None,
104
+ return_dict: bool = True,
105
+ ):
106
+ """
107
+ Args:
108
+ hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`.
109
+ When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input
110
+ hidden_states.
111
+ encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*):
112
+ Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
113
+ self-attention.
114
+ timestep ( `torch.long`, *optional*):
115
+ Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step.
116
+ attention_mask (`torch.FloatTensor`, *optional*):
117
+ Optional attention mask to be applied in Attention.
118
+ cross_attention_kwargs (`dict`, *optional*):
119
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
120
+ `self.processor` in
121
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
122
+ return_dict (`bool`, *optional*, defaults to `True`):
123
+ Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
124
+
125
+ Returns:
126
+ [`~models.transformer_2d.Transformer2DModelOutput`] or `tuple`:
127
+ [`~models.transformer_2d.Transformer2DModelOutput`] if `return_dict` is True, otherwise a `tuple`. When
128
+ returning a tuple, the first element is the sample tensor.
129
+ """
130
+ input_states = hidden_states
131
+
132
+ encoded_states = []
133
+ tokens_start = 0
134
+ # attention_mask is not used yet
135
+ for i in range(2):
136
+ # for each of the two transformers, pass the corresponding condition tokens
137
+ condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
138
+ transformer_index = self.transformer_index_for_condition[i]
139
+ encoded_state = self.transformers[transformer_index](
140
+ input_states,
141
+ encoder_hidden_states=condition_state,
142
+ timestep=timestep,
143
+ cross_attention_kwargs=cross_attention_kwargs,
144
+ return_dict=False,
145
+ )[0]
146
+ encoded_states.append(encoded_state - input_states)
147
+ tokens_start += self.condition_lengths[i]
148
+
149
+ output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
150
+ output_states = output_states + input_states
151
+
152
+ if not return_dict:
153
+ return (output_states,)
154
+
155
+ return Transformer2DModelOutput(sample=output_states)
diffusers/models/embeddings.py ADDED
@@ -0,0 +1,880 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import math
15
+ from typing import Optional
16
+
17
+ import numpy as np
18
+ import torch
19
+ from torch import nn
20
+
21
+ from ..utils import USE_PEFT_BACKEND
22
+ from .activations import get_activation
23
+ from .attention_processor import Attention
24
+ from .lora import LoRACompatibleLinear
25
+
26
+
27
+ def get_timestep_embedding(
28
+ timesteps: torch.Tensor,
29
+ embedding_dim: int,
30
+ flip_sin_to_cos: bool = False,
31
+ downscale_freq_shift: float = 1,
32
+ scale: float = 1,
33
+ max_period: int = 10000,
34
+ ):
35
+ """
36
+ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
37
+
38
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
39
+ These may be fractional.
40
+ :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
41
+ embeddings. :return: an [N x dim] Tensor of positional embeddings.
42
+ """
43
+ assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
44
+
45
+ half_dim = embedding_dim // 2
46
+ exponent = -math.log(max_period) * torch.arange(
47
+ start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
48
+ )
49
+ exponent = exponent / (half_dim - downscale_freq_shift)
50
+
51
+ emb = torch.exp(exponent)
52
+ emb = timesteps[:, None].float() * emb[None, :]
53
+
54
+ # scale embeddings
55
+ emb = scale * emb
56
+
57
+ # concat sine and cosine embeddings
58
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
59
+
60
+ # flip sine and cosine embeddings
61
+ if flip_sin_to_cos:
62
+ emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
63
+
64
+ # zero pad
65
+ if embedding_dim % 2 == 1:
66
+ emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
67
+ return emb
68
+
69
+
70
+ def get_2d_sincos_pos_embed(
71
+ embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
72
+ ):
73
+ """
74
+ grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or
75
+ [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
76
+ """
77
+ if isinstance(grid_size, int):
78
+ grid_size = (grid_size, grid_size)
79
+
80
+ grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
81
+ grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
82
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
83
+ grid = np.stack(grid, axis=0)
84
+
85
+ grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
86
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
87
+ if cls_token and extra_tokens > 0:
88
+ pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
89
+ return pos_embed
90
+
91
+
92
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
93
+ if embed_dim % 2 != 0:
94
+ raise ValueError("embed_dim must be divisible by 2")
95
+
96
+ # use half of dimensions to encode grid_h
97
+ emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
98
+ emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
99
+
100
+ emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
101
+ return emb
102
+
103
+
104
+ def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
105
+ """
106
+ embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D)
107
+ """
108
+ if embed_dim % 2 != 0:
109
+ raise ValueError("embed_dim must be divisible by 2")
110
+
111
+ omega = np.arange(embed_dim // 2, dtype=np.float64)
112
+ omega /= embed_dim / 2.0
113
+ omega = 1.0 / 10000**omega # (D/2,)
114
+
115
+ pos = pos.reshape(-1) # (M,)
116
+ out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
117
+
118
+ emb_sin = np.sin(out) # (M, D/2)
119
+ emb_cos = np.cos(out) # (M, D/2)
120
+
121
+ emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
122
+ return emb
123
+
124
+
125
+ class PatchEmbed(nn.Module):
126
+ """2D Image to Patch Embedding"""
127
+
128
+ def __init__(
129
+ self,
130
+ height=224,
131
+ width=224,
132
+ patch_size=16,
133
+ in_channels=3,
134
+ embed_dim=768,
135
+ layer_norm=False,
136
+ flatten=True,
137
+ bias=True,
138
+ interpolation_scale=1,
139
+ ):
140
+ super().__init__()
141
+
142
+ num_patches = (height // patch_size) * (width // patch_size)
143
+ self.flatten = flatten
144
+ self.layer_norm = layer_norm
145
+
146
+ self.proj = nn.Conv2d(
147
+ in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
148
+ )
149
+ if layer_norm:
150
+ self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
151
+ else:
152
+ self.norm = None
153
+
154
+ self.patch_size = patch_size
155
+ # See:
156
+ # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L161
157
+ self.height, self.width = height // patch_size, width // patch_size
158
+ self.base_size = height // patch_size
159
+ self.interpolation_scale = interpolation_scale
160
+ pos_embed = get_2d_sincos_pos_embed(
161
+ embed_dim, int(num_patches**0.5), base_size=self.base_size, interpolation_scale=self.interpolation_scale
162
+ )
163
+ self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=False)
164
+
165
+ def forward(self, latent):
166
+ height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
167
+
168
+ latent = self.proj(latent)
169
+ if self.flatten:
170
+ latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
171
+ if self.layer_norm:
172
+ latent = self.norm(latent)
173
+
174
+ # Interpolate positional embeddings if needed.
175
+ # (For PixArt-Alpha: https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L162C151-L162C160)
176
+ if self.height != height or self.width != width:
177
+ pos_embed = get_2d_sincos_pos_embed(
178
+ embed_dim=self.pos_embed.shape[-1],
179
+ grid_size=(height, width),
180
+ base_size=self.base_size,
181
+ interpolation_scale=self.interpolation_scale,
182
+ )
183
+ pos_embed = torch.from_numpy(pos_embed)
184
+ pos_embed = pos_embed.float().unsqueeze(0).to(latent.device)
185
+ else:
186
+ pos_embed = self.pos_embed
187
+
188
+ return (latent + pos_embed).to(latent.dtype)
189
+
190
+
191
+ class TimestepEmbedding(nn.Module):
192
+ def __init__(
193
+ self,
194
+ in_channels: int,
195
+ time_embed_dim: int,
196
+ act_fn: str = "silu",
197
+ out_dim: int = None,
198
+ post_act_fn: Optional[str] = None,
199
+ cond_proj_dim=None,
200
+ sample_proj_bias=True,
201
+ ):
202
+ super().__init__()
203
+ linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
204
+
205
+ self.linear_1 = linear_cls(in_channels, time_embed_dim, sample_proj_bias)
206
+
207
+ if cond_proj_dim is not None:
208
+ self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
209
+ else:
210
+ self.cond_proj = None
211
+
212
+ self.act = get_activation(act_fn)
213
+
214
+ if out_dim is not None:
215
+ time_embed_dim_out = out_dim
216
+ else:
217
+ time_embed_dim_out = time_embed_dim
218
+ self.linear_2 = linear_cls(time_embed_dim, time_embed_dim_out, sample_proj_bias)
219
+
220
+ if post_act_fn is None:
221
+ self.post_act = None
222
+ else:
223
+ self.post_act = get_activation(post_act_fn)
224
+
225
+ def forward(self, sample, condition=None):
226
+ if condition is not None:
227
+ sample = sample + self.cond_proj(condition)
228
+ sample = self.linear_1(sample)
229
+
230
+ if self.act is not None:
231
+ sample = self.act(sample)
232
+
233
+ sample = self.linear_2(sample)
234
+
235
+ if self.post_act is not None:
236
+ sample = self.post_act(sample)
237
+ return sample
238
+
239
+
240
+ class Timesteps(nn.Module):
241
+ def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
242
+ super().__init__()
243
+ self.num_channels = num_channels
244
+ self.flip_sin_to_cos = flip_sin_to_cos
245
+ self.downscale_freq_shift = downscale_freq_shift
246
+
247
+ def forward(self, timesteps):
248
+ t_emb = get_timestep_embedding(
249
+ timesteps,
250
+ self.num_channels,
251
+ flip_sin_to_cos=self.flip_sin_to_cos,
252
+ downscale_freq_shift=self.downscale_freq_shift,
253
+ )
254
+ return t_emb
255
+
256
+
257
+ class GaussianFourierProjection(nn.Module):
258
+ """Gaussian Fourier embeddings for noise levels."""
259
+
260
+ def __init__(
261
+ self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
262
+ ):
263
+ super().__init__()
264
+ self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
265
+ self.log = log
266
+ self.flip_sin_to_cos = flip_sin_to_cos
267
+
268
+ if set_W_to_weight:
269
+ # to delete later
270
+ self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
271
+
272
+ self.weight = self.W
273
+
274
+ def forward(self, x):
275
+ if self.log:
276
+ x = torch.log(x)
277
+
278
+ x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi
279
+
280
+ if self.flip_sin_to_cos:
281
+ out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
282
+ else:
283
+ out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
284
+ return out
285
+
286
+
287
+ class SinusoidalPositionalEmbedding(nn.Module):
288
+ """Apply positional information to a sequence of embeddings.
289
+
290
+ Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to
291
+ them
292
+
293
+ Args:
294
+ embed_dim: (int): Dimension of the positional embedding.
295
+ max_seq_length: Maximum sequence length to apply positional embeddings
296
+
297
+ """
298
+
299
+ def __init__(self, embed_dim: int, max_seq_length: int = 32):
300
+ super().__init__()
301
+ position = torch.arange(max_seq_length).unsqueeze(1)
302
+ div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim))
303
+ pe = torch.zeros(1, max_seq_length, embed_dim)
304
+ pe[0, :, 0::2] = torch.sin(position * div_term)
305
+ pe[0, :, 1::2] = torch.cos(position * div_term)
306
+ self.register_buffer("pe", pe)
307
+
308
+ def forward(self, x):
309
+ _, seq_length, _ = x.shape
310
+ x = x + self.pe[:, :seq_length]
311
+ return x
312
+
313
+
314
+ class ImagePositionalEmbeddings(nn.Module):
315
+ """
316
+ Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the
317
+ height and width of the latent space.
318
+
319
+ For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092
320
+
321
+ For VQ-diffusion:
322
+
323
+ Output vector embeddings are used as input for the transformer.
324
+
325
+ Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE.
326
+
327
+ Args:
328
+ num_embed (`int`):
329
+ Number of embeddings for the latent pixels embeddings.
330
+ height (`int`):
331
+ Height of the latent image i.e. the number of height embeddings.
332
+ width (`int`):
333
+ Width of the latent image i.e. the number of width embeddings.
334
+ embed_dim (`int`):
335
+ Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings.
336
+ """
337
+
338
+ def __init__(
339
+ self,
340
+ num_embed: int,
341
+ height: int,
342
+ width: int,
343
+ embed_dim: int,
344
+ ):
345
+ super().__init__()
346
+
347
+ self.height = height
348
+ self.width = width
349
+ self.num_embed = num_embed
350
+ self.embed_dim = embed_dim
351
+
352
+ self.emb = nn.Embedding(self.num_embed, embed_dim)
353
+ self.height_emb = nn.Embedding(self.height, embed_dim)
354
+ self.width_emb = nn.Embedding(self.width, embed_dim)
355
+
356
+ def forward(self, index):
357
+ emb = self.emb(index)
358
+
359
+ height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height))
360
+
361
+ # 1 x H x D -> 1 x H x 1 x D
362
+ height_emb = height_emb.unsqueeze(2)
363
+
364
+ width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width))
365
+
366
+ # 1 x W x D -> 1 x 1 x W x D
367
+ width_emb = width_emb.unsqueeze(1)
368
+
369
+ pos_emb = height_emb + width_emb
370
+
371
+ # 1 x H x W x D -> 1 x L xD
372
+ pos_emb = pos_emb.view(1, self.height * self.width, -1)
373
+
374
+ emb = emb + pos_emb[:, : emb.shape[1], :]
375
+
376
+ return emb
377
+
378
+
379
+ class LabelEmbedding(nn.Module):
380
+ """
381
+ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
382
+
383
+ Args:
384
+ num_classes (`int`): The number of classes.
385
+ hidden_size (`int`): The size of the vector embeddings.
386
+ dropout_prob (`float`): The probability of dropping a label.
387
+ """
388
+
389
+ def __init__(self, num_classes, hidden_size, dropout_prob):
390
+ super().__init__()
391
+ use_cfg_embedding = dropout_prob > 0
392
+ self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
393
+ self.num_classes = num_classes
394
+ self.dropout_prob = dropout_prob
395
+
396
+ def token_drop(self, labels, force_drop_ids=None):
397
+ """
398
+ Drops labels to enable classifier-free guidance.
399
+ """
400
+ if force_drop_ids is None:
401
+ drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
402
+ else:
403
+ drop_ids = torch.tensor(force_drop_ids == 1)
404
+ labels = torch.where(drop_ids, self.num_classes, labels)
405
+ return labels
406
+
407
+ def forward(self, labels: torch.LongTensor, force_drop_ids=None):
408
+ use_dropout = self.dropout_prob > 0
409
+ if (self.training and use_dropout) or (force_drop_ids is not None):
410
+ labels = self.token_drop(labels, force_drop_ids)
411
+ embeddings = self.embedding_table(labels)
412
+ return embeddings
413
+
414
+
415
+ class TextImageProjection(nn.Module):
416
+ def __init__(
417
+ self,
418
+ text_embed_dim: int = 1024,
419
+ image_embed_dim: int = 768,
420
+ cross_attention_dim: int = 768,
421
+ num_image_text_embeds: int = 10,
422
+ ):
423
+ super().__init__()
424
+
425
+ self.num_image_text_embeds = num_image_text_embeds
426
+ self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
427
+ self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim)
428
+
429
+ def forward(self, text_embeds: torch.FloatTensor, image_embeds: torch.FloatTensor):
430
+ batch_size = text_embeds.shape[0]
431
+
432
+ # image
433
+ image_text_embeds = self.image_embeds(image_embeds)
434
+ image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
435
+
436
+ # text
437
+ text_embeds = self.text_proj(text_embeds)
438
+
439
+ return torch.cat([image_text_embeds, text_embeds], dim=1)
440
+
441
+
442
+ class ImageProjection(nn.Module):
443
+ def __init__(
444
+ self,
445
+ image_embed_dim: int = 768,
446
+ cross_attention_dim: int = 768,
447
+ num_image_text_embeds: int = 32,
448
+ ):
449
+ super().__init__()
450
+
451
+ self.num_image_text_embeds = num_image_text_embeds
452
+ self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
453
+ self.norm = nn.LayerNorm(cross_attention_dim)
454
+
455
+ def forward(self, image_embeds: torch.FloatTensor):
456
+ batch_size = image_embeds.shape[0]
457
+
458
+ # image
459
+ image_embeds = self.image_embeds(image_embeds)
460
+ image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
461
+ image_embeds = self.norm(image_embeds)
462
+ return image_embeds
463
+
464
+
465
+ class IPAdapterFullImageProjection(nn.Module):
466
+ def __init__(self, image_embed_dim=1024, cross_attention_dim=1024):
467
+ super().__init__()
468
+ from .attention import FeedForward
469
+
470
+ self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu")
471
+ self.norm = nn.LayerNorm(cross_attention_dim)
472
+
473
+ def forward(self, image_embeds: torch.FloatTensor):
474
+ return self.norm(self.ff(image_embeds))
475
+
476
+
477
+ class CombinedTimestepLabelEmbeddings(nn.Module):
478
+ def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
479
+ super().__init__()
480
+
481
+ self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
482
+ self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
483
+ self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob)
484
+
485
+ def forward(self, timestep, class_labels, hidden_dtype=None):
486
+ timesteps_proj = self.time_proj(timestep)
487
+ timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
488
+
489
+ class_labels = self.class_embedder(class_labels) # (N, D)
490
+
491
+ conditioning = timesteps_emb + class_labels # (N, D)
492
+
493
+ return conditioning
494
+
495
+
496
+ class TextTimeEmbedding(nn.Module):
497
+ def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64):
498
+ super().__init__()
499
+ self.norm1 = nn.LayerNorm(encoder_dim)
500
+ self.pool = AttentionPooling(num_heads, encoder_dim)
501
+ self.proj = nn.Linear(encoder_dim, time_embed_dim)
502
+ self.norm2 = nn.LayerNorm(time_embed_dim)
503
+
504
+ def forward(self, hidden_states):
505
+ hidden_states = self.norm1(hidden_states)
506
+ hidden_states = self.pool(hidden_states)
507
+ hidden_states = self.proj(hidden_states)
508
+ hidden_states = self.norm2(hidden_states)
509
+ return hidden_states
510
+
511
+
512
+ class TextImageTimeEmbedding(nn.Module):
513
+ def __init__(self, text_embed_dim: int = 768, image_embed_dim: int = 768, time_embed_dim: int = 1536):
514
+ super().__init__()
515
+ self.text_proj = nn.Linear(text_embed_dim, time_embed_dim)
516
+ self.text_norm = nn.LayerNorm(time_embed_dim)
517
+ self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
518
+
519
+ def forward(self, text_embeds: torch.FloatTensor, image_embeds: torch.FloatTensor):
520
+ # text
521
+ time_text_embeds = self.text_proj(text_embeds)
522
+ time_text_embeds = self.text_norm(time_text_embeds)
523
+
524
+ # image
525
+ time_image_embeds = self.image_proj(image_embeds)
526
+
527
+ return time_image_embeds + time_text_embeds
528
+
529
+
530
+ class ImageTimeEmbedding(nn.Module):
531
+ def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
532
+ super().__init__()
533
+ self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
534
+ self.image_norm = nn.LayerNorm(time_embed_dim)
535
+
536
+ def forward(self, image_embeds: torch.FloatTensor):
537
+ # image
538
+ time_image_embeds = self.image_proj(image_embeds)
539
+ time_image_embeds = self.image_norm(time_image_embeds)
540
+ return time_image_embeds
541
+
542
+
543
+ class ImageHintTimeEmbedding(nn.Module):
544
+ def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
545
+ super().__init__()
546
+ self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
547
+ self.image_norm = nn.LayerNorm(time_embed_dim)
548
+ self.input_hint_block = nn.Sequential(
549
+ nn.Conv2d(3, 16, 3, padding=1),
550
+ nn.SiLU(),
551
+ nn.Conv2d(16, 16, 3, padding=1),
552
+ nn.SiLU(),
553
+ nn.Conv2d(16, 32, 3, padding=1, stride=2),
554
+ nn.SiLU(),
555
+ nn.Conv2d(32, 32, 3, padding=1),
556
+ nn.SiLU(),
557
+ nn.Conv2d(32, 96, 3, padding=1, stride=2),
558
+ nn.SiLU(),
559
+ nn.Conv2d(96, 96, 3, padding=1),
560
+ nn.SiLU(),
561
+ nn.Conv2d(96, 256, 3, padding=1, stride=2),
562
+ nn.SiLU(),
563
+ nn.Conv2d(256, 4, 3, padding=1),
564
+ )
565
+
566
+ def forward(self, image_embeds: torch.FloatTensor, hint: torch.FloatTensor):
567
+ # image
568
+ time_image_embeds = self.image_proj(image_embeds)
569
+ time_image_embeds = self.image_norm(time_image_embeds)
570
+ hint = self.input_hint_block(hint)
571
+ return time_image_embeds, hint
572
+
573
+
574
+ class AttentionPooling(nn.Module):
575
+ # Copied from https://github.com/deep-floyd/IF/blob/2f91391f27dd3c468bf174be5805b4cc92980c0b/deepfloyd_if/model/nn.py#L54
576
+
577
+ def __init__(self, num_heads, embed_dim, dtype=None):
578
+ super().__init__()
579
+ self.dtype = dtype
580
+ self.positional_embedding = nn.Parameter(torch.randn(1, embed_dim) / embed_dim**0.5)
581
+ self.k_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
582
+ self.q_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
583
+ self.v_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
584
+ self.num_heads = num_heads
585
+ self.dim_per_head = embed_dim // self.num_heads
586
+
587
+ def forward(self, x):
588
+ bs, length, width = x.size()
589
+
590
+ def shape(x):
591
+ # (bs, length, width) --> (bs, length, n_heads, dim_per_head)
592
+ x = x.view(bs, -1, self.num_heads, self.dim_per_head)
593
+ # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
594
+ x = x.transpose(1, 2)
595
+ # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
596
+ x = x.reshape(bs * self.num_heads, -1, self.dim_per_head)
597
+ # (bs*n_heads, length, dim_per_head) --> (bs*n_heads, dim_per_head, length)
598
+ x = x.transpose(1, 2)
599
+ return x
600
+
601
+ class_token = x.mean(dim=1, keepdim=True) + self.positional_embedding.to(x.dtype)
602
+ x = torch.cat([class_token, x], dim=1) # (bs, length+1, width)
603
+
604
+ # (bs*n_heads, class_token_length, dim_per_head)
605
+ q = shape(self.q_proj(class_token))
606
+ # (bs*n_heads, length+class_token_length, dim_per_head)
607
+ k = shape(self.k_proj(x))
608
+ v = shape(self.v_proj(x))
609
+
610
+ # (bs*n_heads, class_token_length, length+class_token_length):
611
+ scale = 1 / math.sqrt(math.sqrt(self.dim_per_head))
612
+ weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards
613
+ weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
614
+
615
+ # (bs*n_heads, dim_per_head, class_token_length)
616
+ a = torch.einsum("bts,bcs->bct", weight, v)
617
+
618
+ # (bs, length+1, width)
619
+ a = a.reshape(bs, -1, 1).transpose(1, 2)
620
+
621
+ return a[:, 0, :] # cls_token
622
+
623
+
624
+ def get_fourier_embeds_from_boundingbox(embed_dim, box):
625
+ """
626
+ Args:
627
+ embed_dim: int
628
+ box: a 3-D tensor [B x N x 4] representing the bounding boxes for GLIGEN pipeline
629
+ Returns:
630
+ [B x N x embed_dim] tensor of positional embeddings
631
+ """
632
+
633
+ batch_size, num_boxes = box.shape[:2]
634
+
635
+ emb = 100 ** (torch.arange(embed_dim) / embed_dim)
636
+ emb = emb[None, None, None].to(device=box.device, dtype=box.dtype)
637
+ emb = emb * box.unsqueeze(-1)
638
+
639
+ emb = torch.stack((emb.sin(), emb.cos()), dim=-1)
640
+ emb = emb.permute(0, 1, 3, 4, 2).reshape(batch_size, num_boxes, embed_dim * 2 * 4)
641
+
642
+ return emb
643
+
644
+
645
+ class GLIGENTextBoundingboxProjection(nn.Module):
646
+ def __init__(self, positive_len, out_dim, feature_type="text-only", fourier_freqs=8):
647
+ super().__init__()
648
+ self.positive_len = positive_len
649
+ self.out_dim = out_dim
650
+
651
+ self.fourier_embedder_dim = fourier_freqs
652
+ self.position_dim = fourier_freqs * 2 * 4 # 2: sin/cos, 4: xyxy
653
+
654
+ if isinstance(out_dim, tuple):
655
+ out_dim = out_dim[0]
656
+
657
+ if feature_type == "text-only":
658
+ self.linears = nn.Sequential(
659
+ nn.Linear(self.positive_len + self.position_dim, 512),
660
+ nn.SiLU(),
661
+ nn.Linear(512, 512),
662
+ nn.SiLU(),
663
+ nn.Linear(512, out_dim),
664
+ )
665
+ self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
666
+
667
+ elif feature_type == "text-image":
668
+ self.linears_text = nn.Sequential(
669
+ nn.Linear(self.positive_len + self.position_dim, 512),
670
+ nn.SiLU(),
671
+ nn.Linear(512, 512),
672
+ nn.SiLU(),
673
+ nn.Linear(512, out_dim),
674
+ )
675
+ self.linears_image = nn.Sequential(
676
+ nn.Linear(self.positive_len + self.position_dim, 512),
677
+ nn.SiLU(),
678
+ nn.Linear(512, 512),
679
+ nn.SiLU(),
680
+ nn.Linear(512, out_dim),
681
+ )
682
+ self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
683
+ self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
684
+
685
+ self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))
686
+
687
+ def forward(
688
+ self,
689
+ boxes,
690
+ masks,
691
+ positive_embeddings=None,
692
+ phrases_masks=None,
693
+ image_masks=None,
694
+ phrases_embeddings=None,
695
+ image_embeddings=None,
696
+ ):
697
+ masks = masks.unsqueeze(-1)
698
+
699
+ # embedding position (it may includes padding as placeholder)
700
+ xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, boxes) # B*N*4 -> B*N*C
701
+
702
+ # learnable null embedding
703
+ xyxy_null = self.null_position_feature.view(1, 1, -1)
704
+
705
+ # replace padding with learnable null embedding
706
+ xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
707
+
708
+ # positionet with text only information
709
+ if positive_embeddings is not None:
710
+ # learnable null embedding
711
+ positive_null = self.null_positive_feature.view(1, 1, -1)
712
+
713
+ # replace padding with learnable null embedding
714
+ positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null
715
+
716
+ objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
717
+
718
+ # positionet with text and image infomation
719
+ else:
720
+ phrases_masks = phrases_masks.unsqueeze(-1)
721
+ image_masks = image_masks.unsqueeze(-1)
722
+
723
+ # learnable null embedding
724
+ text_null = self.null_text_feature.view(1, 1, -1)
725
+ image_null = self.null_image_feature.view(1, 1, -1)
726
+
727
+ # replace padding with learnable null embedding
728
+ phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null
729
+ image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null
730
+
731
+ objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1))
732
+ objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1))
733
+ objs = torch.cat([objs_text, objs_image], dim=1)
734
+
735
+ return objs
736
+
737
+
738
+ class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
739
+ """
740
+ For PixArt-Alpha.
741
+
742
+ Reference:
743
+ https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
744
+ """
745
+
746
+ def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
747
+ super().__init__()
748
+
749
+ self.outdim = size_emb_dim
750
+ self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
751
+ self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
752
+
753
+ self.use_additional_conditions = use_additional_conditions
754
+ if use_additional_conditions:
755
+ self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
756
+ self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
757
+ self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
758
+
759
+ def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
760
+ timesteps_proj = self.time_proj(timestep)
761
+ timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
762
+
763
+ if self.use_additional_conditions:
764
+ resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype)
765
+ resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1)
766
+ aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype)
767
+ aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1)
768
+ conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1)
769
+ else:
770
+ conditioning = timesteps_emb
771
+
772
+ return conditioning
773
+
774
+
775
+ class PixArtAlphaTextProjection(nn.Module):
776
+ """
777
+ Projects caption embeddings. Also handles dropout for classifier-free guidance.
778
+
779
+ Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
780
+ """
781
+
782
+ def __init__(self, in_features, hidden_size, num_tokens=120):
783
+ super().__init__()
784
+ self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
785
+ self.act_1 = nn.GELU(approximate="tanh")
786
+ self.linear_2 = nn.Linear(in_features=hidden_size, out_features=hidden_size, bias=True)
787
+
788
+ def forward(self, caption):
789
+ hidden_states = self.linear_1(caption)
790
+ hidden_states = self.act_1(hidden_states)
791
+ hidden_states = self.linear_2(hidden_states)
792
+ return hidden_states
793
+
794
+
795
+ class IPAdapterPlusImageProjection(nn.Module):
796
+ """Resampler of IP-Adapter Plus.
797
+
798
+ Args:
799
+ ----
800
+ embed_dims (int): The feature dimension. Defaults to 768.
801
+ output_dims (int): The number of output channels, that is the same
802
+ number of the channels in the
803
+ `unet.config.cross_attention_dim`. Defaults to 1024.
804
+ hidden_dims (int): The number of hidden channels. Defaults to 1280.
805
+ depth (int): The number of blocks. Defaults to 8.
806
+ dim_head (int): The number of head channels. Defaults to 64.
807
+ heads (int): Parallel attention heads. Defaults to 16.
808
+ num_queries (int): The number of queries. Defaults to 8.
809
+ ffn_ratio (float): The expansion ratio of feedforward network hidden
810
+ layer channels. Defaults to 4.
811
+ """
812
+
813
+ def __init__(
814
+ self,
815
+ embed_dims: int = 768,
816
+ output_dims: int = 1024,
817
+ hidden_dims: int = 1280,
818
+ depth: int = 4,
819
+ dim_head: int = 64,
820
+ heads: int = 16,
821
+ num_queries: int = 8,
822
+ ffn_ratio: float = 4,
823
+ ) -> None:
824
+ super().__init__()
825
+ from .attention import FeedForward # Lazy import to avoid circular import
826
+
827
+ self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims**0.5)
828
+
829
+ self.proj_in = nn.Linear(embed_dims, hidden_dims)
830
+
831
+ self.proj_out = nn.Linear(hidden_dims, output_dims)
832
+ self.norm_out = nn.LayerNorm(output_dims)
833
+
834
+ self.layers = nn.ModuleList([])
835
+ for _ in range(depth):
836
+ self.layers.append(
837
+ nn.ModuleList(
838
+ [
839
+ nn.LayerNorm(hidden_dims),
840
+ nn.LayerNorm(hidden_dims),
841
+ Attention(
842
+ query_dim=hidden_dims,
843
+ dim_head=dim_head,
844
+ heads=heads,
845
+ out_bias=False,
846
+ ),
847
+ nn.Sequential(
848
+ nn.LayerNorm(hidden_dims),
849
+ FeedForward(hidden_dims, hidden_dims, activation_fn="gelu", mult=ffn_ratio, bias=False),
850
+ ),
851
+ ]
852
+ )
853
+ )
854
+
855
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
856
+ """Forward pass.
857
+
858
+ Args:
859
+ ----
860
+ x (torch.Tensor): Input Tensor.
861
+
862
+ Returns:
863
+ -------
864
+ torch.Tensor: Output Tensor.
865
+ """
866
+ latents = self.latents.repeat(x.size(0), 1, 1)
867
+
868
+ x = self.proj_in(x)
869
+
870
+ for ln0, ln1, attn, ff in self.layers:
871
+ residual = latents
872
+
873
+ encoder_hidden_states = ln0(x)
874
+ latents = ln1(latents)
875
+ encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2)
876
+ latents = attn(latents, encoder_hidden_states) + residual
877
+ latents = ff(latents) + latents
878
+
879
+ latents = self.proj_out(latents)
880
+ return self.norm_out(latents)
diffusers/models/embeddings_flax.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import math
15
+
16
+ import flax.linen as nn
17
+ import jax.numpy as jnp
18
+
19
+
20
+ def get_sinusoidal_embeddings(
21
+ timesteps: jnp.ndarray,
22
+ embedding_dim: int,
23
+ freq_shift: float = 1,
24
+ min_timescale: float = 1,
25
+ max_timescale: float = 1.0e4,
26
+ flip_sin_to_cos: bool = False,
27
+ scale: float = 1.0,
28
+ ) -> jnp.ndarray:
29
+ """Returns the positional encoding (same as Tensor2Tensor).
30
+
31
+ Args:
32
+ timesteps: a 1-D Tensor of N indices, one per batch element.
33
+ These may be fractional.
34
+ embedding_dim: The number of output channels.
35
+ min_timescale: The smallest time unit (should probably be 0.0).
36
+ max_timescale: The largest time unit.
37
+ Returns:
38
+ a Tensor of timing signals [N, num_channels]
39
+ """
40
+ assert timesteps.ndim == 1, "Timesteps should be a 1d-array"
41
+ assert embedding_dim % 2 == 0, f"Embedding dimension {embedding_dim} should be even"
42
+ num_timescales = float(embedding_dim // 2)
43
+ log_timescale_increment = math.log(max_timescale / min_timescale) / (num_timescales - freq_shift)
44
+ inv_timescales = min_timescale * jnp.exp(jnp.arange(num_timescales, dtype=jnp.float32) * -log_timescale_increment)
45
+ emb = jnp.expand_dims(timesteps, 1) * jnp.expand_dims(inv_timescales, 0)
46
+
47
+ # scale embeddings
48
+ scaled_time = scale * emb
49
+
50
+ if flip_sin_to_cos:
51
+ signal = jnp.concatenate([jnp.cos(scaled_time), jnp.sin(scaled_time)], axis=1)
52
+ else:
53
+ signal = jnp.concatenate([jnp.sin(scaled_time), jnp.cos(scaled_time)], axis=1)
54
+ signal = jnp.reshape(signal, [jnp.shape(timesteps)[0], embedding_dim])
55
+ return signal
56
+
57
+
58
+ class FlaxTimestepEmbedding(nn.Module):
59
+ r"""
60
+ Time step Embedding Module. Learns embeddings for input time steps.
61
+
62
+ Args:
63
+ time_embed_dim (`int`, *optional*, defaults to `32`):
64
+ Time step embedding dimension
65
+ dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
66
+ Parameters `dtype`
67
+ """
68
+
69
+ time_embed_dim: int = 32
70
+ dtype: jnp.dtype = jnp.float32
71
+
72
+ @nn.compact
73
+ def __call__(self, temb):
74
+ temb = nn.Dense(self.time_embed_dim, dtype=self.dtype, name="linear_1")(temb)
75
+ temb = nn.silu(temb)
76
+ temb = nn.Dense(self.time_embed_dim, dtype=self.dtype, name="linear_2")(temb)
77
+ return temb
78
+
79
+
80
+ class FlaxTimesteps(nn.Module):
81
+ r"""
82
+ Wrapper Module for sinusoidal Time step Embeddings as described in https://arxiv.org/abs/2006.11239
83
+
84
+ Args:
85
+ dim (`int`, *optional*, defaults to `32`):
86
+ Time step embedding dimension
87
+ """
88
+
89
+ dim: int = 32
90
+ flip_sin_to_cos: bool = False
91
+ freq_shift: float = 1
92
+
93
+ @nn.compact
94
+ def __call__(self, timesteps):
95
+ return get_sinusoidal_embeddings(
96
+ timesteps, embedding_dim=self.dim, flip_sin_to_cos=self.flip_sin_to_cos, freq_shift=self.freq_shift
97
+ )
diffusers/models/lora.py ADDED
@@ -0,0 +1,434 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ # IMPORTANT: #
17
+ ###################################################################
18
+ # ----------------------------------------------------------------#
19
+ # This file is deprecated and will be removed soon #
20
+ # (as soon as PEFT will become a required dependency for LoRA) #
21
+ # ----------------------------------------------------------------#
22
+ ###################################################################
23
+
24
+ from typing import Optional, Tuple, Union
25
+
26
+ import torch
27
+ import torch.nn.functional as F
28
+ from torch import nn
29
+
30
+ from ..utils import logging
31
+ from ..utils.import_utils import is_transformers_available
32
+
33
+
34
+ if is_transformers_available():
35
+ from transformers import CLIPTextModel, CLIPTextModelWithProjection
36
+
37
+
38
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
39
+
40
+
41
+ def text_encoder_attn_modules(text_encoder):
42
+ attn_modules = []
43
+
44
+ if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
45
+ for i, layer in enumerate(text_encoder.text_model.encoder.layers):
46
+ name = f"text_model.encoder.layers.{i}.self_attn"
47
+ mod = layer.self_attn
48
+ attn_modules.append((name, mod))
49
+ else:
50
+ raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")
51
+
52
+ return attn_modules
53
+
54
+
55
+ def text_encoder_mlp_modules(text_encoder):
56
+ mlp_modules = []
57
+
58
+ if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
59
+ for i, layer in enumerate(text_encoder.text_model.encoder.layers):
60
+ mlp_mod = layer.mlp
61
+ name = f"text_model.encoder.layers.{i}.mlp"
62
+ mlp_modules.append((name, mlp_mod))
63
+ else:
64
+ raise ValueError(f"do not know how to get mlp modules for: {text_encoder.__class__.__name__}")
65
+
66
+ return mlp_modules
67
+
68
+
69
+ def adjust_lora_scale_text_encoder(text_encoder, lora_scale: float = 1.0):
70
+ for _, attn_module in text_encoder_attn_modules(text_encoder):
71
+ if isinstance(attn_module.q_proj, PatchedLoraProjection):
72
+ attn_module.q_proj.lora_scale = lora_scale
73
+ attn_module.k_proj.lora_scale = lora_scale
74
+ attn_module.v_proj.lora_scale = lora_scale
75
+ attn_module.out_proj.lora_scale = lora_scale
76
+
77
+ for _, mlp_module in text_encoder_mlp_modules(text_encoder):
78
+ if isinstance(mlp_module.fc1, PatchedLoraProjection):
79
+ mlp_module.fc1.lora_scale = lora_scale
80
+ mlp_module.fc2.lora_scale = lora_scale
81
+
82
+
83
+ class PatchedLoraProjection(torch.nn.Module):
84
+ def __init__(self, regular_linear_layer, lora_scale=1, network_alpha=None, rank=4, dtype=None):
85
+ super().__init__()
86
+ from ..models.lora import LoRALinearLayer
87
+
88
+ self.regular_linear_layer = regular_linear_layer
89
+
90
+ device = self.regular_linear_layer.weight.device
91
+
92
+ if dtype is None:
93
+ dtype = self.regular_linear_layer.weight.dtype
94
+
95
+ self.lora_linear_layer = LoRALinearLayer(
96
+ self.regular_linear_layer.in_features,
97
+ self.regular_linear_layer.out_features,
98
+ network_alpha=network_alpha,
99
+ device=device,
100
+ dtype=dtype,
101
+ rank=rank,
102
+ )
103
+
104
+ self.lora_scale = lora_scale
105
+
106
+ # overwrite PyTorch's `state_dict` to be sure that only the 'regular_linear_layer' weights are saved
107
+ # when saving the whole text encoder model and when LoRA is unloaded or fused
108
+ def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
109
+ if self.lora_linear_layer is None:
110
+ return self.regular_linear_layer.state_dict(
111
+ *args, destination=destination, prefix=prefix, keep_vars=keep_vars
112
+ )
113
+
114
+ return super().state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars)
115
+
116
+ def _fuse_lora(self, lora_scale=1.0, safe_fusing=False):
117
+ if self.lora_linear_layer is None:
118
+ return
119
+
120
+ dtype, device = self.regular_linear_layer.weight.data.dtype, self.regular_linear_layer.weight.data.device
121
+
122
+ w_orig = self.regular_linear_layer.weight.data.float()
123
+ w_up = self.lora_linear_layer.up.weight.data.float()
124
+ w_down = self.lora_linear_layer.down.weight.data.float()
125
+
126
+ if self.lora_linear_layer.network_alpha is not None:
127
+ w_up = w_up * self.lora_linear_layer.network_alpha / self.lora_linear_layer.rank
128
+
129
+ fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
130
+
131
+ if safe_fusing and torch.isnan(fused_weight).any().item():
132
+ raise ValueError(
133
+ "This LoRA weight seems to be broken. "
134
+ f"Encountered NaN values when trying to fuse LoRA weights for {self}."
135
+ "LoRA weights will not be fused."
136
+ )
137
+
138
+ self.regular_linear_layer.weight.data = fused_weight.to(device=device, dtype=dtype)
139
+
140
+ # we can drop the lora layer now
141
+ self.lora_linear_layer = None
142
+
143
+ # offload the up and down matrices to CPU to not blow the memory
144
+ self.w_up = w_up.cpu()
145
+ self.w_down = w_down.cpu()
146
+ self.lora_scale = lora_scale
147
+
148
+ def _unfuse_lora(self):
149
+ if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
150
+ return
151
+
152
+ fused_weight = self.regular_linear_layer.weight.data
153
+ dtype, device = fused_weight.dtype, fused_weight.device
154
+
155
+ w_up = self.w_up.to(device=device).float()
156
+ w_down = self.w_down.to(device).float()
157
+
158
+ unfused_weight = fused_weight.float() - (self.lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
159
+ self.regular_linear_layer.weight.data = unfused_weight.to(device=device, dtype=dtype)
160
+
161
+ self.w_up = None
162
+ self.w_down = None
163
+
164
+ def forward(self, input):
165
+ if self.lora_scale is None:
166
+ self.lora_scale = 1.0
167
+ if self.lora_linear_layer is None:
168
+ return self.regular_linear_layer(input)
169
+ return self.regular_linear_layer(input) + (self.lora_scale * self.lora_linear_layer(input))
170
+
171
+
172
+ class LoRALinearLayer(nn.Module):
173
+ r"""
174
+ A linear layer that is used with LoRA.
175
+
176
+ Parameters:
177
+ in_features (`int`):
178
+ Number of input features.
179
+ out_features (`int`):
180
+ Number of output features.
181
+ rank (`int`, `optional`, defaults to 4):
182
+ The rank of the LoRA layer.
183
+ network_alpha (`float`, `optional`, defaults to `None`):
184
+ The value of the network alpha used for stable learning and preventing underflow. This value has the same
185
+ meaning as the `--network_alpha` option in the kohya-ss trainer script. See
186
+ https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
187
+ device (`torch.device`, `optional`, defaults to `None`):
188
+ The device to use for the layer's weights.
189
+ dtype (`torch.dtype`, `optional`, defaults to `None`):
190
+ The dtype to use for the layer's weights.
191
+ """
192
+
193
+ def __init__(
194
+ self,
195
+ in_features: int,
196
+ out_features: int,
197
+ rank: int = 4,
198
+ network_alpha: Optional[float] = None,
199
+ device: Optional[Union[torch.device, str]] = None,
200
+ dtype: Optional[torch.dtype] = None,
201
+ ):
202
+ super().__init__()
203
+
204
+ self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
205
+ self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
206
+ # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
207
+ # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
208
+ self.network_alpha = network_alpha
209
+ self.rank = rank
210
+ self.out_features = out_features
211
+ self.in_features = in_features
212
+
213
+ nn.init.normal_(self.down.weight, std=1 / rank)
214
+ nn.init.zeros_(self.up.weight)
215
+
216
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
217
+ orig_dtype = hidden_states.dtype
218
+ dtype = self.down.weight.dtype
219
+
220
+ down_hidden_states = self.down(hidden_states.to(dtype))
221
+ up_hidden_states = self.up(down_hidden_states)
222
+
223
+ if self.network_alpha is not None:
224
+ up_hidden_states *= self.network_alpha / self.rank
225
+
226
+ return up_hidden_states.to(orig_dtype)
227
+
228
+
229
+ class LoRAConv2dLayer(nn.Module):
230
+ r"""
231
+ A convolutional layer that is used with LoRA.
232
+
233
+ Parameters:
234
+ in_features (`int`):
235
+ Number of input features.
236
+ out_features (`int`):
237
+ Number of output features.
238
+ rank (`int`, `optional`, defaults to 4):
239
+ The rank of the LoRA layer.
240
+ kernel_size (`int` or `tuple` of two `int`, `optional`, defaults to 1):
241
+ The kernel size of the convolution.
242
+ stride (`int` or `tuple` of two `int`, `optional`, defaults to 1):
243
+ The stride of the convolution.
244
+ padding (`int` or `tuple` of two `int` or `str`, `optional`, defaults to 0):
245
+ The padding of the convolution.
246
+ network_alpha (`float`, `optional`, defaults to `None`):
247
+ The value of the network alpha used for stable learning and preventing underflow. This value has the same
248
+ meaning as the `--network_alpha` option in the kohya-ss trainer script. See
249
+ https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
250
+ """
251
+
252
+ def __init__(
253
+ self,
254
+ in_features: int,
255
+ out_features: int,
256
+ rank: int = 4,
257
+ kernel_size: Union[int, Tuple[int, int]] = (1, 1),
258
+ stride: Union[int, Tuple[int, int]] = (1, 1),
259
+ padding: Union[int, Tuple[int, int], str] = 0,
260
+ network_alpha: Optional[float] = None,
261
+ ):
262
+ super().__init__()
263
+
264
+ self.down = nn.Conv2d(in_features, rank, kernel_size=kernel_size, stride=stride, padding=padding, bias=False)
265
+ # according to the official kohya_ss trainer kernel_size are always fixed for the up layer
266
+ # # see: https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L129
267
+ self.up = nn.Conv2d(rank, out_features, kernel_size=(1, 1), stride=(1, 1), bias=False)
268
+
269
+ # This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
270
+ # See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
271
+ self.network_alpha = network_alpha
272
+ self.rank = rank
273
+
274
+ nn.init.normal_(self.down.weight, std=1 / rank)
275
+ nn.init.zeros_(self.up.weight)
276
+
277
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
278
+ orig_dtype = hidden_states.dtype
279
+ dtype = self.down.weight.dtype
280
+
281
+ down_hidden_states = self.down(hidden_states.to(dtype))
282
+ up_hidden_states = self.up(down_hidden_states)
283
+
284
+ if self.network_alpha is not None:
285
+ up_hidden_states *= self.network_alpha / self.rank
286
+
287
+ return up_hidden_states.to(orig_dtype)
288
+
289
+
290
+ class LoRACompatibleConv(nn.Conv2d):
291
+ """
292
+ A convolutional layer that can be used with LoRA.
293
+ """
294
+
295
+ def __init__(self, *args, lora_layer: Optional[LoRAConv2dLayer] = None, **kwargs):
296
+ super().__init__(*args, **kwargs)
297
+ self.lora_layer = lora_layer
298
+
299
+ def set_lora_layer(self, lora_layer: Optional[LoRAConv2dLayer]):
300
+ self.lora_layer = lora_layer
301
+
302
+ def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False):
303
+ if self.lora_layer is None:
304
+ return
305
+
306
+ dtype, device = self.weight.data.dtype, self.weight.data.device
307
+
308
+ w_orig = self.weight.data.float()
309
+ w_up = self.lora_layer.up.weight.data.float()
310
+ w_down = self.lora_layer.down.weight.data.float()
311
+
312
+ if self.lora_layer.network_alpha is not None:
313
+ w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank
314
+
315
+ fusion = torch.mm(w_up.flatten(start_dim=1), w_down.flatten(start_dim=1))
316
+ fusion = fusion.reshape((w_orig.shape))
317
+ fused_weight = w_orig + (lora_scale * fusion)
318
+
319
+ if safe_fusing and torch.isnan(fused_weight).any().item():
320
+ raise ValueError(
321
+ "This LoRA weight seems to be broken. "
322
+ f"Encountered NaN values when trying to fuse LoRA weights for {self}."
323
+ "LoRA weights will not be fused."
324
+ )
325
+
326
+ self.weight.data = fused_weight.to(device=device, dtype=dtype)
327
+
328
+ # we can drop the lora layer now
329
+ self.lora_layer = None
330
+
331
+ # offload the up and down matrices to CPU to not blow the memory
332
+ self.w_up = w_up.cpu()
333
+ self.w_down = w_down.cpu()
334
+ self._lora_scale = lora_scale
335
+
336
+ def _unfuse_lora(self):
337
+ if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
338
+ return
339
+
340
+ fused_weight = self.weight.data
341
+ dtype, device = fused_weight.data.dtype, fused_weight.data.device
342
+
343
+ self.w_up = self.w_up.to(device=device).float()
344
+ self.w_down = self.w_down.to(device).float()
345
+
346
+ fusion = torch.mm(self.w_up.flatten(start_dim=1), self.w_down.flatten(start_dim=1))
347
+ fusion = fusion.reshape((fused_weight.shape))
348
+ unfused_weight = fused_weight.float() - (self._lora_scale * fusion)
349
+ self.weight.data = unfused_weight.to(device=device, dtype=dtype)
350
+
351
+ self.w_up = None
352
+ self.w_down = None
353
+
354
+ def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
355
+ if self.lora_layer is None:
356
+ # make sure to the functional Conv2D function as otherwise torch.compile's graph will break
357
+ # see: https://github.com/huggingface/diffusers/pull/4315
358
+ return F.conv2d(
359
+ hidden_states, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups
360
+ )
361
+ else:
362
+ original_outputs = F.conv2d(
363
+ hidden_states, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups
364
+ )
365
+ return original_outputs + (scale * self.lora_layer(hidden_states))
366
+
367
+
368
+ class LoRACompatibleLinear(nn.Linear):
369
+ """
370
+ A Linear layer that can be used with LoRA.
371
+ """
372
+
373
+ def __init__(self, *args, lora_layer: Optional[LoRALinearLayer] = None, **kwargs):
374
+ super().__init__(*args, **kwargs)
375
+ self.lora_layer = lora_layer
376
+
377
+ def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
378
+ self.lora_layer = lora_layer
379
+
380
+ def _fuse_lora(self, lora_scale: float = 1.0, safe_fusing: bool = False):
381
+ if self.lora_layer is None:
382
+ return
383
+
384
+ dtype, device = self.weight.data.dtype, self.weight.data.device
385
+
386
+ w_orig = self.weight.data.float()
387
+ w_up = self.lora_layer.up.weight.data.float()
388
+ w_down = self.lora_layer.down.weight.data.float()
389
+
390
+ if self.lora_layer.network_alpha is not None:
391
+ w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank
392
+
393
+ fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
394
+
395
+ if safe_fusing and torch.isnan(fused_weight).any().item():
396
+ raise ValueError(
397
+ "This LoRA weight seems to be broken. "
398
+ f"Encountered NaN values when trying to fuse LoRA weights for {self}."
399
+ "LoRA weights will not be fused."
400
+ )
401
+
402
+ self.weight.data = fused_weight.to(device=device, dtype=dtype)
403
+
404
+ # we can drop the lora layer now
405
+ self.lora_layer = None
406
+
407
+ # offload the up and down matrices to CPU to not blow the memory
408
+ self.w_up = w_up.cpu()
409
+ self.w_down = w_down.cpu()
410
+ self._lora_scale = lora_scale
411
+
412
+ def _unfuse_lora(self):
413
+ if not (getattr(self, "w_up", None) is not None and getattr(self, "w_down", None) is not None):
414
+ return
415
+
416
+ fused_weight = self.weight.data
417
+ dtype, device = fused_weight.dtype, fused_weight.device
418
+
419
+ w_up = self.w_up.to(device=device).float()
420
+ w_down = self.w_down.to(device).float()
421
+
422
+ unfused_weight = fused_weight.float() - (self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
423
+ self.weight.data = unfused_weight.to(device=device, dtype=dtype)
424
+
425
+ self.w_up = None
426
+ self.w_down = None
427
+
428
+ def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor:
429
+ if self.lora_layer is None:
430
+ out = super().forward(hidden_states)
431
+ return out
432
+ else:
433
+ out = super().forward(hidden_states) + (scale * self.lora_layer(hidden_states))
434
+ return out
diffusers/models/modeling_flax_pytorch_utils.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch - Flax general utilities."""
16
+ import re
17
+
18
+ import jax.numpy as jnp
19
+ from flax.traverse_util import flatten_dict, unflatten_dict
20
+ from jax.random import PRNGKey
21
+
22
+ from ..utils import logging
23
+
24
+
25
+ logger = logging.get_logger(__name__)
26
+
27
+
28
+ def rename_key(key):
29
+ regex = r"\w+[.]\d+"
30
+ pats = re.findall(regex, key)
31
+ for pat in pats:
32
+ key = key.replace(pat, "_".join(pat.split(".")))
33
+ return key
34
+
35
+
36
+ #####################
37
+ # PyTorch => Flax #
38
+ #####################
39
+
40
+
41
+ # Adapted from https://github.com/huggingface/transformers/blob/c603c80f46881ae18b2ca50770ef65fa4033eacd/src/transformers/modeling_flax_pytorch_utils.py#L69
42
+ # and https://github.com/patil-suraj/stable-diffusion-jax/blob/main/stable_diffusion_jax/convert_diffusers_to_jax.py
43
+ def rename_key_and_reshape_tensor(pt_tuple_key, pt_tensor, random_flax_state_dict):
44
+ """Rename PT weight names to corresponding Flax weight names and reshape tensor if necessary"""
45
+ # conv norm or layer norm
46
+ renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
47
+
48
+ # rename attention layers
49
+ if len(pt_tuple_key) > 1:
50
+ for rename_from, rename_to in (
51
+ ("to_out_0", "proj_attn"),
52
+ ("to_k", "key"),
53
+ ("to_v", "value"),
54
+ ("to_q", "query"),
55
+ ):
56
+ if pt_tuple_key[-2] == rename_from:
57
+ weight_name = pt_tuple_key[-1]
58
+ weight_name = "kernel" if weight_name == "weight" else weight_name
59
+ renamed_pt_tuple_key = pt_tuple_key[:-2] + (rename_to, weight_name)
60
+ if renamed_pt_tuple_key in random_flax_state_dict:
61
+ assert random_flax_state_dict[renamed_pt_tuple_key].shape == pt_tensor.T.shape
62
+ return renamed_pt_tuple_key, pt_tensor.T
63
+
64
+ if (
65
+ any("norm" in str_ for str_ in pt_tuple_key)
66
+ and (pt_tuple_key[-1] == "bias")
67
+ and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
68
+ and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
69
+ ):
70
+ renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
71
+ return renamed_pt_tuple_key, pt_tensor
72
+ elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
73
+ renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",)
74
+ return renamed_pt_tuple_key, pt_tensor
75
+
76
+ # embedding
77
+ if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
78
+ pt_tuple_key = pt_tuple_key[:-1] + ("embedding",)
79
+ return renamed_pt_tuple_key, pt_tensor
80
+
81
+ # conv layer
82
+ renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
83
+ if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
84
+ pt_tensor = pt_tensor.transpose(2, 3, 1, 0)
85
+ return renamed_pt_tuple_key, pt_tensor
86
+
87
+ # linear layer
88
+ renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",)
89
+ if pt_tuple_key[-1] == "weight":
90
+ pt_tensor = pt_tensor.T
91
+ return renamed_pt_tuple_key, pt_tensor
92
+
93
+ # old PyTorch layer norm weight
94
+ renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",)
95
+ if pt_tuple_key[-1] == "gamma":
96
+ return renamed_pt_tuple_key, pt_tensor
97
+
98
+ # old PyTorch layer norm bias
99
+ renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",)
100
+ if pt_tuple_key[-1] == "beta":
101
+ return renamed_pt_tuple_key, pt_tensor
102
+
103
+ return pt_tuple_key, pt_tensor
104
+
105
+
106
+ def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model, init_key=42):
107
+ # Step 1: Convert pytorch tensor to numpy
108
+ pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()}
109
+
110
+ # Step 2: Since the model is stateless, get random Flax params
111
+ random_flax_params = flax_model.init_weights(PRNGKey(init_key))
112
+
113
+ random_flax_state_dict = flatten_dict(random_flax_params)
114
+ flax_state_dict = {}
115
+
116
+ # Need to change some parameters name to match Flax names
117
+ for pt_key, pt_tensor in pt_state_dict.items():
118
+ renamed_pt_key = rename_key(pt_key)
119
+ pt_tuple_key = tuple(renamed_pt_key.split("."))
120
+
121
+ # Correctly rename weight parameters
122
+ flax_key, flax_tensor = rename_key_and_reshape_tensor(pt_tuple_key, pt_tensor, random_flax_state_dict)
123
+
124
+ if flax_key in random_flax_state_dict:
125
+ if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
126
+ raise ValueError(
127
+ f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
128
+ f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}."
129
+ )
130
+
131
+ # also add unexpected weight so that warning is thrown
132
+ flax_state_dict[flax_key] = jnp.asarray(flax_tensor)
133
+
134
+ return unflatten_dict(flax_state_dict)
diffusers/models/modeling_flax_utils.py ADDED
@@ -0,0 +1,566 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import os
17
+ from pickle import UnpicklingError
18
+ from typing import Any, Dict, Union
19
+
20
+ import jax
21
+ import jax.numpy as jnp
22
+ import msgpack.exceptions
23
+ from flax.core.frozen_dict import FrozenDict, unfreeze
24
+ from flax.serialization import from_bytes, to_bytes
25
+ from flax.traverse_util import flatten_dict, unflatten_dict
26
+ from huggingface_hub import create_repo, hf_hub_download
27
+ from huggingface_hub.utils import (
28
+ EntryNotFoundError,
29
+ RepositoryNotFoundError,
30
+ RevisionNotFoundError,
31
+ validate_hf_hub_args,
32
+ )
33
+ from requests import HTTPError
34
+
35
+ from .. import __version__, is_torch_available
36
+ from ..utils import (
37
+ CONFIG_NAME,
38
+ FLAX_WEIGHTS_NAME,
39
+ HUGGINGFACE_CO_RESOLVE_ENDPOINT,
40
+ WEIGHTS_NAME,
41
+ PushToHubMixin,
42
+ logging,
43
+ )
44
+ from .modeling_flax_pytorch_utils import convert_pytorch_state_dict_to_flax
45
+
46
+
47
+ logger = logging.get_logger(__name__)
48
+
49
+
50
+ class FlaxModelMixin(PushToHubMixin):
51
+ r"""
52
+ Base class for all Flax models.
53
+
54
+ [`FlaxModelMixin`] takes care of storing the model configuration and provides methods for loading, downloading and
55
+ saving models.
56
+
57
+ - **config_name** ([`str`]) -- Filename to save a model to when calling [`~FlaxModelMixin.save_pretrained`].
58
+ """
59
+
60
+ config_name = CONFIG_NAME
61
+ _automatically_saved_args = ["_diffusers_version", "_class_name", "_name_or_path"]
62
+ _flax_internal_args = ["name", "parent", "dtype"]
63
+
64
+ @classmethod
65
+ def _from_config(cls, config, **kwargs):
66
+ """
67
+ All context managers that the model should be initialized under go here.
68
+ """
69
+ return cls(config, **kwargs)
70
+
71
+ def _cast_floating_to(self, params: Union[Dict, FrozenDict], dtype: jnp.dtype, mask: Any = None) -> Any:
72
+ """
73
+ Helper method to cast floating-point values of given parameter `PyTree` to given `dtype`.
74
+ """
75
+
76
+ # taken from https://github.com/deepmind/jmp/blob/3a8318abc3292be38582794dbf7b094e6583b192/jmp/_src/policy.py#L27
77
+ def conditional_cast(param):
78
+ if isinstance(param, jnp.ndarray) and jnp.issubdtype(param.dtype, jnp.floating):
79
+ param = param.astype(dtype)
80
+ return param
81
+
82
+ if mask is None:
83
+ return jax.tree_map(conditional_cast, params)
84
+
85
+ flat_params = flatten_dict(params)
86
+ flat_mask, _ = jax.tree_flatten(mask)
87
+
88
+ for masked, key in zip(flat_mask, flat_params.keys()):
89
+ if masked:
90
+ param = flat_params[key]
91
+ flat_params[key] = conditional_cast(param)
92
+
93
+ return unflatten_dict(flat_params)
94
+
95
+ def to_bf16(self, params: Union[Dict, FrozenDict], mask: Any = None):
96
+ r"""
97
+ Cast the floating-point `params` to `jax.numpy.bfloat16`. This returns a new `params` tree and does not cast
98
+ the `params` in place.
99
+
100
+ This method can be used on a TPU to explicitly convert the model parameters to bfloat16 precision to do full
101
+ half-precision training or to save weights in bfloat16 for inference in order to save memory and improve speed.
102
+
103
+ Arguments:
104
+ params (`Union[Dict, FrozenDict]`):
105
+ A `PyTree` of model parameters.
106
+ mask (`Union[Dict, FrozenDict]`):
107
+ A `PyTree` with same structure as the `params` tree. The leaves should be booleans. It should be `True`
108
+ for params you want to cast, and `False` for those you want to skip.
109
+
110
+ Examples:
111
+
112
+ ```python
113
+ >>> from diffusers import FlaxUNet2DConditionModel
114
+
115
+ >>> # load model
116
+ >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
117
+ >>> # By default, the model parameters will be in fp32 precision, to cast these to bfloat16 precision
118
+ >>> params = model.to_bf16(params)
119
+ >>> # If you don't want to cast certain parameters (for example layer norm bias and scale)
120
+ >>> # then pass the mask as follows
121
+ >>> from flax import traverse_util
122
+
123
+ >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
124
+ >>> flat_params = traverse_util.flatten_dict(params)
125
+ >>> mask = {
126
+ ... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale"))
127
+ ... for path in flat_params
128
+ ... }
129
+ >>> mask = traverse_util.unflatten_dict(mask)
130
+ >>> params = model.to_bf16(params, mask)
131
+ ```"""
132
+ return self._cast_floating_to(params, jnp.bfloat16, mask)
133
+
134
+ def to_fp32(self, params: Union[Dict, FrozenDict], mask: Any = None):
135
+ r"""
136
+ Cast the floating-point `params` to `jax.numpy.float32`. This method can be used to explicitly convert the
137
+ model parameters to fp32 precision. This returns a new `params` tree and does not cast the `params` in place.
138
+
139
+ Arguments:
140
+ params (`Union[Dict, FrozenDict]`):
141
+ A `PyTree` of model parameters.
142
+ mask (`Union[Dict, FrozenDict]`):
143
+ A `PyTree` with same structure as the `params` tree. The leaves should be booleans. It should be `True`
144
+ for params you want to cast, and `False` for those you want to skip.
145
+
146
+ Examples:
147
+
148
+ ```python
149
+ >>> from diffusers import FlaxUNet2DConditionModel
150
+
151
+ >>> # Download model and configuration from huggingface.co
152
+ >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
153
+ >>> # By default, the model params will be in fp32, to illustrate the use of this method,
154
+ >>> # we'll first cast to fp16 and back to fp32
155
+ >>> params = model.to_f16(params)
156
+ >>> # now cast back to fp32
157
+ >>> params = model.to_fp32(params)
158
+ ```"""
159
+ return self._cast_floating_to(params, jnp.float32, mask)
160
+
161
+ def to_fp16(self, params: Union[Dict, FrozenDict], mask: Any = None):
162
+ r"""
163
+ Cast the floating-point `params` to `jax.numpy.float16`. This returns a new `params` tree and does not cast the
164
+ `params` in place.
165
+
166
+ This method can be used on a GPU to explicitly convert the model parameters to float16 precision to do full
167
+ half-precision training or to save weights in float16 for inference in order to save memory and improve speed.
168
+
169
+ Arguments:
170
+ params (`Union[Dict, FrozenDict]`):
171
+ A `PyTree` of model parameters.
172
+ mask (`Union[Dict, FrozenDict]`):
173
+ A `PyTree` with same structure as the `params` tree. The leaves should be booleans. It should be `True`
174
+ for params you want to cast, and `False` for those you want to skip.
175
+
176
+ Examples:
177
+
178
+ ```python
179
+ >>> from diffusers import FlaxUNet2DConditionModel
180
+
181
+ >>> # load model
182
+ >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
183
+ >>> # By default, the model params will be in fp32, to cast these to float16
184
+ >>> params = model.to_fp16(params)
185
+ >>> # If you want don't want to cast certain parameters (for example layer norm bias and scale)
186
+ >>> # then pass the mask as follows
187
+ >>> from flax import traverse_util
188
+
189
+ >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
190
+ >>> flat_params = traverse_util.flatten_dict(params)
191
+ >>> mask = {
192
+ ... path: (path[-2] != ("LayerNorm", "bias") and path[-2:] != ("LayerNorm", "scale"))
193
+ ... for path in flat_params
194
+ ... }
195
+ >>> mask = traverse_util.unflatten_dict(mask)
196
+ >>> params = model.to_fp16(params, mask)
197
+ ```"""
198
+ return self._cast_floating_to(params, jnp.float16, mask)
199
+
200
+ def init_weights(self, rng: jax.Array) -> Dict:
201
+ raise NotImplementedError(f"init_weights method has to be implemented for {self}")
202
+
203
+ @classmethod
204
+ @validate_hf_hub_args
205
+ def from_pretrained(
206
+ cls,
207
+ pretrained_model_name_or_path: Union[str, os.PathLike],
208
+ dtype: jnp.dtype = jnp.float32,
209
+ *model_args,
210
+ **kwargs,
211
+ ):
212
+ r"""
213
+ Instantiate a pretrained Flax model from a pretrained model configuration.
214
+
215
+ Parameters:
216
+ pretrained_model_name_or_path (`str` or `os.PathLike`):
217
+ Can be either:
218
+
219
+ - A string, the *model id* (for example `runwayml/stable-diffusion-v1-5`) of a pretrained model
220
+ hosted on the Hub.
221
+ - A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
222
+ using [`~FlaxModelMixin.save_pretrained`].
223
+ dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
224
+ The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
225
+ `jax.numpy.bfloat16` (on TPUs).
226
+
227
+ This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
228
+ specified, all the computation will be performed with the given `dtype`.
229
+
230
+ <Tip>
231
+
232
+ This only specifies the dtype of the *computation* and does not influence the dtype of model
233
+ parameters.
234
+
235
+ If you wish to change the dtype of the model parameters, see [`~FlaxModelMixin.to_fp16`] and
236
+ [`~FlaxModelMixin.to_bf16`].
237
+
238
+ </Tip>
239
+
240
+ model_args (sequence of positional arguments, *optional*):
241
+ All remaining positional arguments are passed to the underlying model's `__init__` method.
242
+ cache_dir (`Union[str, os.PathLike]`, *optional*):
243
+ Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
244
+ is not used.
245
+ force_download (`bool`, *optional*, defaults to `False`):
246
+ Whether or not to force the (re-)download of the model weights and configuration files, overriding the
247
+ cached versions if they exist.
248
+ resume_download (`bool`, *optional*, defaults to `False`):
249
+ Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
250
+ incompletely downloaded files are deleted.
251
+ proxies (`Dict[str, str]`, *optional*):
252
+ A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
253
+ 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
254
+ local_files_only(`bool`, *optional*, defaults to `False`):
255
+ Whether to only load local model weights and configuration files or not. If set to `True`, the model
256
+ won't be downloaded from the Hub.
257
+ revision (`str`, *optional*, defaults to `"main"`):
258
+ The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
259
+ allowed by Git.
260
+ from_pt (`bool`, *optional*, defaults to `False`):
261
+ Load the model weights from a PyTorch checkpoint save file.
262
+ kwargs (remaining dictionary of keyword arguments, *optional*):
263
+ Can be used to update the configuration object (after it is loaded) and initiate the model (for
264
+ example, `output_attentions=True`). Behaves differently depending on whether a `config` is provided or
265
+ automatically loaded:
266
+
267
+ - If a configuration is provided with `config`, `kwargs` are directly passed to the underlying
268
+ model's `__init__` method (we assume all relevant updates to the configuration have already been
269
+ done).
270
+ - If a configuration is not provided, `kwargs` are first passed to the configuration class
271
+ initialization function [`~ConfigMixin.from_config`]. Each key of the `kwargs` that corresponds
272
+ to a configuration attribute is used to override said attribute with the supplied `kwargs` value.
273
+ Remaining keys that do not correspond to any configuration attribute are passed to the underlying
274
+ model's `__init__` function.
275
+
276
+ Examples:
277
+
278
+ ```python
279
+ >>> from diffusers import FlaxUNet2DConditionModel
280
+
281
+ >>> # Download model and configuration from huggingface.co and cache.
282
+ >>> model, params = FlaxUNet2DConditionModel.from_pretrained("runwayml/stable-diffusion-v1-5")
283
+ >>> # Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
284
+ >>> model, params = FlaxUNet2DConditionModel.from_pretrained("./test/saved_model/")
285
+ ```
286
+
287
+ If you get the error message below, you need to finetune the weights for your downstream task:
288
+
289
+ ```bash
290
+ Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
291
+ - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
292
+ You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
293
+ ```
294
+ """
295
+ config = kwargs.pop("config", None)
296
+ cache_dir = kwargs.pop("cache_dir", None)
297
+ force_download = kwargs.pop("force_download", False)
298
+ from_pt = kwargs.pop("from_pt", False)
299
+ resume_download = kwargs.pop("resume_download", False)
300
+ proxies = kwargs.pop("proxies", None)
301
+ local_files_only = kwargs.pop("local_files_only", False)
302
+ token = kwargs.pop("token", None)
303
+ revision = kwargs.pop("revision", None)
304
+ subfolder = kwargs.pop("subfolder", None)
305
+
306
+ user_agent = {
307
+ "diffusers": __version__,
308
+ "file_type": "model",
309
+ "framework": "flax",
310
+ }
311
+
312
+ # Load config if we don't provide one
313
+ if config is None:
314
+ config, unused_kwargs = cls.load_config(
315
+ pretrained_model_name_or_path,
316
+ cache_dir=cache_dir,
317
+ return_unused_kwargs=True,
318
+ force_download=force_download,
319
+ resume_download=resume_download,
320
+ proxies=proxies,
321
+ local_files_only=local_files_only,
322
+ token=token,
323
+ revision=revision,
324
+ subfolder=subfolder,
325
+ **kwargs,
326
+ )
327
+
328
+ model, model_kwargs = cls.from_config(config, dtype=dtype, return_unused_kwargs=True, **unused_kwargs)
329
+
330
+ # Load model
331
+ pretrained_path_with_subfolder = (
332
+ pretrained_model_name_or_path
333
+ if subfolder is None
334
+ else os.path.join(pretrained_model_name_or_path, subfolder)
335
+ )
336
+ if os.path.isdir(pretrained_path_with_subfolder):
337
+ if from_pt:
338
+ if not os.path.isfile(os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME)):
339
+ raise EnvironmentError(
340
+ f"Error no file named {WEIGHTS_NAME} found in directory {pretrained_path_with_subfolder} "
341
+ )
342
+ model_file = os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME)
343
+ elif os.path.isfile(os.path.join(pretrained_path_with_subfolder, FLAX_WEIGHTS_NAME)):
344
+ # Load from a Flax checkpoint
345
+ model_file = os.path.join(pretrained_path_with_subfolder, FLAX_WEIGHTS_NAME)
346
+ # Check if pytorch weights exist instead
347
+ elif os.path.isfile(os.path.join(pretrained_path_with_subfolder, WEIGHTS_NAME)):
348
+ raise EnvironmentError(
349
+ f"{WEIGHTS_NAME} file found in directory {pretrained_path_with_subfolder}. Please load the model"
350
+ " using `from_pt=True`."
351
+ )
352
+ else:
353
+ raise EnvironmentError(
354
+ f"Error no file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME} found in directory "
355
+ f"{pretrained_path_with_subfolder}."
356
+ )
357
+ else:
358
+ try:
359
+ model_file = hf_hub_download(
360
+ pretrained_model_name_or_path,
361
+ filename=FLAX_WEIGHTS_NAME if not from_pt else WEIGHTS_NAME,
362
+ cache_dir=cache_dir,
363
+ force_download=force_download,
364
+ proxies=proxies,
365
+ resume_download=resume_download,
366
+ local_files_only=local_files_only,
367
+ token=token,
368
+ user_agent=user_agent,
369
+ subfolder=subfolder,
370
+ revision=revision,
371
+ )
372
+
373
+ except RepositoryNotFoundError:
374
+ raise EnvironmentError(
375
+ f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
376
+ "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
377
+ "token having permission to this repo with `token` or log in with `huggingface-cli "
378
+ "login`."
379
+ )
380
+ except RevisionNotFoundError:
381
+ raise EnvironmentError(
382
+ f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
383
+ "this model name. Check the model page at "
384
+ f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
385
+ )
386
+ except EntryNotFoundError:
387
+ raise EnvironmentError(
388
+ f"{pretrained_model_name_or_path} does not appear to have a file named {FLAX_WEIGHTS_NAME}."
389
+ )
390
+ except HTTPError as err:
391
+ raise EnvironmentError(
392
+ f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n"
393
+ f"{err}"
394
+ )
395
+ except ValueError:
396
+ raise EnvironmentError(
397
+ f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
398
+ f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
399
+ f" directory containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}.\nCheckout your"
400
+ " internet connection or see how to run the library in offline mode at"
401
+ " 'https://huggingface.co/docs/transformers/installation#offline-mode'."
402
+ )
403
+ except EnvironmentError:
404
+ raise EnvironmentError(
405
+ f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
406
+ "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
407
+ f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
408
+ f"containing a file named {FLAX_WEIGHTS_NAME} or {WEIGHTS_NAME}."
409
+ )
410
+
411
+ if from_pt:
412
+ if is_torch_available():
413
+ from .modeling_utils import load_state_dict
414
+ else:
415
+ raise EnvironmentError(
416
+ "Can't load the model in PyTorch format because PyTorch is not installed. "
417
+ "Please, install PyTorch or use native Flax weights."
418
+ )
419
+
420
+ # Step 1: Get the pytorch file
421
+ pytorch_model_file = load_state_dict(model_file)
422
+
423
+ # Step 2: Convert the weights
424
+ state = convert_pytorch_state_dict_to_flax(pytorch_model_file, model)
425
+ else:
426
+ try:
427
+ with open(model_file, "rb") as state_f:
428
+ state = from_bytes(cls, state_f.read())
429
+ except (UnpicklingError, msgpack.exceptions.ExtraData) as e:
430
+ try:
431
+ with open(model_file) as f:
432
+ if f.read().startswith("version"):
433
+ raise OSError(
434
+ "You seem to have cloned a repository without having git-lfs installed. Please"
435
+ " install git-lfs and run `git lfs install` followed by `git lfs pull` in the"
436
+ " folder you cloned."
437
+ )
438
+ else:
439
+ raise ValueError from e
440
+ except (UnicodeDecodeError, ValueError):
441
+ raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. ")
442
+ # make sure all arrays are stored as jnp.ndarray
443
+ # NOTE: This is to prevent a bug this will be fixed in Flax >= v0.3.4:
444
+ # https://github.com/google/flax/issues/1261
445
+ state = jax.tree_util.tree_map(lambda x: jax.device_put(x, jax.local_devices(backend="cpu")[0]), state)
446
+
447
+ # flatten dicts
448
+ state = flatten_dict(state)
449
+
450
+ params_shape_tree = jax.eval_shape(model.init_weights, rng=jax.random.PRNGKey(0))
451
+ required_params = set(flatten_dict(unfreeze(params_shape_tree)).keys())
452
+
453
+ shape_state = flatten_dict(unfreeze(params_shape_tree))
454
+
455
+ missing_keys = required_params - set(state.keys())
456
+ unexpected_keys = set(state.keys()) - required_params
457
+
458
+ if missing_keys:
459
+ logger.warning(
460
+ f"The checkpoint {pretrained_model_name_or_path} is missing required keys: {missing_keys}. "
461
+ "Make sure to call model.init_weights to initialize the missing weights."
462
+ )
463
+ cls._missing_keys = missing_keys
464
+
465
+ for key in state.keys():
466
+ if key in shape_state and state[key].shape != shape_state[key].shape:
467
+ raise ValueError(
468
+ f"Trying to load the pretrained weight for {key} failed: checkpoint has shape "
469
+ f"{state[key].shape} which is incompatible with the model shape {shape_state[key].shape}. "
470
+ )
471
+
472
+ # remove unexpected keys to not be saved again
473
+ for unexpected_key in unexpected_keys:
474
+ del state[unexpected_key]
475
+
476
+ if len(unexpected_keys) > 0:
477
+ logger.warning(
478
+ f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when"
479
+ f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are"
480
+ f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or"
481
+ " with another architecture."
482
+ )
483
+ else:
484
+ logger.info(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n")
485
+
486
+ if len(missing_keys) > 0:
487
+ logger.warning(
488
+ f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at"
489
+ f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably"
490
+ " TRAIN this model on a down-stream task to be able to use it for predictions and inference."
491
+ )
492
+ else:
493
+ logger.info(
494
+ f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at"
495
+ f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint"
496
+ f" was trained on, you can already use {model.__class__.__name__} for predictions without further"
497
+ " training."
498
+ )
499
+
500
+ return model, unflatten_dict(state)
501
+
502
+ def save_pretrained(
503
+ self,
504
+ save_directory: Union[str, os.PathLike],
505
+ params: Union[Dict, FrozenDict],
506
+ is_main_process: bool = True,
507
+ push_to_hub: bool = False,
508
+ **kwargs,
509
+ ):
510
+ """
511
+ Save a model and its configuration file to a directory so that it can be reloaded using the
512
+ [`~FlaxModelMixin.from_pretrained`] class method.
513
+
514
+ Arguments:
515
+ save_directory (`str` or `os.PathLike`):
516
+ Directory to save a model and its configuration file to. Will be created if it doesn't exist.
517
+ params (`Union[Dict, FrozenDict]`):
518
+ A `PyTree` of model parameters.
519
+ is_main_process (`bool`, *optional*, defaults to `True`):
520
+ Whether the process calling this is the main process or not. Useful during distributed training and you
521
+ need to call this function on all processes. In this case, set `is_main_process=True` only on the main
522
+ process to avoid race conditions.
523
+ push_to_hub (`bool`, *optional*, defaults to `False`):
524
+ Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
525
+ repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
526
+ namespace).
527
+ kwargs (`Dict[str, Any]`, *optional*):
528
+ Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
529
+ """
530
+ if os.path.isfile(save_directory):
531
+ logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
532
+ return
533
+
534
+ os.makedirs(save_directory, exist_ok=True)
535
+
536
+ if push_to_hub:
537
+ commit_message = kwargs.pop("commit_message", None)
538
+ private = kwargs.pop("private", False)
539
+ create_pr = kwargs.pop("create_pr", False)
540
+ token = kwargs.pop("token", None)
541
+ repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
542
+ repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id
543
+
544
+ model_to_save = self
545
+
546
+ # Attach architecture to the config
547
+ # Save the config
548
+ if is_main_process:
549
+ model_to_save.save_config(save_directory)
550
+
551
+ # save model
552
+ output_model_file = os.path.join(save_directory, FLAX_WEIGHTS_NAME)
553
+ with open(output_model_file, "wb") as f:
554
+ model_bytes = to_bytes(params)
555
+ f.write(model_bytes)
556
+
557
+ logger.info(f"Model weights saved in {output_model_file}")
558
+
559
+ if push_to_hub:
560
+ self._upload_folder(
561
+ save_directory,
562
+ repo_id,
563
+ token=token,
564
+ commit_message=commit_message,
565
+ create_pr=create_pr,
566
+ )
diffusers/models/modeling_outputs.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+
3
+ from ..utils import BaseOutput
4
+
5
+
6
+ @dataclass
7
+ class AutoencoderKLOutput(BaseOutput):
8
+ """
9
+ Output of AutoencoderKL encoding method.
10
+
11
+ Args:
12
+ latent_dist (`DiagonalGaussianDistribution`):
13
+ Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
14
+ `DiagonalGaussianDistribution` allows for sampling latents from the distribution.
15
+ """
16
+
17
+ latent_dist: "DiagonalGaussianDistribution" # noqa: F821
diffusers/models/modeling_pytorch_flax_utils.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch - Flax general utilities."""
16
+
17
+ from pickle import UnpicklingError
18
+
19
+ import jax
20
+ import jax.numpy as jnp
21
+ import numpy as np
22
+ from flax.serialization import from_bytes
23
+ from flax.traverse_util import flatten_dict
24
+
25
+ from ..utils import logging
26
+
27
+
28
+ logger = logging.get_logger(__name__)
29
+
30
+
31
+ #####################
32
+ # Flax => PyTorch #
33
+ #####################
34
+
35
+
36
+ # from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_flax_pytorch_utils.py#L224-L352
37
+ def load_flax_checkpoint_in_pytorch_model(pt_model, model_file):
38
+ try:
39
+ with open(model_file, "rb") as flax_state_f:
40
+ flax_state = from_bytes(None, flax_state_f.read())
41
+ except UnpicklingError as e:
42
+ try:
43
+ with open(model_file) as f:
44
+ if f.read().startswith("version"):
45
+ raise OSError(
46
+ "You seem to have cloned a repository without having git-lfs installed. Please"
47
+ " install git-lfs and run `git lfs install` followed by `git lfs pull` in the"
48
+ " folder you cloned."
49
+ )
50
+ else:
51
+ raise ValueError from e
52
+ except (UnicodeDecodeError, ValueError):
53
+ raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. ")
54
+
55
+ return load_flax_weights_in_pytorch_model(pt_model, flax_state)
56
+
57
+
58
+ def load_flax_weights_in_pytorch_model(pt_model, flax_state):
59
+ """Load flax checkpoints in a PyTorch model"""
60
+
61
+ try:
62
+ import torch # noqa: F401
63
+ except ImportError:
64
+ logger.error(
65
+ "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see"
66
+ " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
67
+ " instructions."
68
+ )
69
+ raise
70
+
71
+ # check if we have bf16 weights
72
+ is_type_bf16 = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype == jnp.bfloat16, flax_state)).values()
73
+ if any(is_type_bf16):
74
+ # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
75
+
76
+ # and bf16 is not fully supported in PT yet.
77
+ logger.warning(
78
+ "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` "
79
+ "before loading those in PyTorch model."
80
+ )
81
+ flax_state = jax.tree_util.tree_map(
82
+ lambda params: params.astype(np.float32) if params.dtype == jnp.bfloat16 else params, flax_state
83
+ )
84
+
85
+ pt_model.base_model_prefix = ""
86
+
87
+ flax_state_dict = flatten_dict(flax_state, sep=".")
88
+ pt_model_dict = pt_model.state_dict()
89
+
90
+ # keep track of unexpected & missing keys
91
+ unexpected_keys = []
92
+ missing_keys = set(pt_model_dict.keys())
93
+
94
+ for flax_key_tuple, flax_tensor in flax_state_dict.items():
95
+ flax_key_tuple_array = flax_key_tuple.split(".")
96
+
97
+ if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
98
+ flax_key_tuple_array = flax_key_tuple_array[:-1] + ["weight"]
99
+ flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1))
100
+ elif flax_key_tuple_array[-1] == "kernel":
101
+ flax_key_tuple_array = flax_key_tuple_array[:-1] + ["weight"]
102
+ flax_tensor = flax_tensor.T
103
+ elif flax_key_tuple_array[-1] == "scale":
104
+ flax_key_tuple_array = flax_key_tuple_array[:-1] + ["weight"]
105
+
106
+ if "time_embedding" not in flax_key_tuple_array:
107
+ for i, flax_key_tuple_string in enumerate(flax_key_tuple_array):
108
+ flax_key_tuple_array[i] = (
109
+ flax_key_tuple_string.replace("_0", ".0")
110
+ .replace("_1", ".1")
111
+ .replace("_2", ".2")
112
+ .replace("_3", ".3")
113
+ .replace("_4", ".4")
114
+ .replace("_5", ".5")
115
+ .replace("_6", ".6")
116
+ .replace("_7", ".7")
117
+ .replace("_8", ".8")
118
+ .replace("_9", ".9")
119
+ )
120
+
121
+ flax_key = ".".join(flax_key_tuple_array)
122
+
123
+ if flax_key in pt_model_dict:
124
+ if flax_tensor.shape != pt_model_dict[flax_key].shape:
125
+ raise ValueError(
126
+ f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected "
127
+ f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}."
128
+ )
129
+ else:
130
+ # add weight to pytorch dict
131
+ flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor
132
+ pt_model_dict[flax_key] = torch.from_numpy(flax_tensor)
133
+ # remove from missing keys
134
+ missing_keys.remove(flax_key)
135
+ else:
136
+ # weight is not expected by PyTorch model
137
+ unexpected_keys.append(flax_key)
138
+
139
+ pt_model.load_state_dict(pt_model_dict)
140
+
141
+ # re-transform missing_keys to list
142
+ missing_keys = list(missing_keys)
143
+
144
+ if len(unexpected_keys) > 0:
145
+ logger.warning(
146
+ "Some weights of the Flax model were not used when initializing the PyTorch model"
147
+ f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
148
+ f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"
149
+ " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"
150
+ f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"
151
+ " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"
152
+ " FlaxBertForSequenceClassification model)."
153
+ )
154
+ if len(missing_keys) > 0:
155
+ logger.warning(
156
+ f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"
157
+ f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"
158
+ " use it for predictions and inference."
159
+ )
160
+
161
+ return pt_model